搜档网
当前位置:搜档网 › 微波天线

微波天线

微波天线
微波天线

微波天线

工作于米波、分米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。微波主要靠空间波传播,为增大通信距离,天线架设较高。在微波天线中,应用较广的有抛物面天线、喇叭抛物面天线、喇叭天线、透镜天线、开槽天线、介质天线、潜望镜天线等。

微波天线技术是制约雷达、测量控制技术发展的瓶颈。与其他电子产品不同的是,微波天线的电气性能和整机功能,主要靠馈源网络的结构保证,因此,馈源网络的设计及工艺制造是天线产品制造的关键技术。

微波天线是一种用在微波通信领域用作反射面通信的馈源的天线装置,如今它还用来对其它通信进行校正和测量。

微波天线的主要参数

1、方向性图:天线的基本作用是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(或场强)在空间各点分布的情况,它是描述天线的主要传输之一。天线的方向性图是一个立体图形。它的特性可以用两个互相垂直的平面(E平面和H平面)内方向性图来描述。

2、方向性系数:上述方向性图虽然一定程度上反映了天线辐射状态,但它是一个相对值,为了定量描述天线集中辐射程度,引进了方向性系数这一概念。方向性系数定义是:在同一距离及相同辐射条件下,某一天线最大辐射方向性上辐射功率密度Smax(或场强平方E2max)和无方向天线(点源)辐射功率密度S0(或场强平方E20)之比,用D来表示。

3、天线效率:一般来说构成天线的导体和绝缘介质都有一定的能量损耗,输入天线的功率不可能全部转化为自由空间电磁波的辐射功率,我们把天线辐射功率Pr和天线输入功率之比称作天线效率。

4、增益系数:简称增益,它的定义是:在同一距离及相同输入功率的条件下,某一天线在最大辐射方向上的辐射功率密度Smax(或场强平方E2max)和无方向天线(理想点源)的辐射功率密度S0(或场强平方E20)之比,用G来表示。

5、天线阻抗:是指天线输入端口向天线辐射口方向看过去的输入阻抗,它取决于天线结构和工作频率。只有天线的输入阻抗和馈线阻抗良好匹配时,天线的转换效率才最高(参见4式),否则将在天线输入端口上产生反射,在馈线上形成驻波,从而增加了传输损耗。

6、天线极化是指天线最大辐射方向上的电场强度(E)矢量的取向。线极化是一种比较常用的极化方式,线极化又可分为“垂直极化和水平极化”,前者电场矢量和地面垂直,后者则和地面平行。

微波天线的技术要求

1、微波天线应作为一个系统,而不是孤立的接收/发射终端

2、要根据点拨传播条件设计微波天线,要有一定程度的极化和方向图分析

3、微波天线要适应环境条件,方向图和区域要求相一致,并且允许在微波

天线附近有障碍物存在

4、微波天线要和车辆或平台综合考虑,设计微波天线时要考虑人手和身体

的影响,及可能存在的干扰

5、具有用户使用方便和可靠的性能,要有最少的可动部件和开关部件,高

可靠度的机械性能

微波天线的原理

微波天线由初级辐射器、副反射器、主反射器三部分构成。微波天线的原理和光学上的天文望远镜相似,天线用作发射时由喇叭相位中心点P向外辐射电磁能量,以球面形式辐射到副反射面上,被副反射器截获后在射到主反射器上矫正为平面波使能量比较集中发射出去。

在微波通信系统中,微波天线的通信方式是点对点的接力通信。信号从一点的发信机能够传到另一点的收信机,这两点之间传输的电磁波是离不开天线的。天线性能的好坏,将直接影响到通信质量。如果天线出现问题,进行检修与处理时常常都要中断业务,在日常维护中天线也是微波传输部门维护重点。它的基本功能是沿馈线传播的电磁波变为自由空间传播的电磁波或将自由空间传播的电磁波变为是沿馈线传播的电磁波。所以说,天线是电磁波的出口和入口。对天线的基本要求是天线效率高,旁瓣电平低,交叉极化鉴别率高,电压驻波比低,工作频带宽,现在微波通信系统中常常采用的是卡塞格伦天线。

