搜档网
当前位置:搜档网 › 弹塑性力学概述

弹塑性力学概述

弹塑性力学概述
弹塑性力学概述

塑性增量本构的基本理论

姓名:学号:

摘要:本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。

关键字:本构关系;塑性;屈服面;硬化规律;塑性流动法则

1 引言

尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。现在复杂应力条件下塑性本构关系的研究,已成为当务之急。弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。在采用有限元法对工程塑性问题进行数值分析时,关键问题就是选择恰当的弹塑性本构模型,因此,弹塑性材料本构模型的研究就显得十分重要【1】。

本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。

2基本假设

建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设【1】。研究弹塑性本构关系理论的基本假设一般有以下几点

:

(1)连续性假设:弹塑性体是一种密实的连续介质并在整个变形过程中保持连续性。

(2)小变形假设:在小变形(变形和物体尺寸相比可以忽略不计)情况下,应变和位移导数间的几何关系是线性的。但对于大变形情况,必须考虑几何关系中的二阶或高阶非线性项。

(3)均匀性假设:物体在不同点处的力学性质处处相同。实际上金属材料都可以看作是均匀的。对于混凝土、玻璃钢等非均质材料,如果不细究其不同组份分界面的局部应力,可以釆用在足够大的材料上测得的等效弹塑性参数来简化成均匀材料。

(4)仅考虑等温过程中的应变率无关材料,即忽略了应变率大小(或粘弹性效应)对变形规律的影响。这时任何与时间呈单调递增关系的参数都可取作为变形过程的时间参数。由此得到的本构关系将会有相当的简化。

(5) Drucker假设和Ilyushin假设(在流动法则中将详细讨论这两个假设)。

3弹塑性本构模型的基本理论

弹塑性本构模型是根据弹性理论、塑性理论等发展建立起来的【1】。在塑性变形过程中总应变为两部分一部分是弹性应变和一部分是塑性应变。其中弹性应变可由广义Hooke 定律计算。塑性状态下的本构关系目前存在着两种理论:一种理论认为塑性状态下的应力-应变仍是应力分量和应变分量之间的关系,这种理论称为全量理论或形变理论;另一种理论认为塑性状态下的应力-应变关系应该是增量之间的关系,称为增量理论或流动理论【2,3,4】。由于材料的塑性变形具有不可恢复性,在本质上是一个与加载历史有关的过程,所以一般情况下其应力-应变关系用增量形式描述更为合理。因此塑性应变一般用塑性增量理论计算。应用塑性增量理论计算塑性应变一般需要弹塑性材料的屈服面与后继屈服面、流动法则和硬化规律三个基本组成部分,对服从非关联流动规则的材料,还需要弹塑性材料的塑性势面【5】。下面将讨论弹塑性增量理论的三个组成部分。

3.1 屈服面和后继屈服面及几个常用的屈服条件

一般地,材料在外载荷作用下的响应与荷载的大小有直接的关系。当外载足够小时,材料表现为线弹性,当外载继续增加,应力大小超过弹性极限,应力应变关系则不再是理想弹性状态,而材料的某一点或某些点应力状态开始进入塑性状态。判断材料开始进入塑性状态的条件或准则称为屈服条件或屈服准则。根据不同的可能应力路径所进行的试验,可以得出从弹性状态进入塑性状态的各个屈服应力,在应力空间中将这些屈服应力点连接起来就形成了一个区分弹性和塑性的分界面,即称为屈服面【6】。在继续加载条件下材料从一种塑性状态到达另一种塑性状态,将形成系列的后继屈服面。材料在简单加载作用下,屈服条件定义为材料的弹性极限,可以由简单试验直接确定;而多数工程中的材料处于复杂载荷作用下,屈服面与后继屈服面的形状一般不能通过试验求得,不同的本构模型有各自不同形状的屈服面,且屈服准则或屈服函数的具体形式取决于材料的力学特性。因此关于材料在复杂应力状态下的屈服面与后继屈服面(或屈服准则)的确定具有理论和实践意义,一方面它表征了材料从弹性状态过渡到塑性状态的开始,确定开始塑性变形时应力的大小和状态,另一方面,它确定了材料复杂应力状态下的后继屈服极限范围,它是塑性理论分析的重要基础,并应用于各种实际工程结构的设计与施工。

屈服面与后继屈服面的数学表达式称为屈服函数。关于材料的屈服面和屈服函数,已研究了上百年,提出的各种表达式不下几十种之多。在应力空间中它一般可以表示成下式:

