搜档网
当前位置:搜档网 › 热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律
热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

第六章热力学第二定律

6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为

25m+80m+0.5×18m=114m

有热平衡方程得

4.18×114m=3600×2922

∴ m=2.2×104克=22千克

由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。

(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。试分析每一微小卡诺循环效率与的关系)

证:(1)d当任意循环可逆时。用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。

考虑人一微小可逆卡诺循(187完)

环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率

任意可逆循环R的效率为

A为循环R中对外作的总功

(1)

又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度

∴对任一微小可逆卡诺循,必有:

T i≤T m,T i≥T n

令表示热源T m和T n之间的可逆卡诺循环的效率,上式

将(2)式代入(1)式:

或(188完)

即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。

(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡

诺循环的效率必小于可逆时的效率,即(3)

对任一微小的不可逆卡诺循环,也有

(4)

将(3)式代入(4)式可得:

即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。

综之,必

即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。

*6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程p(v-b)=RT。式证明这可逆卡诺循环的

效率公式任为

证:此物种的可逆卡诺循环如图。

等温膨胀过程中,该物质从高温热源T1吸热为

等温压缩过程中,该物质向低温热源放热为(189完)

由第五章习题13知,该物质的绝热过程方程为

利用可得其绝热方程的另一表达式子

由绝热线23及14得

两式相比得

∴该物质卡诺循环的效率为

可见,工作于热源T1和T2之间的可逆机的效率总为1-,与工作物质无关,这正是卡诺定理所指出的。6-9(1)利用(6.7)式证明,对一摩尔范德瓦耳斯气体有

(2)由(1) 证明:

(3)设C v为常数,证明上式可写

其中U0’=U O-c v t o+a/v o

证:(1)对一摩尔物质,(6.7)式为

一摩尔范氏气体的物态方程为

代入上式即得

(2)视u为T、v的函数,由(1)得

积分上式

即得

(3)当C v为常数

由(2)即得

其中

6-10设有一摩尔范德瓦耳斯气体,证明其准静态绝热过程方程为该气体的摩尔热容量C v为常数

(提示:利用习题9的结果)

证:上题给出

由得

Tds = du+pdv = CvdT-dv

由熵增原理知,可逆绝热过程中系统的熵不变,有

CvdT+dv = 0

或+= 0

已知为常数,积分上式即得

6-11接上题,证明范德瓦耳斯气体准静态绝热过程方程又可写为

证:有一摩尔范氏气体的状态方程得

代入上题结果

由于R是常量,所以上式可写作

6-12证明:范德瓦耳斯气体进行准静态绝热过程时,气体对外做功为C V(T1-T2)-a( -) 设C v为常数

证:习题9给出,对摩尔范氏气体有

当范氏气体有状态(T1、v1)变到状态(T2、v2)。内能由u1变到u2,而C v为常数时,上式为u2-u1=Cv(T2-T1)+a(-)

绝热过程中,Q=0,有热力学第一定律得

气体对外作的功

-A=u2-u1=Cv(T2-T1)+a(-)

6-13证明:对一摩尔服从范德瓦耳斯方程的气体有下列关

系:

(提示:)要利用范德瓦耳斯气体的如下关系:

证:习题9已证得,一摩尔范氏气体有

视V为T、P的函数,有

所以,1摩尔范氏气体在无穷小等压(`````=0)过程中,热力学第一定律可写为:dQ = C p dT = du+pdv

= C v dT +dv+(-)dv

又由(p+)(v-b) =RT 可得

代入上式即得

6-14 用范德瓦耳斯气体模型,试求在焦耳测定气体内能实验中气体温度的变化.设气体定容摩尔热容量CV 为常数,摩尔体积在气体膨胀前后分别为V1,V2。

解:当1摩尔范氏气体由(T1,V1)变到(T2,V2),而C V为常数时,由9题结果知其内能变化为:

u2-u1=C V(T1-T1)+a ( -) (1)

焦耳自由膨胀实验中,A=0,且气体向真空的膨胀过程极短暂,可认为气体来不及与外界热交换,Q=0,由热力学第一定律得

u2-u1=0

对于1摩尔范氏气体,由(1)式则得:

T1-T1= ( - )

6-15利用上题公式,求CO2在焦耳实验中温度的变化。设

体的摩尔体积在膨胀前是2.01·mol-1,在膨胀后为

4.01·mol-1。已知CO2的摩尔热容量为3.38R,

a=3.6atm·I2·mol-2

解:取R=8.2×10-2atm·l·mol-1·K-1利用上题公式并代入已知数据得

T1-T1= ( - )=-3.25K

负号表示范氏气体自由膨胀后温度降低。

6-16 对于一摩尔范德瓦耳斯气体,证明经节流膨胀后其温度的变化T2---T1为

T2-T1=[(-)-(-)]

设气体的摩尔热容量为常数。

证:由9题结果,1摩尔范氏气体的内能为

u = u0'+C v T-

由范氏气态方程(p+)(v-b)=RT

得 pv=RT+pb-+

则1摩尔范氏气体的焓为

h=u+pv=(c v+R)T-+b(p+)+u0'=(c v+R(T-++u0')

当1摩尔范氏气体由状态(T1、v1)变到状态(T2、v2)时,起焓变化为

h1-h2=(c v+R)(T2-v1)-(-)+(-)

气体节流膨胀前后焓不变,所以,令上式中h1-h2=0即得1摩尔范氏气体节流膨胀后温度的变化,为

T2-T1=[(-)-(-)]

6-17假设一摩尔气体在节流膨胀前可看作范德瓦尔斯气体,而在节流膨胀后可看作理想气体,气体的定容摩尔热量为C V为常数。试用上述模型证明,气体节流前后温度变化为

ΔT=T2-T1=(RT-)