一.对天线的主要要求。

1.天线增益。

以吉林省白山市的白山-腰车顶子站为例,说明天线增益的重要性。该段传输信号使用频段6GHz,两站间的距离7.39Km。

该段自由空间损耗

LP=92.4+20lgf+20lgd=92.4+20lg6+20lg7.39=125dbm 设计要求收信电平Pr=-34dBm,馈线损耗Lf=2dBm,分路系统损耗Lb=3.7 dBm,

第一种情况:如果没有天线增益,要求发信功率为:

Pt=Pr+Lf+Lb+Lp=-34+2+3.7+125=96.7dBm

第二种情况:如果有天线增益,要求发信功率为(设天线口径为2m,增益G=32.9dB):

Pt = Pr+Lf+Lb+Lp-G*2=-34+2+3.7+125-39.6*2=18.3dBm 由上面计算可知,在没有天线增益的第一种情况,要求发信功率96.7dBm.

这样巨大的数字是什么样的大功率发射机也非常难办到的,如果使用口径为2m的收发天线各具39.2dBm,则上述第二种情况仅需要发信功率为18.3dBm .

在实际电路中双方发信机各加10dBm的衰耗器.以满足收信电平过高而产生上衰落。由此可见,天线增益在通信中的重要性.

2.天线的方向性.

天线的方向性图是天线辐射场的幅度,相位,极化或功率通量密度的空间分布,天线是具有尖锐方向性的窄射束天线,典型的方向性图如1所示:

由图1所示,为了抑制干扰,天线调整时一定要调整在主瓣电平上(a点),并要求天线的方向图旁瓣电平低,而且旁瓣电平随着轴线的角度的增加而很快下降,特别是在远离轴线的方向上(900--1800附近),要求旁瓣电平非常非常低。二.卡塞格伦天线。

卡塞格伦天线是一种改进型的抛物面天线,下面以后馈卡塞格伦天线说明原理.卡塞伦天线是一种双反射器天线系统,它由初级辐射器、副反射器、主反射器三部分组成。卡塞格伦天线的原理与光学上的卡塞格伦天文望远镜相似。天线用作发射时由喇叭相位中心点P向外辐射电磁能量,以球面波形式辐射到副反射器上,被副反射器截获后再射到主反射器上矫正为平面波使能量比较集中发射出去,如下图。整个过程满足反射定率:

PQ + QN + NM = 常数

根据互易原理天线的接收与发射相同。

三.天线系统的安装及调整

1.天线安装

天线一般出厂前,馈源、副反射器等器件已经做精确的安装。特殊大口径(如4m口径天线)一般为拼装式,安装按说明书上的要求按顺序装配,以保证天线口面的圆度。天线分为坐式天线和挂式天线两种安装方式。不管那种安装方式主要一点是保证天线近距离口面20度范围内无障碍物遮挡。

2.天线系统的调整

天线调整一般在设备工程安装时或由于维护原因造成天线偏移时调整。如下图

调测天线工作要由两站配合起来进行,因为涉及到电磁波传播的问题,所以应在电波传播比较稳定的时间(天气比较好)内进行。一般在上午10点至下午4点这段时间为宜。天线方向调整前,首先应根据电路设计将天线作粗略定位。例如首先在A站接好馈线,并在发信机开代振信号,在B站极化分离器上接好测试仪表也可在收信机射频入口接仪表(例如仪表HP8593E)。如果设计要求收信电平为–34dBm,这时一般情况下仪表读数为–50dBm至-70dBm之间的电平。相当于天线方向图1的副瓣b1,c1,b2,c2中的任意一点或其它副瓣曲线的点。这时我们就可以在两站之间进行配合调整,两站可以先通过天线的伸缩方位拉杆(塔上天线)或丝杆(楼上平台天线)进行水平调整,从而调出最大的收信电平后锁紧,然后再通过俯螺杆(丝杆)进行两站的俯仰调整,使之调出最大的收信电平。通过多次的水平、俯仰的调整就可以调整到天线的主瓣电平,然后进行细调从而达到设计要求。调好的天线应当是主副瓣明显对称,极化去耦最好。方位调整好后指标达到要求,最后锁紧所有的连接件及加紧固件。