图1 屈服面在主应力空间示意图

(,)0ij f σξ= (1)

这表示它是应力空问中的一个超曲面。

若不考虑应力主轴旋转的情况下可在主应力空间中表示,则为:

123(,,,)0f σσσξ= (2) 如果屈服与静水压力无关,则表示为:

12(,)0f J J = (3) 在应变空间中可用下式表示屈服函数

(,)0P

i j i j F εε= (4)

常用的屈服条件有:Tresca 屈服条件(1894年)、Mises 屈服条件(1913年)、Coulomb 屈服条件(广义Trcsca 条件)、Drucker-Prager 屈服条件(广义Mises 条件)、双剪屈服准则。

(1)Tresca 屈服条件【5】

Tresca 认为,在最大剪应力达到极限时材料进入屈服,在123σσσ≥≥的假设下Tresca 屈服条件表示为:

13max 12k σστ-== (5)

或者: 1320k σσ--=

(6)

(2)Mises 屈服条件【5】

Mises 克服Tresca 屈服面具有角点的缺陷(即不考虑中间主应力的影响)提出了Tresca 屈服条件:

222J k =或2220J k -= (7) 将2J 写成展开形式,则有:

()()()()222222211222233331112233121606k σσσσσσσσσ??-+-+-+++-=?? (8)

(3)Coulomb 屈服条件(广义Tresca 条件)【6】

认为屈服与静水压力有关,则材料屈服曲面方程为:

()123,,0f I J J = (9)

与式(9)相吻合的是Coulomb 准则,由土力学可知:

0n t g c τσ?+-= (10) 式中: τ——土的抗剪强度

n σ——τ作用面上的正应力

c ——粘聚力

(4)Ducker-Prager 屈服条件(广义Mises 条件) 【6】

D-P 为了改进Coulomb 屈服条件在角点处描述塑性流动的困难,于1952年提出光滑屈服曲面模型,为一圆锥。在n 平面中为圆,其屈服表达式为:

10f I k α=-= (11) 其中,α和k 与?和c 有关

(5)双剪屈服准则【7】

1932年Schmidt R 提出最大偏应力屈服准则,与后来我国学者俞茂宏提出的双剪屈服准则相吻合。最大偏应力屈服准则表示为

()1233m a x ,,s s s k = (12)

其中,3k 可以由简单拉伸实验确定

323s k σ= (13) 式(12)可以等效地表示为:

11232213331232()232()232()2s s s s s s σσσσσσσσσσσσ=-+=±??=-+=±??=-+=±? (14) 双剪应力屈服条件叙述为:当两个较大的主剪应力绝对值之和达到某一极限值时,材料开始屈服。假设123σσσ≥≥,几个主剪应力绝对值的表达式为:

12

122σστ-= 13

132σστ-= 23232σστ-= (15)

因此,双剪屈服准则可以表示为:

2313121122312132331223,2,2s s when when σσττσσττσσττσσττ+?+=-=≥???+?+=-=≤?? (16)

3.2弹塑性材料的硬化规律

有些材料开始屈服后就产生塑性流动,变形无限制的发展,以致破坏。这是一种理想弹塑性状态,不存在硬化,在加载状态时,理想弹塑性材料屈服面的形状、大小和位置都是固定的。硬化材料在加载过程中随着应力状态和加载路径的变化,后继屈服面(也称为加载曲面)的形状、大小和中心的位置都可能变化。用来规定材料进入塑性变形后的后继屈服面在应力空间中变化的规律称为硬化规律【6】。

当内变量改变时,屈服面也将随之发生变化,不同的内变量对应着不同的后继屈服面。严格地讲,后继屈服面应通过具体试验测量得到,但目前的试验资料还不足以完整地确定后继屈服面的变化规律,这就需要对后继屈服面的运动和变化规律作一些假设。通常的做法是,先根据试验数据决定初始屈服面,后继屈服面则按照材料的某种力学性质假定的简单规律由初始屈服面变化得到,这种变化带有人为假定的因素。多年来,人们对许多材料进行了试验研究。

图2 硬化规律示意图

弹塑性材料在初始屈服后的响应不相同,这时就得选用不同的硬化规律,一般采用三种硬化规律,即等向硬化(又称为等向强化)、随动硬化(又称为随动强化)和混合硬化(又称为混合强化)规律,如图2所示。