试在T1—v1图上画出ΔT=0的曲线(即转换温度曲线),并加以讨论。

证:由上题证明知,1摩尔范氏气体节流膨胀前的焓为

h1=(c v+R)T1-++u0'

节流膨胀后的气体可视为理想气体,起1摩尔的焓为

h2 =u2+p2v2=c v T2-c v T0+u0+RT2

=(c v+R)T2+u0''

视二常数u0'和u0''相等,由气体节流气候焓不变,所以

h1-h2=(c v+R)(T2-T1)+-=0

解之,气体节流前后温度的变化为

ΔT = T2-T1= (RT1-)(1)

令上式ΔT= 0,即 RT1-= 0

或 T1= -·(2)

以1摩尔氧为例,由表1-2,取 a=1.36atm·l2·mol-2

b=0.3818 l· mol-1 R=0.082rtm· l· mol-1·K-1,二式化为

T1=1024-(3)

取各个不同的V1值,可得相应的T1值,列表如下:

用描点法作出(3)式的图线—氧的转换温度曲线如下

对于本题模型的气体,当气体节流前的状态(温度、体积):

1. 由图中曲线上方的点表示时,气体节流膨胀后温度不变,不同的初始体积对应不同的转换温度。

2. 由图中曲线下方的曲线表示时,从(1)、(2)式知,气体节流膨胀后温度降低,对于氧气,显然,常温下节流温度降低。

3.由图中上方的点表示时,气体节流膨胀后温度升高(△T>0)

△T=0的曲线称为转换温度曲线

6—18 接上题,从上题作图来看,T0= 具有什么意义?(称T0为上转温度)。若已知氮气 a=1.35×100 atm6·mol-2,

b= 39.6 cm6·mol-1, 氦气 a= 0.033×106 atm·cm6·mol-2,

b = 23.4·mol-1,试求氮气

6-21 设有一摩尔的过冷水蒸气,其温度和压强分别为24℃和1bar,当它转化为 24℃下的饱和水时,熵的变化是多少?计算时假定可把水蒸气看作理想气体,并可利用上题数据。

(提示:设计一个从初态到终态的可逆过程进行计算,如图6-21)

解:由提示,将实际过程的初、始态,看作通过两个可逆过程得到,并设中间状态为2,初始状态分别为1、3。

先设计一个理想气体可逆等温膨胀降压过程,计算△S1:

=×8.31 ln

=1.62KJ·k-1·㎏-1

再设计一个可逆等温等压相变过程,计算△S2,这已在上题算出:△S2=C p ln-C p ln

∴(1)式为

△S=C p ln-C p ln+C v ln

=C p ln-Rln

与(2)式相同得证

6-24 在一绝热容器中,质量为m,温度为T1的液体和相同质量的但温度为T2的液体,在一定压强下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数CP。

解:两种不同温度液体的混合,是不可逆过程,它的熵变可以用两个可逆过程熵变之和求得。设T1>T2,(也可设T1

mC p(T1-T)=mC p(T-T1)

∴ T = (T1+T2)

温度为T1的液体准静态等压降温至T,熵变为

温度为T2的液体准静态等压升温至T熵变为

由熵的可加性,总熵变为:

△S=△S+△S=mC p(ln+ln)

=mC p ln=mC p ln

因(T1-T2)2>0 即T12-2T1T2+T22>0

T12+2T1T2+T22-4T1T2>0

由此得(T1+T2)2>4T1T2

所以,△S>0

由于液体的混合是在绝热容器内,由熵增加原理可见,此过程是不可逆。

6-25 由第五章习题15的数据,计算一摩尔的铜在一大气压下,温度由300K升到1200K时熵的变化。

解:借助给定初、终态间的可逆等压吸热过程,计算熵的变化,并将第五章习题15的数据代入,有

=a ln+b(1200-300)

=37213J

6-26 如图6—26,一摩尔理想气体氢(γ=1.4)在状态1的参量为V1=20L,T1=300K。图中1—3为等温线,1—4为绝热线,1—2和4—3均为等压线,2—3为等容线,试分别用三条路径计算S3-S1:

(1)1—2—3

(2)1—3

(3)1—4—3

解:由可逆路径1—2—3求S3-S1

C p ln-C v ln

=R ln=R ln=8.31 ln

=5.76 J·K-1

(2)由路径1—3求S3-S1

=5.76 J·K-1

由于1—4为可逆绝热过程,有熵增原理知S4-S1=0

从等压线4—3

= =

从绝热线1—4 T1v1γ-1或

=5.76 J·K-1

计算结果表明,沿三条不同路径所求的熵变均相同,这反映了一切态函数之差与过程无关,仅决定处、终态。

6-27在第六章图6—12中,(李椿编“热学”只的图我们曾用一连串微小可逆循环去代替一任意可逆循环,如图6—27所示,设在一微小卡诺循环的APB段,系统吸收热量Q′而在任意循环的相应段MPN,系统吸收热量Q,试证明Q′—Q等于MAP的面积减去PNB的面积。由此可见,Q′—Q为二级无穷小量。

证:在图6-27中做辅助等温线MD,构成循环ABDMA,循环中,系统从等温线APB段吸热Q`,在等温线DM段放热Q2,对外做的功则等于循环包围的面积,即使

Q`-Q2=面积ABDMA (1)

又,在循环MNDM中,系统在MPN段吸热Q,在等温线DM段放热Q2,对外做的功等于循环包围的面积,即

Q`-Q2=面积MNDM (2)

(1)式减(2)式得:

(2) Q`-Q=面积ABDMA-面积MNDM

=面积MAP—面积PNB

视二相邻绝热线之间的等温线AB为一级无穷小量,则面积MAP与面积PNB的各边均为一级无穷小量,面积MAP与面积PNB均为二级无穷小量,所以,Q`-Q为二级无穷小量。

6-28 一实际制冷机工作于两恒温热源之间,热源温度分别为T1=400K,T2=200K。设工作物质在没一循环中,从低温热源吸收热量为200cal,向高温热源放热600cal。

(1)在工作物质进行的每一循环中,外界对制冷机作了多少功?