四.天线日常维护及故障分析。

天线的日常维护一般按微波维护规程的要求即可。除天线日常维护外,在实际维护中还要注意天线罩、天线的馈源罩是否完好。下面以两个例子说明。在吉林省的福民微波站就发现了这种由于馈源罩破损引起的电路故障。故障现象为白天设备运行正常,一到夜间电路发生时断时续。通过各种室内的设备测试与馈线的测试都正常。最后怀疑到天线的问题。但是为什么白天正常而夜间阻断呢?通过几天的观察,夜间上塔观察。最后发现是由于天线馈源罩破裂,在馈源内有鸟窝,鸟白天出去找食,夜间回到鸟窝(馈源)造成电路阻断。下面再以白山市的腰车顶子-老岭西山(无源站)-老岭这段路由分析一下天线罩有无的重要性。在98年之前本段路由的天线一直没有天线罩,每到雨雪季节电路就发生阻断。通过观察研究,找出原因是雨雪在天线的主反射器、馈源结冰,使电磁波无法发射与接收。每到这时就需维护人员上塔撬冰才能使电路恢复正常。98年以后我们在本段加上了天线罩。这种现象就再也没发生过。

在实际维护中(高山微波站)树的遮挡问题也时常发生,应引起注意。

参考文献

[1] 左群声,金林,胡明春.赵玉洁《无线通信天线手册》国防工业出版社

[2]王新稳等《微波技术与天线》第三版,电子工业出版社

[3] 马小玲,丁丁《宽频带微带天线技术及其应用》人民邮电出版社

[4] 钟顺时《微带天线理论与应用》西安电子科技大学出版社

[5] 闫润卿,李英惠《微波技术基础》第四版,北京理工大学出版社

[6] 微波天线百度百科

[7] 微波天线毕业论文,西安电子科技大学

最新《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

微波技术与天线总结

相速Vp :电压、电流入射波(或反射波)的等相位面沿传输方向的传播速度,用Vp 表示。 波长λ:传输线上电压(或电流)波的相位相差2π的两观察点间的距离称为波长,记为λ。 反射系数Γ:传输线上任一点z 处的反射波电压(或电流)和入射波电压(或电流)的比值,记作Γu(z)(或Γi(z)),它和阻抗本身有周期=λ/2,|Γ|与ρ为系统不变量,|Γ|∈[0,1], ρ∈[1,∞)。 驻波系数ρ:传输线上波腹点电压与波节点电压之比,记为ρ。 沿z 向传播的导行波的相速定义为导波的等相位面向前移动的速度,记为Vp 。 群速Vg :指一群具有非常接近的角频率ω和相移常数β的波,在传输过程中表现出来的共同速度,这个速度代表能量的传播速度,用Vg 表示。 无纵向场分量,即Ez=Hz=0。只有横向电磁场分量,故称为横电磁模(TEM )。 有纵向场分量。a)Ez ≠0,Hz=0,为横磁模(TM )。只有电场才有纵向分量,故又称电模(E);b) Ez=0,Hz ≠0,为横电模(TE )。只有磁场才有纵向分量,故又称磁模(H);c)Ez ≠0,Hz ≠0,为混合模,TE 、TM 线性叠加。 电基本振子:无限小的线性电流单元,即长度L 远小于工作波长λ,线上电流振幅和相位处处相通。 对称振子:由两根粗细和长度都相同的导线构成,中间为两个反馈点。 全波振子:对称振子的臂长为2h=λ的振子。 半波振子:对称振子的臂长为2h=λ/i 的振子。 谐振fo :在导体中,电储能等于磁储能。 谐振波长:光波长整数倍的波长。 方向性系数D :表示天线向某一个方向集中辐射电磁波的程度,即天线在远区最大辐射方向上某点的平均辐射功率密度(Smax)av 与平均辐射功率相同的无方向性天线在同一点的平均辐射功率密度(So)av 之比(Pr 、R 相同)。 增益系数G :天线在远区最大辐射方向上某点的平均功率密度与平均输入功率相同的无方向性天线在同一点的平均功率密度之比(Pin 、R 相同)。 效率ηA :天线的平均功率Pr 与平均输入功率Pin 之比。 输入阻抗Zin :天线输入端(或传输线上任一点z 处)的复电压与复电流之比。 有效长度Lein :在保持实际天线最大辐射方向上场强不变的条件下,假设天线上电流为均匀分布时天线的有效长度,天线的有效长度越长,表明天线辐射能力越强。 电基本振子:近区场kr<<1,感应场,远区场kr>>1,辐射场。 品质因数Q :描述谐振系统选频特性优势和能量损耗度。 方向图:天线辐射的电磁波在固定距离上。 二元阵天线:两个形式和取向相同的天线单元沿直线坐标系的某一坐标轴排列。 p v ω β=πλβ= 2

