搜档网
当前位置:搜档网 › 电磁兼容屏蔽的设计

电磁兼容屏蔽的设计

电磁兼容屏蔽的设计
电磁兼容屏蔽的设计

电磁兼容屏蔽的设计

本文讨论的主要是电磁辐射的屏蔽问题。现今产业界已愈来愈注意到SE/EMC的需求,而随着更多电子组件的使用,电磁兼容性亦更受到关切。电磁辐射照射及耐受程度应在产品设计之初即开始考虑,但因产品性能和成本需求常使电磁干扰(EMI)问题无法在电子组件的选用上获得解决,因此产品机箱(外壳)及导线应加以屏蔽,以符合电磁波兼容性的各种规范。

EMI屏蔽可使产品快速且有效的符合EMC的规范,当频率在10MHz以下时电磁波大多为传导的形式,而较高频率的电磁波则多为辐射的形式。设计时可以采用单层实心屏蔽材料、多层实心屏蔽材料、双重屏蔽或者双重以上屏蔽等新型材料屏蔽。对于低频的电磁波需用厚的屏蔽层,最合适使用磁导率高的材料或磁性材料,如镍铜合金等,以获得最大的吸收损耗,而对于高频电磁波可使用金属屏蔽材料。

新型屏蔽结构材料和屏蔽方法

新型屏蔽结构和常用材料。由铝、钢、铜组合的屏蔽体,对电磁波有很大的反射损耗,所以只适用电屏蔽。铁和高导磁率的合金体则对磁场波有很大的吸收损耗,所以适合用在磁屏蔽环境。如果条件允许可用不锈钢制造具有很高可靠性的电磁屏蔽机壳。当设备处于机械应力下时,防倾斜拐角有助于机壳保持机械性能的完整性和屏蔽效能。在通信、计算机、自动化、医疗等商用电子设备上选择最有效的电磁屏蔽衬垫时,通常可以考虑以下三种衬垫类型:导电橡胶、导电布、铍铜指簧。现在流行的新型的屏蔽材料还有导电塑料、活化导电镀膜塑料、发泡铝、发泡镍、超微晶纳米晶合金、镍基/钴基非晶态合金、坡莫合金箔带等等。

多重屏蔽。多重屏蔽的原则是:各屏蔽层之间不能连接在一起,其间应该隔开空气或者填充其他介质,否则就失去多层屏蔽的作用,各层屏蔽体的材质也不应该相同。除了要考虑磁导率外,还要考虑饱和电平。有的时候由于需要不得不对系统/分系统进行双重甚至更多层的电磁屏蔽。有些系统设备内部电磁环境非常恶劣,使得对外壳屏蔽效能的要求也就很高。一般设备中最大的干扰源是振荡电路,这种电路应该用辅助分屏蔽体封闭后再装入系统主屏蔽体中。这些分屏蔽体和主屏蔽箱内、外屏蔽体/其他分屏蔽体之间只有一个必要的连接点,其他地方必须分开,不能连接。

多层屏蔽(系统箱屏蔽体或电缆)在很宽的频段内可以提供最佳的屏蔽效果。但在多种可供选择的电磁兼容性方式中,是否选用多层屏蔽,主要由它的成本来决定。此外,电缆线采用多层编织线屏蔽后,其柔软性将降低。

屏蔽效能SE(Shielding Effectiveness)有时候也称屏蔽损耗、屏蔽衰减、屏蔽效果,是指未加屏蔽时某一测点的场强(E0、H0)与加屏蔽后同一测点的场强(E1、H1)之比,并以dB为单位。屏蔽效能的理论值由R(反射损耗)、A(吸收损耗)、B(校正因子)三项因素决定。一个简单的屏蔽罩会使电磁场强度衰减十倍,即SE等于20dB;而有些场合可能会要求SE等于100dB。吸收损耗A 是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为 AdB=1.314(f×s×m)1/2×t,其中 f:频率(MHz),m:铜的导磁率,s:铜的导电率,t:屏蔽罩厚度。多孔薄型屏蔽层的例子很多,比如薄金属片上的通风孔等等,当各孔间距较近时设计上必须要仔细考虑。此类情况下屏蔽效率计算公式 SE=[20lg (fc/o/s)]-10lg n,其中 fc/o:截止频率,n:孔洞数目。注意此公式仅适用于孔间距小于孔直径的情况,也可用于计算金属编织网的相关屏蔽效率。愈高频的电磁波其波长愈短,这表示随着电磁波频率的增加,它能穿过的缝隙愈小。