(2)制冷机经过一循环后,热源和工作物质熵的总变化(△S b)

(3)如设上述制冷机为可逆机,经过一循环后,热源和工作物质熵的总变化应是多少?

(4)若(3)中的饿可逆制冷机在一循环中从低温热源吸收热量仍为200cal,试用(3)中结果求该可逆制冷机的工作物质向高温热源放出的热量以及外界对它所作的功。

解:(1)由热力学第一定律,外界对制冷机作的功为

A=Q1-Q2=600-200=400cal=1672J

(2)经一循环,工作物质又回到初态,熵变为零,热源熵变是高温热源熵变△S1与低温热源熵变△S2之和。所以,经一循环后,热源和工作物质的熵的总变化为

△S b=

(3)视工资与热源为一绝热系,若为可逆机,由熵增加原理知,整个系统的总熵变为零。即

△S0=0

(4)由(3)知,对于可逆机

即工质想高温热源放出的热量。而外界对它的功为

A=Q1'-Q2=400-200=200cal=836J

计算结果表明,,当热源相同,从低温热源取相等的热量时,可逆制冷机比实际制冷机所需的外功少.

6-29 接上题,(1)式由计算数值证明:实际制冷机比可逆制冷机外需要的外功值恰好等于T1△S b (T1、△S b 见上题).

(2)实际制冷机额外多需的外界功最后转化为高温热源的内能.设想利用在这同样的两恒热源之间工作的一可逆热机,把这内能中的一部分再变为有用的功,问能产生多少有用的功.

解:(1)实际制冷机所需之功为

A1=Q1-Q2'

可逆制冷机所需之功为

A2=Q1'-Q2

实际制冷机比可逆机所需的额外功为

△A=A1-A2=(Q1-Q2)

-(Q1'-Q2 )

=Q1-Q1'=Q1-T I Q2/T2

(2)在热源T1、T2之间工作的可逆热机的效率为

能产生的有用工为

A=η△A=ηT1△S b

6-30 入土6-30a,在边厂为L的立方形盒内盛有单原子理想气体.设每一分子的质量为m.由量子力学可以证明,每一个分子的能量只能取下列一系列间断值∈:

其中n x、n y、n z=1、2、3……,

(h/2π)=1.054×10-27erg·S

如图6-30b,取n x、n y、n z为坐标轴,则在这图中每一组(n x、n y、n z)对应于一个点,亦即分子的一种力学运动状态。试证明:

(1)在∈≤E内的点数(即状态数)为

(2)在E和E+δE能量范围内的点数(即状态数)为

由此可见,每一分子的力学运动状态与体积V成正比。

证:(1)如图6-30b,以n x、n y、n z为轴建立直角坐标系,构成三维坐标空间,每一组(n x、n y、n z),表征分子的一种力学运动状态,对应于n x、n y、n z坐标空间内的一个点(可称为分子运动状态的代表点).

∈≤E即

由于n x、n y、n z只取正值,其坐标空间是全空间的,由上式可见,分子能量∈小于等于某一值E的所

有可能的n x、n y、n z的值,是在n x、n y、n z坐标空间中一R为半径的球内,即使∈≤E的所有可能的n x、n y、n z的值在n x、n y、n z坐标空间中占据的体积为:

将n x、n y、n z坐标空间划分为若干边长为1的立方体小格,如图6-30b所示,由于n x、n y、n z的值只取正整数,则每一个分子运动状态的代表点在坐标空间占据的体积等于单位立方体小格的体积.

所以,在∈≤E内的点数(既状态数)为

(2)使∈在E-E+δE之间的所有可能的n x、n y、n z的值在坐标空间中占据的体积为

其中V=L3,为气体的体积.

而每一分子运动状态的代表点在n x、n y、n z坐标空间内占据的体积为一个单位体积(1个小格).所以,在E-E+δE能量范围内的点数(既状态数)为

可见,每一分子在某一能量值附近所可能有的力学状态与气体体积成正比.

热力学第二定律练习题及答案

热力学第二定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( ) 2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞 开系统。 ( ) 3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。 ( ) 4、隔离系统的熵是守恒的。( ) 5、一定量理想气体的熵只是温度的函数。( ) 6、一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。 ( ) 8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>G 和G <0,则此状态变化一定能发生。( ) 9、绝热不可逆膨胀过程中S >0,则其相反的过程即绝热不可逆压缩过程中S <0。( ) 10、克-克方程适用于纯物质的任何两相平衡。 ( ) 11、如果一个化学反应的r H 不随温度变化,则其r S 也不随温度变化, ( ) 12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。 ( ) 13、在10℃, kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。 ( ) 14、理想气体的熵变公式 只适用于可逆过程。 ( ) 15、系统经绝热不可逆循环过程中S = 0,。 ( ) 二、选择题 1 、对于只做膨胀功的封闭系统的(A /T )V 值是:( ) (1)大于零 (2) 小于零 (3)等于零 (4)不确定 2、 从热力学四个基本过程可导出V U S ??? ????=( ) (1) (2) (3) (4) T p S p A H U G V S V T ???????????? ? ? ? ????????????? 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。在下列结论中何者正确( )

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量, 是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-, ()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv = +??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程? 答:这是一个有摩擦的自由膨胀过程,相应的第一定律表达式为q du dw δ=+。又因为容器为绝热、刚性,所以0q δ=,0w δ=,因而0du =,即21u u =,所以气体的热力学能在在膨胀前后没有变化。 如果用 q du pdv δ=+ 来分析这一过程,因为0q δ=,必 有du pdv =-,又因为是膨胀过程0dv >,所以0du <,即21u u <这与前面的分析得出的21u u =矛盾,得出这一错误结论的