实用文档之微波技术与天线课后题答案

1-1 实用文档之"解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> " 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低 频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线 上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波技术与天线复习提纲终极整理

“微波技术与天线”课程复习提纲 一、微波基本概念..............................................错误!未定义书签。 1.了解微波的基本概念:频率、波长等..................错误!未定义书签。 2.了解微波的主要特性................................错误!未定义书签。 二、传输线基本理论............................................错误!未定义书签。 1.了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等),传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。错误!未定义书签。 2.掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。........................................错误!未定义书签。 3.熟悉圆图的基本特点(特殊点、线、半圆、圆)........错误!未定义书签。 4.掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。.........................................错误!未定义书签。 三、微波传输线................................................错误!未定义书签。 1.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。..................错误!未定义书签。 2.掌握各种传输线特性参量及其运用。..................错误!未定义书签。 3.了解波导传输线的截止波长分布图及其应用。..........错误!未定义书签。 四、微波网络参量..............................................错误!未定义书签。 1.了解散射参量S参量和转移参量A参量的基本概念......错误!未定义书签。 2.了解S散射矩阵和A转移矩阵各参量的意义............错误!未定义书签。 3.了解S参量和A参量的基本特性及应用................错误!未定义书签。

微波与天线总结

对称阵子天线: 构成:有两根粗线和长度都相同的导线构成,中间为俩个馈电端 原理: 若电线上的电流分布已知,则由电基本阵子的辐射场沿整个导线的积分,便得到对称振子的辐射场。实际上,西振子天线可看成是开路传输线逐渐张开而成,而其电流分布与无耗开路传输线的完全一致,即按正弦驻波分布。 用途:对称振子分为半波对称振子和全波对称振子,半波对称振子广泛的应用于短波和超短波波段,它既可以作为独立天线使用,也可以作为天线阵的阵元,在微波波段还可以作为抛物面天线的馈源。 特点: 方向性比基本振子的方向性稍强一些,平均特性阻抗Z越低R和X随频率的变化越缓慢,其频率特性越好。所以,欲展开对称振子的工作频带,常利用加粗振子直径的方法。当h=λ/4n时,其输入阻抗是一个不大的纯电阻具有很好的频率特性,也有利于同馈线匹配,而在并联谐振点附近是一个高阻抗且输入阻抗随频率变化剧烈,特性阻抗不好。 阵列天线: 构成:将若干辐射单元按某种方式排列所构成的系统。构成天线阵地辐射单元,成为天线原或阵元 原理:天线的辐射场是各天线元所产生的矢量叠加,只要各天线元上的电流,振幅和相位分布满足适当的关系,就可以得到所需要的辐射特性 特点:天线阵的主瓣宽度和旁瓣电平是即相互依赖又相互对立的一对矛盾,天线阵方向图的主瓣宽度小,则旁瓣电平就高,反之,主瓣宽度大则旁瓣电平就低。均匀直线阵的主瓣很窄,但旁瓣数目多,电平高,二项式直线振的主瓣很宽旁瓣就消失了,旁瓣分散了天线的辐射能量,增加量接受的信噪比,但旁瓣又起到了压缩主瓣宽度的作用。 直立阵子天线: 构成:垂直于地面或导电平面架设的天线称为直立阵子天性 原理:单级天线可等效为一对对称振子,对称阵子可等效为一二元阵,但此时等效只是在地面或导体的上半空间成立。理想导电平面上的单级天线的辐射场可直接应用到自由空间对称振子的公式进行计算。 