金属网和导电玻璃屏蔽效能的比较

市场上一般可以购买到的导电玻璃表面电阻10W/方块,其屏蔽效能最接近于金属屏蔽网。但是频率越高,二者差别就越大,在无线电频率范围内,特别是在30MHz以上频率时,导电玻璃的屏蔽性能要比金属网的低的多。但若从美观角度看,导电玻璃则比屏蔽网好,因此采用那一种作为系统设备的窥视窗,要根据屏蔽要求及实际情况来定。从表1可以知道,导电玻璃的屏蔽效能要比金属屏蔽网低。

连接器的屏蔽

连接器屏蔽设计要注意在插针接通以前,连接器的屏蔽环先接地,而在断开时,插针应在连接器外壳脱开以前断开;接到负载线路的插针应该是阴性的或者是凹形的,以避免和连接器外壳上的其他部分发生接触。

显示仪器的屏蔽方法

显示屏、阴极射线管和表头等数据输出口会在设备的机箱上造成屏蔽的不连续性。为此,可在读出装置后背的外面安装一个屏蔽罩,并对读出装置的所有引入、引出线采取滤波措施。屏蔽玻璃可以用在显示装备上。这些材料包括铜质网、铜质

薄膜、不锈钢薄片、导电涂料等。

屏蔽电缆和专用连接器

金属丝编织层由于其质软、实用性强,所以使用在屏蔽电缆上的机会最多。一般屏蔽效能随着编织的密度增加而增加,随着频率的升高而降低。应该注意在系统和分系统设备内使用屏蔽电缆,但不要在设备外使用,以避免不必要的电磁耦合和串扰的不良影响。对于电缆可以采用多点接地的方法,即将电缆的屏蔽层两端接地,也可以考虑在中间加一个接地连接器,以便于接地。

音频电缆只能一端接地,屏蔽线层绝对不能接地,一定要对地绝缘。当然这种线路也不适合和别的信号线路共同使用一个屏蔽电缆。对于既是音频又是视频的电缆要使用绞合线,屏蔽层两端也要接地。

其他屏蔽材料

●导电橡胶:在橡胶中掺入导电颗粒,使这种复合材料既具有橡胶的弹性,又具有金属的导电性。但由于在橡胶中掺入重量达75%以上的导电颗粒,破坏了橡胶的结构,已经没有了纯橡胶的弹性好、拉伸强度高等特性。

●双重导电橡胶:它不是在橡胶所有部分掺入导电颗粒,这样获得的好处是既最大限度地保持了橡胶的弹性,又保证了导电性,是一种新型的屏蔽材料。

金属编织网套:用金属丝编织成的空心网套,这种材料具有弹性和导电性。

●橡胶芯编织网套:以橡胶为芯的金属编织网套,这种材料由于用橡胶为芯,因此弹性很好且很耐压。

●螺旋管衬垫:用不锈钢、铍铜或镀锡铍铜卷成的螺旋管,具有很好的弹性和导电性。

●指形簧片:用铍铜做成的弹性簧片材料。

结语

屏蔽是降低设备电磁辐射干扰方法的主要一种,在屏蔽的同时也应该注意滤波和接地的重要性。如使用平衡变压器、接地、隔离变压器、铁氧体磁环、光电耦合器、减小公共地的阻抗、减小互联电缆的环路面积、对电缆进行分组、将带宽减小到必要的程度、减小输入阻抗、减小电路的环路面积、将敏感器件屏蔽起来、使用瞬间干扰抑制器件、改变工作频率、PCB 电磁兼容布线等设计合理,就会对屏蔽效能要求甚少,有时候不屏蔽就可以满足性能要求。