热力学第二定律习题解答

第八章热力学第二定律 一选择题 1. 下列说法中,哪些是正确的( ) (1)可逆过程一定是平衡过程; (2)平衡过程一定是可逆的; (3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。 A. (1)、(4) B. (2)、(3) C. (1)、(3) D. (1)、(2)、(3)、(4) 解:答案选A。 2. 关于可逆过程和不可逆过程的判断,正确的是( ) (1) 可逆热力学过程一定是准静态过程; (2) 准静态过程一定是可逆过程; (3) 不可逆过程就是不能向相反方向进行的过程;

(4) 凡是有摩擦的过程一定是不可逆的。 A. (1)、(2) 、(3) B. (1)、(2)、(4) C. (1)、(4) D. (2)、(4) 解:答案选C。 3. 根据热力学第二定律,下列哪种说法是正确的( ) A.功可以全部转换为热,但热不能全部 转换为功; B.热可以从高温物体传到低温物体,但 不能从低温物体传到高温物体; C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运 动的能量,但无规则运动的能量不能 变成有规则运动的能量。 解:答案选C。 4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:

( ) A. 温度不变,熵增加; B. 温度升高,熵增加; C. 温度降低,熵增加; D. 温度不变,熵不变。 解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。因过程是不可逆的,所以熵增加。 故答案选A 。 5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( ) (1) 两种不同气体在等温下互相混合; (2) 理想气体在等体下降温; (3) 液体在等温下汽化; (4) 理想气体在等温下压缩; (5) 理想气体绝热自由膨胀。 A. (1)、(2)、(3) B. (2)、(3)、(4) C. (3)、(4)、(5) D. (1)、(3)、(5) 解:答案选D。

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

工程热力学习题集答案

工程热力学习题集答案一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。

31.孤立系; 32.开尔文(K); 33.-w s =h 2-h 1 或 -w t =h 2-h 1 34.小于 35. 2 2 1 t 0 t t C C > 36. ∑=ω ωn 1 i i i i i M /M / 37.热量 38.65.29% 39.环境 40.增压比 41.孤立 42热力学能、宏观动能、重力位能 43.650 44.c v (T 2-T 1) 45.c n ln 1 2T T 46.22.12 47.当地音速 48.环境温度 49.多级压缩、中间冷却 50.0与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22 -C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. (0.657)kJ/kgK 。 56. (定熵线)

57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 1.C 2.D 3.D 4.A 5.C 6.B 7.A 8.A 9.C 10.B 11.A 12.B 13.B 14.B 15.D 16.B 17.A 18.B 19.B 20.C 21.C 22.C 23.A 三、判断题 1.√2.√3.?4.√5.?6.?7.?8.?9.?10.? 11.?12.?13.?14.√15.?16.?17.?18.√19.√20.√ 21.(×)22.(√)23.(×)24.(×)25.(√)26.(×)27.(√)28.(√) 29.(×)30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡 状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 2.1kg气体:pv=R r T mkg气体:pV=mR r T 1kmol气体:pV m=RT nkmol气体:pV=nRT R r是气体常数与物性有关,R是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v″,h=h″s=s″

高中物理-热力学第二定律练习题

高中物理-热力学第二定律练习题 1.热力学定律表明自然界中与热现象有关的宏观过程( ) A.有的只遵守热力学第一定律 B.有的只遵守热力学第二定律 C.有的既不遵守热力学第一定律,也不遵守热力学第二定律 D.所有的都遵守热力学第一、第二定律 2.如图为电冰箱的工作原理示意图。压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环。在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外,下列说法中正确的是( ) A.热量可以自发地从冰箱内传到冰箱外 B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能 C.电冰箱的工作原理不违反热力学第一定律 D.电冰箱的工作原理违反热力学第一定律 3.(·大连高二检测)下列说法正确的是( ) A.机械能和内能的转化具有方向性 B.电能不可能全部转化为内能 C.第二类永动机虽然不违反能量守恒定律,但它是制造不出来的D.在火力发电机中燃气的内能不可能全部转化成电能 4.下列宏观过程能用热力学第二定律解释的是( ) A.大米和小米混合后小米能自发地填充到大米空隙中而经过一

段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来 D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100% 5.(·课标全国理综)关于热力学定律,下列说法正确的是( ) A.为了增加物体的内能,必须对物体做功或向它传递热量 B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功 D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程 6. 用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象。关于这一现象的正确说法是( ) A.这一实验过程不违反热力学第二定律 B.在实验过程中,热水一定降温,冷水一定升温 C.在实验过程中,热水的内能全部转化成电能,电能则部分转化成冷水的内能 D.在实验过程中,热水的内能只有部分转化成电能,电能则全部转化成冷水的内能

热力学第二定律习题

热力学第二定律习题 选择题 .ΔG=0 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程(B) 等温等压且非体积功为零的过程(C) 等温等容且非体积功为零的过程(D) 可逆绝热过程答案:A .在一定温度下,发生变化的孤立体系,其总熵 (A)不变(B)可能增大或减小(C)总是减小(D)总是增大 答案:D。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。 .对任一过程,与反应途径无关的是 (A) 体系的内能变化(B) 体系对外作的功(C) 体系得到的功(D) 体系吸收的热 答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。 .氮气进行绝热可逆膨胀 ΔU=0(B) ΔS=0(C) ΔA=0(D) ΔG=0 答案:B。绝热系统的可逆过程熵变为零。

.关于吉布斯函数G, 下面的说法中不正确的是 (A)ΔG≤W'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小 (C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生 (D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。 答案:A。因只有在恒温恒压过程中ΔG≤W'才成立。 .关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温 (B)不可能从单一热源吸热做功而无其它变化 (C)第二类永动机是造不成的 (D热不可能全部转化为功 答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化 .关于克劳修斯-克拉佩龙方程下列说法错误的是 (A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积 (D) 该方程假定与固相或液相平衡的气体为理想气体