用途:广泛应用于长,中,短波及超短波段。 特点: 当h《λ时辐射电阻很低。单级天线效率也很低改善方法是提高辐射电阻降低损耗电阻。 水平振子天线: 构成: 水平振子天线又称双级天线,阵子的两臂由单根或多股铜线构成,为了避免在拉线上产生较大感应电流,拉线的长度应较小,臂和支架采用高频绝缘子隔开,天线与周围物体要保持适当距离,馈线采用600Ω的平行双导线。 原理:与直立天线的情况类似,无限大导电地面的影响可用水平阵子天线的镜像来代替,架设在理想导电地面上的水平振子天线的辐射场可以用该天线及其镜像所构成的二元阵来分析,但应注意该二元阵的天线元是同幅反相的。 用途:经常用于短波通信电视或其他无线电系统。 特点:架设和馈电方便,地面电导率的变化对水平振子天线的影响较直立天线小,工业干扰大多是垂直极化波,因此,用水平振子天线可以减少干扰对接收的影响。 引向天线: 构成:又称为八木天线,它由一个有源振子及若干个无源振子组成,在无源振子中较长的一个为反射器,其余为引向器 用途:广泛用于米波,分米波的通信、雷达、电视及其它天线电流 原理:引向天线实际上也是一个天线阵,与前述天线相比不同的是它是对其中一个振子馈电,

微波技术与天线傅文斌-习题答案-第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 定义Z 参量的线性关系为 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 由无耗性,I S S =* T ,即 得 4.4二口网络的级联如图所示。写出参考面T 1、T 2之间的组合网络的A 参量。(参考面T 1处即组合网络的端口1,参考面T 2处即组合网络的端口2) 解 []? ? ? ? ??=1j 011B A ???? ? ?????-???? ?? +-+-=θθθθθθθθsin cos cos sin sin 11j sin j sin cos 00000BZ BZ B Z B Z BZ (l βθ=) 4.5微波电路如图所示。已知四口网络的S 矩阵是 其端口2、3直接接终端反射系数为2Γ、3Γ的负载,求以端口1、4为端口的二口网络 题4.4图 题4.5图

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章

————————————————————————————————作者:————————————————————————————————日期: 2

17 第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将1.0

微波技术与天线考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

微波技术与天线考试复习重点含答案

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0R jwL Z G jwC +=+它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为()()R jwL G jwC γ=++传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ=;4)传输线上电磁波的波长λ与自由空间波长0λ的关系02r π λβε==。 7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系

《微波技术与天线》习题答案

《微波技术与天线》习题答案 章节 微波传输线理路 1.1 设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数 1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.0213 1 )2.0(j z j e e --=Γ=Γ 31 )5.0(=Γλ (二分之一波长重复性) 31 )25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010 l jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性) 1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。 解:同轴线的特性阻抗a b Z r ln 60 0ε= 则空气同轴线Ω==9.65ln 600a b Z 当25.2=r ε时,Ω== 9.43ln 60 0a b Z r ε 当MHz f 300=时的波长: m f c r p 67.0== ελ 1.3题 设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,