(1)等向硬化规律【8】

等向硬化规律假定屈服面的位置中心不变,形状不变,其大小随硬化参数而变化。对硬化材料而言,屈服面不断扩大,即屈服面在应力空间中均匀膨胀;对软化材料,屈服面不断缩小。等向硬化规律相当于做了塑性变形各项同性的假定,因此不能反映材料的Bausching 效应的影响,如图2所示。其一般表达形式为:

(,)0()()i j i j f f k σξσξ==-= (17)

式中:(,)0ij f σξ=——初始屈服函数;

()k ξ——反映塑性变形历史的硬化函数。用于确定屈服面的大小。

等向硬化规律一般是静载荷作用下的弹塑性模型。

(2)随动硬化规律【8】

随动硬化规律认为在塑性变形过程中,屈服面的大小和形状都不改变,仅发生位置的变化,即只是屈服面在应力空问中作刚体平移,当某个方向的屈服应力升高时,其相反方向的屈服应力应该降低。因此,在一定程度上反映了材料的Bausching 效应,如图2所示。其一般表示形式为

(,)0(())i j i j i j f f k σξσαξ==--= (18)

式中:()0ij f k σ-=——初始屈服函数;

k ——常数;

()ij αξ——后继屈服面中心的坐标,它反映了材料硬化程度,是硬化程度的参数,依赖于塑性变形,其增量形式可以表示为屈服点在应力空间中的位移。确定ij α的增量变化规律通常有两种方法,即Prager 方法和Ziegler 方法。

随动硬化规律适用于周期荷载或反复荷载条件下的动力塑性模型以及静力模型。

(3)混合硬化规律【8】

混合硬化规律是由Hodge 于1957年将随动硬化规律和等向硬化规律结合起来导出来的。该规律认为,后继屈服面可以由初始屈服面经过一个刚体平移和一个均匀膨胀而得到,即认为后继屈服面的大小、形状和位置一起随塑性变形的发展而变化,如图2所示。其一般表示形式为:

(,)0(())()i j i j i j f f k σξσαξξ==--= (19)

这种硬化规律较前两种更为细致,可以同时反映材料的Bausching 效应以及后继屈服面的均匀膨胀,但显然更为复杂。该硬化规律主要用于全面模拟循环荷载和动荷载作用下材料的响应。

应用各种硬化规律,关键是选好适当的硬化参数,硬化参数应能表征材料的硬化程度,充分反映材料硬化的历史。一般地.选用塑性总应变、塑性剪切应变、塑性功或等效塑性总应变等作为硬化参数。

3.3塑性流动法则的理论讨论

3.3.1 Drucker 公设【9】

(1)Drucker 在1951年提出了关于稳定材料在弹塑性加卸载的应力循环过程中塑性功非负的Drucker 公设。

考虑一个应力循环:初始应力0ij σ在加载面内,然后加载到ij σ,ij σ正好在加载面内,

在继续加载到ij ij d σσ+这阶段产生塑性变形,设塑性应变为p ij d ε最后将应力退回到0ij σ,形

成一个应力循环,如果在应力循环过程中,附加应力0()ij ij σσ-所做的功不小于零,则材料

是稳定的。

图3 应力循环示意图

在应力循环中,外载荷所做的功为:

00ij ij ij d σσε≥? (20)

该式对稳定材料和非稳定材料都适用。

为考虑材料的稳定性,讨论附加应力所做的功:

00()0ij ij ij ij d σσσε-≥? (21)

由于弹性变形是可逆的,在整个应力循环中: 00()0ij e ij ij ij d σσσε-=? (22)

因此得: 00()0ij

p ij ij ij d σσσε-≥? (23) 考虑到在应力循环中,仅在ij ij ij d σσσ→+段产生塑性变形,故式(23)变为:

01()02p i j i j i j i j d d σσσε+-≥ (bettid 定理?) (24)

当0ij ij σσ≠时,忽略高次项p ij ij d d σε,则有:

()0p i j i j i j d σσε-≥ (25)

当0ij ij σσ=时,则有: 0p i j i j d d σε≥ (26)

式(25)和式(26)是两个重要的不等式。

(2)Dmcker 公设的几何解释

令应力空间与塑性应变的坐标平行,并且p ij d ε的坐标原点取在屈服面上的ij σ处,0ij σ用

矢量0OA 表示,ij σ用矢量OA 表示,则式(25)可表示为:

00p AA d ε≥ (27)

00()cos 0p p p ij ij ij d AA d AA d σσεεεθ-==≥ (28)