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量, 是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内 部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言 之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 、q 二du pdv 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 ,q =du pdv 或 、.q 二 dh -vdp 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u = h- pv du = d (h - pv ) = dh - pdv - vdp 对闭口系将 du 代入第一式得 q = dh - pdv - vdp pdv 即 q = dh - vdp 。 3. 能量方程;q =du pdv (变大)与焓的微分式dh n du V pv (变大)很相 像,为什么热量q 不是状态参 数,而焓h 是状态参数? 答:尽管能量方程 :q 二du ? pdv 与焓的微分式dh =du d pv (变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积 分是否为零。对焓的微分式来说,其循环积分: []dh= []du + |Jd (pv ) 因为 [du 二 0,[d(pv)二 0 4. 用隔板将绝热刚性容器分成 A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去 后,气体热力学能是否会发生变化?能不能用 9二du ? pdv 来分析这一过程? 所以 因此焓是状态参数。 而对于能量方程来说,其循环积分: 虽然: 但是: 所以: 因此热量 q 不是状态参数。 [q = []du - pdv [du 二 0 [pdv = 0 q = 0

热力学第二定律复习题及解答

第三章 热力学第二定律 一、思考题 1. 自发过程一定是不可逆的,所以不可逆过程一定是自发的。这说法对吗? 答: 前半句是对的,后半句却错了。因为不可逆过程不一定是自发的,如不可逆压缩过程。 2. 空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与第二定律矛盾呢? 答: 不矛盾。Claususe 说的是“不可能把热从低温物体传到高温物体,而不引起其他变化”。而冷冻机系列,环境作了电功,却得到了热。热变为功是个不可逆过程,所以环境发生了变化。 3. 能否说系统达平衡时熵值最大,Gibbs 自由能最小? 答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。等温、等压、不作非膨胀功,系统达平衡时,Gibbs 自由能最小。 4. 某系统从始态出发,经一个绝热不可逆过程到达终态。为了计算熵值,能否设计一个绝热可逆过程来计算? 答:不可能。若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。反之,若有相同的终态,两个过程绝不会有相同的始态,所以只有设计除绝热以外的其他可逆过程,才能有相同的始、终态。 5. 对处于绝热瓶中的气体进行不可逆压缩,过程的熵变一定大于零,这种说法对吗? 答: 说法正确。根据Claususe 不等式T Q S d d ≥,绝热钢瓶发生不可逆压缩过程,则0d >S 。 6. 相变过程的熵变可以用公式H S T ??=来计算,这种说法对吗? 答:说法不正确,只有在等温等压的可逆相变且非体积功等于零的条件,相变过程的熵变可以用公式T H S ?=?来计算。 7. 是否,m p C 恒大于 ,m V C ? 答:对气体和绝大部分物质是如此。但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。 8. 将压力为101.3 kPa ,温度为268.2 K 的过冷液体苯,凝固成同温、同压的固体苯。已知苯的凝固点温度为278.7 K ,如何设计可逆过程? 答:可以将苯等压可逆变温到苯的凝固点278.7 K : 9. 下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值哪些为零?哪些的绝对值相等? (1)理想气体真空膨胀; (2)实际气体绝热可逆膨胀; (3)水在冰点结成冰;