试证明此时的终端负载应为1 min 1 min 01tan tan 1l j l j Z Z βρβρ--? = 证明: 1 min 1min 010)(1 min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ ββ--? =∴=++?=由两式相等推导出:对于无耗传输线而言:)( 1.4 传输线上的波长为: m f r 2c g == ελ 因而,传输线的实际长度为: m l g 5.04 ==λ 终端反射系数为: 961.051 49 01011≈-=+-= ΓZ R Z R 输入反射系数为: 961.051 49 21== Γ=Γ-l j in e β 根据传输线的4 λ 的阻抗变换性,输入端的阻抗为: Ω==25001 2 0R Z Z in 1.5 试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。 证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距 4 λ 处看进去的输入阻抗为' in Z ,则有: z jZ Z z jZ Z Z ββtan tan Z 10010 in ++=

微波技术与天线复习知识要点资料讲解

《微波技术与天线》复习知识要点 绪论 ●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长 最短的波段。 ●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm ●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量 子特性(微波波谱的分析) 第一章均匀传输线理论 ●均匀无耗传输线的输入阻抗(2个特性) 定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗 注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2) 2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02 证明题:(作业题)

●均匀无耗传输线的三种传输状态(要会判断) 1.行波状态:无反射的传输状态 ?匹配负载:负载阻抗等于传输线的特性阻抗 ?沿线电压和电流振幅不变 ?电压和电流在任意点上同相 2.纯驻波状态:全反射状态 ?负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态:传输线上任意点输入阻抗为复数 ●传输线的三类匹配状态(知道概念) ?负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

?源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 ?共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 ●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) ●阻抗圆图的应用(*与实验结合) 史密斯圆图是用来分析传输线匹配问题的有效方法。 1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦ Φ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小。 2.阻抗原图(点、线、面、旋转方向): ?在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性。 ?实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ。 ?|Γ|=1的圆图上的点代表纯电抗点。 ?实轴左端点为短路点,右端点为开路点,中心点处是匹配点。 ?在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转。

(完整word版)微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长0.1m). 微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性. 与低频区别:趋肤效应,辐射效应,长线效应,分布参数。 微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。 集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。 这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。 对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。 分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 分布参数电路的实际尺寸能和电路的工作波长相比拟。 对于分布参数电路由传输线理论对其进行分析。 均匀传输线方程(电报方程): t t z i L t z Ri z t z u ? ? + = ? ?), ( ), ( ), (, t t z u C t z Gi z t z i ? ? + = ? ?), ( ), ( ), ( 传输线瞬时电压电流: ) cos( ) cos( ), ( 2 1 z t e A z t e A t z u z zβ ω β ωα α- + + =- + )] cos( ) cos( [ 1 ), ( 2 1 z t e A z t e A Z t z i z zβ ω β ωα α- + + =- + 特性阻抗: C j G L j R Z ω ω + + = (无耗传输线R=G=0.) 平行双导线(直径为d,间距为 D): d D Z r 2 ln 120 0ε = 同轴线(内外导体半径a,b): a b Z r ln 60 0ε = 相移常数: λ π ω β 2 = =LC 输入阻抗: ) tan( ) tan( 1 1 0z Z Z z Z Z Z Z inβ β + + = 反射系数:z j z j e e Z Z Z Z zβ β- -Γ = + - = Γ 1 1 1 ) (