式(27)和式(28)表明:当θ角是锐角和直角时,由于随着0

ij σ增大0AA 趋近于加载

面的切线,故知只有p d ε 垂直于加载面的切线时,才能满足式(25)和式(26)。因此,得

出结论:p d ε 与加载面的外法线重合,说明稳定材料的加载面是外凸的。

图4 Drucker 公设的几何解释图

(3)Drucker 公设的作用 因为p d ε 与加载面0?=垂直,故将p d ε 表示成为:

p ij ij d d ?ελ

σ?=? (29) 式中:d λ——标量因子。

式(29)便是塑性理论的基础,此式也是正交流动法则的表达式。 若用矢量表示,因p d ε 与加载面的外法线n 重合,故有:

0d n σ?≥

(30) 此式在讨论加载卸载条件的时候是很有用。

由上述分析可知:对于稳定材料,只要屈服面处处是外凸的,那么Drucker 公设一定适用于该材料。在实际应用中Drucker 公设对于稳定材料是适用的,对于非稳定材料就要考虑依留辛公设或非关联的流动法则。

3.3.2 依留辛公设【9】

依留辛提出了一个更一般的塑性公设,陈述为:在弹塑性材料的一个应变循环内,外部作用做功是非负的。如果功是正的,表示有塑性变形,如果做功是零,只有弹性变形发生。对于弹性性质不随加载而改变的情况,外部作用在应变循环内做功和在应力循环内做

功(Drucker 公设)的差别,仅是一个正的附加项,如图5所示。

图5 应力循环和应变循环示意图

12p p ij ij d d σε (31) 因此由依留辛公设,得:

0()0p i j i j i j i j d d εεεσ+-≥ (32)

式中:0ij ε——表示原有的应变状态(与0ij σ相对应)。

如果初始应变点在应变加载面0ψ=,00ij ij

εε-≠,在式中略去高阶小项,可得: 0

()0p i j i j i j d εεσ-≥ (33)

类似Drucker 公设,可由式(33)推出应变空间加载面0ψ=的外凸性以及p ij d σ关于0ψ=的正交法则:

p ij ij d d ψσλ

ε?=? (34)

如果应变点在屈服面上,即0()0ij ij

εε-=,则可由式(32)得: 0p i j i j d d εσ≥ (35)

4. 小结

本文讨论了弹塑性力学中增量本构模型的基本理论,对三个基本组成部分(屈服面、硬化规律和塑性流动法则)作了较为详细的论述,塑性本构关系不仅是塑性力学的重要组成部分,也是塑性理论研究中的重要课题。通过对弹塑性材料本构模型及其理论的研究,这将有利于采用有限元法对工程塑性问题进行数值分析,为解决复杂应力条件、加载历史和边界条件下的塑性力学问题提供理论基础。

参考文献

[1]陈惠发,A.F.萨利浦著.余天庆,王勋文译.土木工程材料的本构方程.武汉:华中科技大学出

版社,2001

[2]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992

[3]Hill R.Mathematical theory of plasticity.Oxford:University Press,1950

[4]Kachanov L M.Theory of plasticity.Moscow:Education Press,1956

[5]王仁,熊祝华,黄文彬.塑性力学基础.北京:科学出版社,1982

[6]郑颖人,沈珠江,龚晓南.广义塑性力学.岩土塑性力学原理.北京:中国建筑工业出版社,2002

[7]俞茂宏.双剪理论及其应用.北京:科学出版社,1998

[8]沈珠江.三种硬化理论的比较.岩土力学.1994

[9]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学讲义简答题

研究生弹塑性考试试题 1. 简答题:(每小题2分) (1) 弹性本构关系和塑性本构关系的各自主要特点是什么? (2) 偏应力第二不变量J 2的物理意义是什么? (3) 虚位移原理是否适用于塑性力学问题?为什么? (4) 塑性内变量是否可以减小?为什么? (5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么? (6) 解释:在应力空间中为什么应力状态不能位于加载面之外? (7) π平面上的点所代表的应力状态有何特点? (8) 举例说明屈服条件为各向同性的物理含义? 2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分) 3. 试确定下面的平面应变状态是否存在?(6分) εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数 4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。(15分) y x a b A B C O (第4题图) (第5题图) 5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。试证,为了将薄

板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。并求挠度和反力。(15分) 6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数 ?=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy 能否成立。若能成立求出应力分量。(15分) (第6题图) 7. 8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可 忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明 σz =2 1(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。(10分)