热力学第二定律复习题及答案

热力学第二定律复习题集答案 1 理想气体绝热向真空膨胀,则: A.ΔS = 0,W = 0 C.ΔG = 0,ΔH = 0 D.ΔU = 0,ΔG = 0 2. 方程2 ln RT H T P m βα?=d d 适用于以下哪个过程?A. H 2O(s)= H 24Cl (s)= NH 3(g)+HCl(g) D. NH 4Cl(s)溶于水形成溶液 3. 反应 FeO(s) + C(s) == CO(g) + Fe (s) 的?H 为正, ?S 为正(假定?r H ,?r S 与温度无关),下列说法中正确的是 ): A. 低温下自发,高温下非自发; D. 任何温度下均为自发过程 。 4. 对于只作膨胀功的封闭系统 p T G ??? ???? 的值:A 、大于零; C 、等于零; D 、不能确定。 5.25℃下反应 CO(g)+2H 2(g) = CH 3OH(g)θH ?= - 90.6kJ ·mol -1,为提高反应的平衡产率,应采取的措施为 。 A. 升高温度和压力 B. D. 升高温度,降低压力 6.ΔA=0 的过程应满足的条件是: A. 逆绝热过程 B. 等温等压且非体积功为零的过程 C. 7.ΔG=0 A. 逆绝热过程 C. 等温等容且非体积功为零的过程D. 等温等容且非体积功为零的可逆过程 8.关于熵的性质 A. 环境的熵变与过程有关 B. D. 系统的熵等于系统内各部分熵之和 9. 在一绝热恒容的容器中, 10 mol H 2O(l)变为10 mol H 2O(s)时,: A. ΔS B. ΔG C. ΔH 10.在一定温度下,发生变化的孤立系统,其总熵 : A. 不变 B. C. 总是减小 11. 正常沸点时,液体蒸发为气体的过程中: A. ΔS=0 U=0 12.在0℃、101.325KPa 下,过冷液态苯凝结成固态苯,) <0 D. △S + △S(环) <0 13. 理想气体绝热向真空膨胀,则: A. ΔS = 0,W = 0 C. Δ 14. ?T)V = -S C. (?H/?p)S 15.任意两相平衡的克拉贝龙方程d T / d p = T ?V H m m /?,式中?V m 及?H m V ?V m < 0,?H m < 0 ; C.;或? V m < 0,?H m > 0 16.系统进行任一循环过程 C. Q=0 17.吉布斯判据可以写作: T, p, W ‘=0≥0 D. (dG) T, V , W ‘=0≥0 18.亥姆霍兹判据可以写作: T, p, W ‘=0 T, p, W ‘=0≥0 D. (dA) T, V , W ‘=0≥0 19. 的液固两相平衡,因为 V m ( H 2m 2H 2O( l )的凝固点将: A.上升; C.不变; D. 不能确定。 20.对于不作非体积功的均相纯物质的封闭体系,下面关系始中不正确的是:A.T S H p =??? ???? B.S T A V -=??? ???? C.V p H S =???? ???? D. p V U S =??? ???? 21. 373.2 K 和101.325 kPa 下的1 mol H 2O(l),令其与373.2 K 的大热源接触并向真空容器蒸发,变为373.2 K 和101.325 kPa 下的1 mol H 2O(g), 对这一过程可以判断过程方向的是:A. Δvap S m (系统) B. Δvap G m D. Δvap H m (系统) 22. 工作在100℃和25℃的两大热源间的卡诺热机,其效率: ;D.100 %。 23.某体系进行不可逆循环过程时:A. ΔS(体系) >0, ΔS(环境)< 0B. ΔS(体系) >0, ΔS(环境) >0 C. ΔS(体系) = 0, ΔS(环境 24.N 2和O 2混合气体的绝热可逆压缩过程中:A. ΔU = 0 B. ΔA = 0 D. ΔG = 0 25.单组分体系,在正常沸点下汽化,不发生变化的一组量是:A. T ,P ,U B.H ,P ,U C. S ,P ,G 26.封闭体系中,W ’ = 0,恒温恒压下进行的化学反应,可用下面哪个公式计算体系的熵变: A. ΔS = Q P /T B. ΔS = Δ D. ΔS = nRTlnV 2/V 1 27.要计算298K ,标准压力下,水变成水蒸汽(设为理想气体)的ΔG ,需知道的条件是: A. m p C ?(H 2O 、l) 和m p C ? (H 2O 、g) B.水的正常沸点下汽化热Δ vap H m 及其熵变 D. m p C ? (H 2O 、l) 和m v C ? (H 2O 、g) 及Δvap H m 28.由热力学基本关系可以导出n mol 理想气体B 的()T S V ??为:A. nR/V B. –nR/P C. nR D. R/P 29. 在等温等压下,当反应的1m r mol KJ 5Δ-?= G 时,该反应: A. 能正向自发进行 B. D. 不能进行 30. 在隔离系统中发生一自发过程,则系统的ΔG 为:A. ΔG = 0 B. ΔG > 0 C. ΔG < 0

第二章 热力学第二定律 复习题及答案

第二章 热力学第二定律 复习题及答案 1. 试从热功交换的不可逆性,说明当浓度不同的溶液共处时,自动扩散过程是不可逆过程。 答:功可以完全变成热,且是自发变化,而其逆过程。即热变为功,在不引起其它变化的条件下,热不能完全转化为功。热功交换是不可逆的。不同浓度的溶液共处时,自动扩散最后浓度均匀,该过程是自发进行的。一切自发变化的逆过程都是不会自动逆向进行的。所以已经达到浓度均匀的溶液。不会自动变为浓度不均匀的溶液,两相等体积、浓度不同的溶液混合而达浓度相等。要想使浓度已均匀的溶液复原,设想把它分成体积相等的两部分。并设想有一种吸热作功的机器先把一部分浓度均匀的溶液变为较稀浓度的原溶液,稀释时所放出的热量被机器吸收,对另一部分作功,使另一部分浓度均匀的溶液浓缩至原来的浓度(较浓)。由于热量完全转化为功而不留下影响是不可能的。所以这个设想过程是不可能完全实现,所以自动扩散是一个不可逆过程。 2. 证明若第二定律的克劳修斯说法不能成立,则开尔文的说法也不能成立。 答:证:第二定律的克劳修斯说法是“不可能把热从低温物体传到高温物体而不引起其它变化。”若此说法不能成立, 则如下过程是不可能的。把热从低温物体取出使其完全变成功。这功在完全变成热(如电热),使得高温物体升温。而不引起其它变化。即热全部变为功是可能的,如果这样,那么开尔文说法“不可能从单一热源取出热,使之全部变成功,而不产生其它变化”也就不能成立。 3. 证明:(1)在pV 图上,理想气体的两条可逆绝热线不会相交。 (2)在pV 图上,一条等温线与一条绝热线只能有一个相交点而不能有两个相交点。 解:证明。 (1).设a 、b 为两条决热可逆线。在a 线上应满足111K V P =γ ①, 在第 二条绝热线b 上应满足222K V P =γ ②且21K K ≠或V P V P γ-=??)( , vm pm C C = γ不同种理想气体γ不同,所以斜率不同,不会相交。若它们相 交于C 点,则21K K =。这与先前的假设矛盾。所以a 、b 两线不会相交。 (2).设A 、B 为理想气体可逆等温线。(V P V P T - =??)(