微波技术与天线

知识梳理 绪论 微波、天线与电波传播是无线电技术的一个重要组成部分,它们三者研究的对象和目的有所不同。微波主要研究如何引导电磁波在微波传输系统中的有效传输,它的特点是希望电磁波按一定要求沿微波传输系统无辐射的传输,对传输系统而言辐射是一种能量的损耗。天线的任务则是将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波,因此天线有两个基本作用:一个是有效地辐射或接收电磁波,另一个是把无线电波能量转换为导行波能量。电波传播则是分析和研究电波在空间的传播方式和特点。微波、天线与电波传输播三者的共同基础是电磁场理论,三者都是电磁场在不同边值条件下的应用。 第一章均匀传输线理论 微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称, 它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。把导行波传播的方向称为纵向, 垂直于导波传播的方向称为横向。无纵向电磁场分量的电磁波称为横电磁波,即TEM波。另外, 传输线本身的不连续性可以构成各种形式的微波无源元器件, 这些元器件和均匀传输线、有源元器件及天线一起构成微波系统。 1.1均匀无耗传输线的输入阻抗 定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗两个特性: (1)λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Zin(z)=Zin(z+λ/2);(2)λ/4变换性:Zin(z)-Zin(z+λ/4)=Z02 1.2均匀无耗传输线的三种传输状态 (1) 行波状态:无反射的传输状态, 匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相; (2) 纯驻波状态:全反射状态, 负载阻抗分为短路、开路、纯电抗状态; (3)行驻波状态:传输线上任意点输入阻抗为复数。 1.3传输线的三类匹配状态 (1)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。 (2)源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 (3)共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Zin=Zg﹡时,负载能得到最大功率值。共轭匹配的目的就是使负载得到最大功率。 1.4阻抗圆图的应用 (1) 反射系数圆图:Γ(z)=|Γ1|ej(Φ1-2βz)=|Γ1|ejΦ

微波技术与天线考试试卷与答案

微波技术与天线考试试卷(A ) 一、填空(210?分=20分) 1、 天线是将电磁波能量转换为高频电流能量的装置。 2、 天线的方向系数和增益之间的关系为G D η=。 3、 对称振子越粗,其输入阻抗随频率的变化越_缓慢_,频带越宽。 4、 分析电磁波沿传输线传播特性的方法有场和路两种。 5、 半波对称振子的最大辐射方向是与其轴线垂直;旋转抛物面天线的最大辐射方向是其轴线。 6、 /4λ终端短路传输线可等效为电感的负载。 7、 传输线上任一点的输入阻抗in Z 、特性阻抗0Z 以及负载阻抗L Z 满足。 000tan tan L in L Z jZ z Z Z Z jZ z ββ+=+ 8、 微波传输线按其传输的电磁波波型,大致可划分为TEM 传输线,TE 传输线和TM 传输线。 9、 传输线终端接一纯感性电抗,则终端电抗离最近的电压波腹点的距离为14λφπ 。 10、 等反射系数圆图中,幅角改变π时,对应的电长度为0.25;圆上任意一 点到坐标原点的距离为/4λ。 二、判断(10?2分=20分) 1. 同轴线在任何频率下都传输TEM 波。√ 2. 无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。〤 3. 若传输线长度为3厘米,当信号频率为20GHz 时,该传输线为短线。╳ 4. 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。√ 5. 史密斯圆图的正实半轴为行波系数K 的轨迹。╳ 6. 当终端负载与传输线特性阻抗匹配时,负载能得到信源的最大功率。√ 7. 垂直极化天线指的是天线放置的位置与地面垂直。√ 8. 波导内,导行波的截止波长一定大于工作波长。√

微波技术与天线考试试卷

一、填空 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别 () () 70120104,F 1085.8,ln 2ln 2--?==?=== πμμεπμ πεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最___________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两个分量,它们在空间上___________(选填:平行,垂直),在时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4 sin πθπθF ,其半功率波瓣宽度 _________25.0=θ。 5、 旋转抛物面天线由两部分组成,___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来的球面波沿抛物面的___________向反射出去,从而获得很强___________。 二、判断 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时,该传输线为短线。( 错) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。(错 ) 3、由于沿smith 圆图转一圈对应2 λ ,4 λ变换等效于在图上旋转180°,它也等效于通过圆图的中心求 给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( 对) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大功率。( 错) 5、微带线在任何频率下都传输准TEM 波。( 错) 6、导行波截止波数的平方即2 c k 一定大于或等于零。( 错) 7、互易的微波网络必具有网络对称性。(错) 8、谐振频率0f 、品质因数0Q 和等效电导0G 是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。(错 ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。(错 ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) (1)提高天线的辐射电阻; (2)降低损耗电阻。 2、在波导激励中常用哪三种激励方式?(6分) (1)电激励;(2)磁激励:(3)电流激励。 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) (1) 主瓣宽度尽可能窄,以抑制干扰; (2) 旁瓣电平尽可能低;