(完整版)弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=?? +=?………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()() 1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=???--+-=??L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()()3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410 x y Pa σσσ?++?==????=?=±?=? 则显然:3 312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ ====+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 306.768 6.77() 104 sin 2cos 2sin 602cos 6022 1 32 3.598 3.60() 22 x y xy MPa MPa σστατα=----+= ?+= ?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τ xy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 607322226.768 6.77()104 sin 2cos 2sin 602cos 602 2 1 32 3.598 3.60()2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+=----+=- ?+=- ?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-????+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τ n 。 题—图 16

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

(整理)弹塑性力学答案

一、简答题 1答:(1)如图1所示,理想弹塑性力学模型: e s s e E E σε εεσεσεε=≤==>当当 (2)如图2所示,线性强化弹塑性力学模型: () 1e s s e E E σε εεσσεεεε=≤=+->当当 (3)如图3所示,幂强化力学模型:n A σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性: s s εσσεσσ=≤=>当不确定 当 (b )线性强化钢塑性: ()0 /s s s E εσσεσσσσ=≤=->当当 图1理想弹塑性力学模型 图2线性强化弹塑性力学模型 图 3幂强化力学模型 (a ) (b ) 图4钢塑性力学模型 2答:

3答:根据德鲁克公设, ()00,0p p ij ij ij ij ij d d d σσεσε-≥≥。在应力空间中,可将0ij ij σσ-作为向量ij σ与向量0 ij σ之差。由于应力主轴与应变增量主轴是重合的,因此,在应力空间 中应变增量也看作是一个向量。利用向量点积的定义: ()0 0cos 0p p ij ij ij ij ij ij d σ σεσσε?-=-≥,?为两个向量的夹角。由于0ij ij σσ-和p ij ε都是 正值,要使上式成立,?必须为锐角,因此屈服面必须是凸的。 4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。 半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。如果能满足弹性力学的全部条件,则这个解就是正确的解答。否则需另外假定,重新求解。 二、计算题 1解:对于a 段有:0N a a a a F A E a a σσεε==?= ,对b 段有:0 N b b b b P F A E b b σσεε-==?= 又a b ?=? 则N bP F a b = + 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=, 3 1.5MPa σ=- ()0123/3 5.33MPa σσσσ=++= 08.62MPa τ= = 3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=, 310MPa σ=-

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学部分名词解释

学习必备欢迎下载 弹性变形:物体卸载后,能完全恢复的变形。 塑性变形:卸载后不能消失,残余的变形。 塑性流动:在应力不变的情况下课继续发生形变。 强化:材料在发生塑性变形后,增加了材料内部对形变的抵抗能力和流动应力。 应力:物体以微元面积趋近于0时,作用在该面积上的内力与面积的比值的极限。 正应力(正应变):作用方向沿法线的应力。 剪应力(剪应变):作用方向平行于截面的应力。 主应力(主方向,主平面)(主应变):在某方向上,剪应力等于0,此时的正应力。 应力张量(应变张量类似):某一点的应力状态由三个相互垂直的坐标面上的三个应力分量或三个主应力来确定,这一组量的集合。 名义应变又叫工程应变:线尺寸增量和初线尺寸的之比。 真实应变(对数应变):工件变形后的线尺寸和变形前的线尺寸之比的自然对数。 应力状态:过一点不同截面上应力的的集合。 应力符号的意思:第1个下标表示应力所在面的法线方向;第2个下标表示应力的方向。全量应变:反映微元体在某一变形过程或变形过程的某个阶段终了时的应变大小。 应变增量:变形过程中某一极短阶段中的应变。 应变速率分量:单位时间内的应变。 应变协调方程:一个连续体应变之间满足的方程。 平衡微分方程:一个变形体在力学上遵守的平衡原则。 平面应力问题:在侧面上,受有平行于薄板量底面的一些力的作用,并且在薄板底面没有载荷作用。 平面应变问题:在侧面承受垂直于Z轴的载荷,载荷沿Z轴不变。 屈服准则:描述不同应力状态下,变形体某点进入塑性状态并使塑性变形继续进行满足的条件。 应力强度因子:度量线弹性体裂纹尖端应力场强度的参量。 断裂准则:当裂纹尖端的应力强度因子达到某临界值Kc时,材料就会发生脆性断裂。 冷脆:材料断裂韧度随温度下降而急剧下降的现象。 弹塑性共存:在发生塑性变形的同时,发生弹性变形。 应力集中:受力构件由于外界因素或自身因素几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。 弹塑性体:在研究材料应力应变关系时,第一阶段为弹性变形,第二阶段为塑性变形。