热力学第二定律试题

热力学第二定律试题 (一)填空题(每题2分) 1气体经绝热不可逆膨胀,S 0 ;气体经绝热不可逆压缩,S 0 。(填>、<、=,下同) 2. 1mol单原子理想气体从P i、V i、T i等容冷却到P2、V、T2,则该过程的U 0 ,S 0 ,W 0 3. 理想气体的等温可逆膨胀过程中,S_J , G 0 , U 0 , H 0 。(填>、<、=) 4. imol液态水在373K、P0下汽化为水蒸气,则S_0 , G_0 , U_0 , H_0。(填>、<、=) 5 ?热力学第二定律告诉我们只有___________ 过程的热温商才与体系的熵变相目等,而不可逆过程的热温商 体系的熵变。 6 ?在等温等压,不作其它功的条件下,自发过程总是超着吉布斯自由能________ 的方向进行,直到自由 能改变量为零就达到了___________ 态。 (二)单项选择题 (每题1分) 7?根据热力学第二定律的表述,下列说法错误的是( ) (A) 第二类永动机服从能量守恒原理(B) 热不能全部转化为功而不引起其他变化 (C) 热不能全部转化为功(D) 从第一定律的角度看,第二类永动机允许存在 &关于自发过程方向性的说法错误的是( ) (A) 功可以自发的全部转变成热,但热却不能全部转化为功而不留下其它变化 (B) 一切自发过程都是不可逆过程(C) 一切不可逆过程都是自发过程 (D) 功转变成热和其它过程一样具有方向性 9.工作在393K和293K的两个大热源的卡诺热机,其效率为( ) (A) 83% (B) 25% (C) 100% (D) 20% 10.在可逆循环过程中,体系热温商之和是() (A) 大于零(B) 小于零(C) 等于零(D) 不能确定 11 .理想气体等温可逆膨胀过程,( ) (A) 内能增加(B) 熵不变(C) 熵增加(D) 内能减 少 12 .某体系在始态A和终态B之间有两条途径:可逆I和不可逆H,此时有( ) 13. 下列说法错误的是( ) (A) 孤立体系发生的任意过程总是向熵增大的方向进行 (B) 体系在可逆过程中的热温商等于体系熵变(C) 不可逆循环过程的热温商小于熵变 (D)体系发生某一变化时的熵变等于该过程的热温商 14. 热力学第二定律的表达式为dS》Q/T环,则( ) (A) 始、终态相同时,不可逆过程的熵变小于可逆过程的熵变 (B) 如果发生某一过程,体系的熵变与热温商相等,则该过程为不可逆过程 (C) 对于孤立体系,dS>0 (D) 在某些情况,可能有dS w Q/T环 15 . 300K时,1mol理想气体由A态等温膨胀到B态,吸热,所作的功为A到B等温可逆膨胀功的1/3,则体系的S^( ) -1 -1 -1 -1 (A) ?K(B) J ?K(C) ?K (D) J ?K 16. 2mol单原子理想气体,等压由300K升温至600K,其S%( ) -1 -1 -1 -1 (A) J ?K(B) J ?K(C) J ?K (D) J ?K 17?在标准压力时,苯的沸点为,1molC6H(l )完全汽化为同温同压下的苯蒸气。已知苯的正常汽化热为?K -1则过程的S^( ) -1 -1 -1 -1 (A) S A=S B (B) Q i /T = Q n /T (C) S i= S n (D) S i = Q II

热力学第二定律思考题

1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。这说法对吗 答: 前半句是对的,但后半句是错的。因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。 2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢 答: 不矛盾。Claususe 说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。而热变为功是个不可逆过程,所以环境发生了变化。 3.能否说系统达平衡时熵值最大,Gibbs 自由能最小 答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小。也就是说,使用判据时一定要符合判据所要求的适用条件。 4.某系统从始态出发,经一个绝热不可逆过程到达终态。为了计算熵值,能否设计一个绝热可逆过程来计算 答:不可能。若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。反之,若有相同的终态,两个过程绝不会有相同的始态。所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。 5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗 答:对。因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。 6.相变过程的熵变,可以用公式H S T ??=来计算,这说法对吗 答:不对,至少不完整。一定要强调是等温、等压可逆相变,H ?是可逆相变时焓的变化值(,R p H Q ?=),T 是可逆相变的温度。 7.是否,m p C 恒大于,m V C 答:对气体和绝大部分物质是如此。但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。

热力学第二定律习题详解

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统 内能不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的[ ]

工程热力学习题解答-1

第一章 基本概念 思 考 题 1、如果容器中气体压力保持不变,那么压力表的读数一定也保持不变,对吗? 答:不对。因为压力表的读书取决于容器中气体的压力和压力表所处环境的大气压力 两个因素。因此即使容器中的气体压力保持不变,当大气压力变化时,压力表的读数也会 随之变化,而不能保持不变。 2、“平衡”和“均匀”有什么区别和联系 答:平衡(状态)值的是热力系在没有外界作用(意即热力、系与外界没有能、质交 换,但不排除有恒定的外场如重力场作用)的情况下,宏观性质不随时间变化,即热力系 在没有外界作用时的时间特征-与时间无关。所以两者是不同的。如对气-液两相平衡的状 态,尽管气-液两相的温度,压力都相同,但两者的密度差别很大,是非均匀系。反之,均 匀系也不一定处于平衡态。 但是在某些特殊情况下,“平衡”与“均匀”又可能是统一的。如对于处于平衡状态 下的单相流体(气体或者液体)如果忽略重力的影响,又没有其他外场(电、磁场等)作 用,那么内部各处的各种性质都是均匀一致的。 3、“平衡”和“过程”是矛盾的还是统一的? 答:“平衡”意味着宏观静止,无变化,而“过程”意味着变化运动,意味着平衡被 破坏,所以二者是有矛盾的。对一个热力系来说,或是平衡,静止不动,或是运动,变 化,二者必居其一。但是二者也有结合点,内部平衡过程恰恰将这两个矛盾的东西有条件 地统一在一起了。这个条件就是:在内部平衡过程中,当外界对热力系的作用缓慢得足以 使热力系内部能量及时恢复不断被破坏的平衡。 4、“过程量”和“状态量”有什么不同? 答:状态量是热力状态的单值函数,其数学特性是点函数,状态量的微分可以改成全 微分,这个全微分的循环积分恒为零;而过程量不是热力状态的单值函数,即使在初、终 态完全相同的情况下,过程量的大小与其中间经历的具体路径有关,过程量的微分不能写 成全微分。因此它的循环积分不是零而是一个确定的数值。 习 题 1-1 一立方形刚性容器,每边长 1 m ,将其中气体的压力抽至 1000 Pa ,问其 真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为 0.1MPa 。 [解]:(1) 6(0.110Pa 1000Pa)/133.3224742.56mmHg v b p p p =-=?-= (2) 26()1(0.110Pa 1000Pa)99000N b F A P A P P m =?=-=??-=