最新微波技术与天线答案

微波技术与天线答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波技术与天线部分课后答案

微波技术与天线 * 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 3 1)25.0(-=Γλ Ω-∠=++=ο79.2343.29tan tan )2.0(10010l jZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z 1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1 min 1min 01tan tan 1l j l j Z Z βρβρ--? = 证明: 1min 1 min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρ ββ--?=∴=++? =由两式相等推导出:对于无耗传输线而言: )(Θ * 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。 证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有: z jZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4 tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 2 0Z Z Z in in ='? 故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。 1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。现在传输线上测得电压最大值和最小值分别为100mV 和20mV ,第一个电压波节的位置离负载l min1=λ/3,试求

微波技术与天线部分课后答案

微波技术与天线 * 1、1设一特性阻抗为得均匀传输线终端接负载,求负载反射系数,在离负载,及处得输入阻抗及反射系数分别为多少? 解: 1、3设特性阻抗为得无耗传输线得驻波比,第一个电压波节点离负载得距离为,试证明此时得终端负载应为 证明: * 1、5试证明无耗传输线上任意相距λ/4得两点处得阻抗得乘积等于传输线特性阻抗得平方。 证明:令传输线上任意一点瞧进去得输入阻抗为,与其相距λ/4处瞧进去得输入阻抗为,则有: = 所以有: 故可证得传输线上相距得二点处阻抗得乘积等于传输线得特性阻抗。 1、6 设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1。现在传输线上测得电压最大值与最小值分别为100mV与20mV,第一个电压波节得位置离负载l min1=λ/3,试求该负载阻抗Z1。 解: 根据驻波比得定义: ρ=|U max|/|U min|=100/20=5 反射系数得模值 |Г1|=ρ-1/ρ+1=2/3 由 l min1=λФ1/4(pai)+λ/4=λ/3 求得反射系数得相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3 负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82、4 64、30

*

*例2-1 设某矩形波导得尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输得模式。

解: 由f=3GHz,得λ=c/f=0、1m λcTE10=2a=0、16m>λλcTE01=2b=0、08m<λλcTM11=2ab/ a2+b2=0、0715m<λ 可见,该波导在工作频率为3GHz时只能传输TE10模。 *

微波技术与天线

微波技术与天线 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

课程名称:微波技术与天线课程代码:02367(理论) 第一部分课程性质与目标 一、课程性质与特点 《微波技术与天线》是电子与信息工程专业、通信技术专业的一门专业基础课。该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术。 二、课程目标与基本要求 通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法。并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础。 三、与本专业其他课程的关系 本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论。是无线通信技术的基础课程。 第二部分考核内容与考核目标 第一章场论与静态电磁场 一、学习目地与要求 本章主要研究静态电磁场的基本规律和分析方法。通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的

电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程。 二、考核知识点与考核目标 (一)场论(一般) 识记:矢量运算中的相关规则及矢量恒等式 理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度。 应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律。 (二)静电场(次重点) 识记:电荷与电荷密度、电场强度、均匀介质中的电场 理解:、电场强度的相关计算公式、库仑定律 应用:用静电场的基本方程高斯定律求解静电场、计算点电荷系统和一些连续分布电荷系统的电位 (三)稳恒电流场(一般) 识记:电流密度、欧姆定律、焦耳定律的微分形式 理解:、电荷守恒定律、稳恒电流场的基本方程 (四)恒定磁场(次重点)

相关主题