弹塑性力学基本理论及应用刘士光著

弹塑性力学基本理论及应用 刘士光著 华中科技大学

第一章绪论 1.1弹塑性力学的任务 固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效准则。 以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只 不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上,当结构内的局部材料进入塑性变形阶段,在继续增加外载荷时,结构的内力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布,这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大约变形,

应用弹塑性力学课后习题答案

附录Ⅱ习题解答提示与参考答案 第二章应力理论 2-1 ζn=ζ1l2+ζ2m2,;式中l、m、n为斜截面外法线的方向余弦。 2-2 p=111.5A;ζn=26A;ηn=108.5A 2-3 提示:平面Ax+By+C z+D=0的外法线的方向余弦为:(式中i=1,2,3或A,B,C) 答案: 2-4 略 2-5 (a)ζ1=738.5;ζ2=600;ζ3=-338.5;ηmax=538.5;应力单位为MPa。 (b)ζ1=700;ζ2=600;ζ3=-600;ηmax=650;应力单位为MPa。 2-6 ζ1=3.732η0;ζ2=-0.268η0;α=15o。 2-7 (材料力学解) 应力单位为MPa。 (弹塑性力学解) 应力单位为MPa。 2-8 ζ1=107.3a;ζ2=44.1a;ζ3=-91.4a; ζ1主方向:(±0.314,0.900,0.305); ζ2主方向:(±0.948,±0.282,±0.146); ζ3主方向:(0.048,±0.337,0.940)。 2-9 ;ζ2=0;ζ3=-ζ1。 2-10、2-11 略 2-12 (1)略;(2)ζ8=ζm=5.333MPa;η8=8.654MPa。 2-13 p8=59.5;ζ8=25.0a;η8=54.1a。 2-14 上式中S为静矩。材料力学解不满足平衡微分方程和边界条件。

2-15 ,Q为梁横截面上的剪力。提示:利用平衡微分方程求解。2-16 ζ1=17.083×103Pa;ζ2=4.917×103Pa;ζ3=0,?=40o16′。2-17 略2-18 2。2-19 提示:将三个主方向的三组方向余弦分别两两一组代人式(2-12)证之。2-20 。2-21 在AA′上:ζx=-γy,ηxy=0;在AB上:ηxy=0,ζy=-γh;在BB′上:l1=cosα,l2=-sinα,l3=0;则应力分量满足关系式:2-22 。2-23 。2-24 ηzx=-ζz tanα;ζx=ζz tan2α。2-25 在x=-ytanα处,在x=ytanβ处: 2-26 A=0;B=-ρ1g;C=ρgcotβ-2ρ1gcot3β;。 2-27 (1)ζ1=99.6A;ζ2=58.6A;ζ3=-138.2A;ηmax=118.9A。 (2)ζ1=99.6A;ζ2=58.6A;ζ3=-138.2A;ηmax=118.9A。

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论 2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。己求得 力解 : σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ; 根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。 解:首先列出 OA 、 OB 两 的 力 界条件: OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0 σx =-γ1y ; τ xy =0 代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0 得 : b=- γ1; a=0; OB : l 1=cos β ; l 2=-sin β, T x =T y =0 : x cos xy sin 0 yx cos y sin ???????????? ( a ) 将己知条件: σ x= 1 xy =-dx y γ y -γ y ; τ ; σ =cx+dy- 代入( a )式得: 1 y cos dx sin 0L L L L L L L L L b dx coscx dy y sin L L L L L L L L L 化 ( b )式得: d = γ1 2 β; ctg T 4 n 2 τ 30° δ 30° 30° 化 ( c )式得: c =γctg β -2γ 1 3 y ctg β 10 x 10 O x 12 6 τxy 103 Pa 2— 17.己知一点 的 力 量 6 10 0 0 0 δ y 求 点的最大主 力及其主方向。 x 题1-3 图 解:由 意知 点 于平面 力状 ,且知: σx =12× O 103 σ y =10× 103 τ xy =6× 103,且 点的主 力可由下 式求得: β 2 12 10 12 2 1.2 x y x y 2 102 3 n 2 2 xy 2 2 6 10 β γ 1y 11 37 103 11 6.0828 103 17.083 10 3 Pa γ 3 4.91724 10 B A 然 : y 1 17.083 10 3 Pa 2 4.917 10 3 Pa 30 σ 1 与 x 正向的 角 : (按材力公式 算) c 2 xy 2 6 12 sin 2 tg 2 12 10 2 6 x y cos2 然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °

相关主题