热力学第二定律习题

第二章热力学第二定律(09级习题) 一、单选题 1、下列关于卡诺循环的描述中,正确的是() A.卡诺循环完成后,体系复原,环境不能复原,是不可逆循环 B.卡诺循环完成后,体系复原,环境不能复原,是可逆循环 C.卡诺循环完成后,体系复原,环境也复原,是不可逆循环 D.卡诺循环完成后,体系复原,环境也复原,是可逆循环 2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为() A.83% B.25% C.100% D.20% 3、对于理想气体的等温压缩过程,(1)Q=W、(2)ΔU=ΔH、(3)ΔS=0、(4)ΔS<0、(5)ΔS>0上述五个关系式 中,不正确的是() A.(1) (2) B.(2) (4) C.(1) (4) D.(3) (5) 4、设ΔS1与ΔS2分别表示为n molO2(视为理气),经等压与等容过程,温度从T升至2T时的熵变,则ΔS1/ΔS2 等于() A.5/3 B.5/7 C.7/5 D.3/5 5、不可逆循环过程中,体系的熵变值() A.大于零 B.小于零 C.等于零 D.不能确定 6、对理想气体的自由膨胀过程,(1)Q=ΔH、(2)ΔH>Q、(3)ΔS=0、(4)ΔS>0。上述四个关系中,正确的是 () A.(2) (3) B.(1) (3) C.(1) (4) D.(2) (4) 7、1mol理想气体从300K,1×106Pa绝热向真空膨胀至1×105Pa,则该过程() A.ΔS>0、ΔG>ΔA B.ΔS<0、ΔG<ΔA C.ΔS=0、ΔG=ΔA D.ΔA<0、ΔG=ΔA 8、孤立体系发生一自发过程,则() A.ΔA>0 B.ΔA=0 C.ΔA<0 D.ΔA的符号不能确定 9、下列过程中ΔG=0的过程是( ) A.绝热可逆且W'=0的过程 B.等温等容且W'=0的可逆过程 C.等温等压且W'=0的可逆过程 D.等温且W'=0的可逆过程 10、-ΔG (T,p) > -W'的过程是( )

工程热力学习题集答案

工程热力学习题集答案 一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。 31.孤立系; 32.开尔文(K); 33.-w s=h2-h1或-w t=h2-h1 34.小于 35. 2 2 1 t t t C C> 36. ∑=ω ωn 1 i i i i i M / M / 37.热量39.环境

40.增压比 41.孤立 42热力学能、宏观动能、重力位能 (T 2-T 1) 12 T T 47.当地音速 48.环境温度 49.多级压缩、中间冷却 与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22-C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. kJ/kgK 。 56. (定熵线) 57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 三、判断题 1.√ 2.√ 3.? 4.√ 5.? 6.? 7.? 8.? 9.? 10.? 11.? 12.? 13.? 14.√ 15.? 16.? 17.? 18.√ 19.√ 20.√ 21.(×) 22.(√) 23.(×) 24.(×) 25.(√) 26.(×) 27.(√) 28.(√) 29.(×) 30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 气体:pv=R r T mkg 气体:pV=mR r T 1kmol 气体:pV m =RT nkmol 气体:pV=nRT R r 是气体常数与物性有关,R 是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v ″,h=h ″ s=s ″

热力学第二定律习题

甲苯的密度第二章热力学第二定律习题 1. 1L理想气体在3000 K时压力为1519.9 kPa,经等温膨胀最后体积变到10 dm3,计算该过程的Wmax、ΔH、ΔU及ΔS。 解: 2. 1mol H2在300K从体积为1dm3向真空膨胀至体积为10 dm3,求体系的熵变。若使该H2在300K从1dm3经恒温可逆膨胀至10 dm3其熵变又是多少?由此得到怎样的结论? 解:真空膨胀为不可逆过程,要计算熵变,必须先设计可逆过程,即等温可逆膨胀过程, ΔS = nRln(V2/V1)=1×8.314×ln10 = 19.14J/K 对于等温可逆膨胀,不需设计可逆过程,直接计算,由于两步的始态和终态相同,所以等温可逆膨胀的熵变也等于19.14J/K。 结论:只要体系的始态和终态相同,不管是可逆过程还是不可逆过程,体系熵变相同。 3. 0.5 dm3 343K水与0.1 dm3 303K水混合,求熵变。 解:水的混合过程为等压变化过程,用ΔS = nCp,mln(T2/T1)计算,同时熵是广度性质的状态函数,具加和性,熵变ΔS等于高温水的熵变ΔSh加上低温水的熵变ΔSc。 先计算水终态温度,根据高温水放出的热量等于低温水吸收的热量来计算,设终态水温为T 终。 Q = nCp,m (T2 - T1) = (0.1ρ/M) Cp,m (T终-303) = (0.5ρ/M) Cp,m (343-T终) T终 = 336.3K ΔS = ΔSh +ΔSc = (0.5ρ/M) Cp,mln(336.3/343) + (0.1ρ/M) Cp,m ln(336.3/303) = (0.5×103/18)×75.31 ln(336.3/343) + (0.1×103/18)×75.31 ln(336.3/303) = 2.35J/K 4. 有473K的锡0.25kg,落在283K1kg的水中,略去水的蒸发,求达到平衡时此过程的熵变。已知锡的Cp,m=24.14J/K?mol, 原子量为118.71,水的Cp,m=7 5.31J/K?mol。 解:先求锡和水的终态温度T终 Q = n锡Cp,m,锡 (473-T终) = n水Cp,m,水(T终-283)

相关主题