电磁辐射6大危害

孙海东

中国室内装饰协会室内环境监测中心日前发布环境警告:购买住房一定要注意小区的电磁辐射污染是否超标。目前已有许多市民反映自己所在的新建小区电磁辐射污染十分严重,不仅家里的电器受到过大干扰无法正常使用,而且许多人出现不同程度的不适症状。

随着大规模的城市改造和房地产开发,一些原来建于城市周边的传输发射中心和高压线等设施周围也开始进行开发建设,小区环境和室内环境中的电磁辐射污染问题也就随之而来。电磁辐射到底对人体有什么危害?据有关专家介绍,其危害主要有6个方面。

危害之一

它极可能是造成儿童患白血病的原因之一。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。意大利专家研究后认为,该国每年有400多名儿童患白血病,其主要原因是距离高压电线太近,因而受到了严重的电磁污染。

危害之二

能够诱发癌症并加速人体的癌细胞增殖。电磁辐射污染会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱

发癌症,并会加速人体的癌细胞增殖。瑞士的研究资料指出,周围有高压线经过的住户居民,患乳腺癌的概率比常人高7.4倍。美国得克萨斯州癌症医疗基金会针对一些遭受电磁辐射损伤的病人所做的抽样化验结果表明,在高压线附近工作的工人,其癌细胞生长速度比一般人要快24倍。

危害之三

影响人的生殖系统,主要表现为男子精子质量降低,孕妇发生自然流产和胎儿畸形等。

危害之四

可导致儿童智力残缺。据最新调查显示,我国每年出生的2000万儿童中,有35万为缺陷儿,其中25万为智力残缺,有专家认为电磁辐射也是影响因素之一。世界卫生组织认为,计算机、电视机、移动电话的电磁辐射对胎儿有不良影响。

危害之五

影响人们的心血管系统,表现为心悸,失眠,部分女性经期紊乱,心动过缓,心搏血量减少,窦性心率不齐,白细胞减少,免疫功能下降等。如果装有心脏起搏器的病人处于高电磁辐射的环境中,会影响心脏起搏器的正常使用。

危害之六

对人们的视觉系统有不良影响。由于眼睛属于人体对电磁辐射的敏感器官,过高的电磁辐射污染会引起视力下降,白内障等。高剂量的电磁辐射还会影响及破坏人体原有的生物电流和生物磁场,使人体内原有的电磁场发生异常。值得注意的是,不同的人或同一个人在不同年龄阶段对电磁辐射的承受能力是不一样的,老人、儿童、孕妇属于对电磁辐射的敏感人群。

学会防辐射

有5种人特别要注意电磁辐射污染:生活和工作在高压线、变电站、电台、电视台、雷达站、电磁波发射塔附近的人员;经常使用电子仪器、医疗设备、办公自动化设备的人员;生活在现代电器自动化环境中的工作人员;佩戴心脏起搏器的患者;生活在以上环境里的孕妇、儿童、老人及病患者等。如果生活环境中电磁辐射污染比较高,公众必须采取相应的防护措施。

不要把家用电器摆放得过于集中,以免使自己暴露在超剂量辐射的危险之中。特别是一些易产生电磁波的家用电器,如收音机、电视机、电脑、冰箱等更不宜集中摆放在卧室里。

各种家用电器、办公设备、移动电话等都应尽量避免长时间操作,同时尽量避免多种办公和家用电器同时启用。手机接通瞬间释放的电磁辐射最大,在使用时应尽量使头部与手机天线的距离远一些,最好使用分离耳机和话筒接听电话。

注意人体与办公和家用电器距离,对各种电器的使用,应保持一定的安全距离,离电器越远,受电磁波侵害越小。如彩电与人的距离应在4至5米,与日光灯管距离应在2至3米,微波炉在开启之后要离开至少1米远,孕妇和小孩应尽量远离微波炉。

如果住房临近高压线、变电站、电台、电视台、雷达站、电磁波发射塔,一定要请专家进行电磁辐射检测,如果经过检测发现超过国家规定标准,要及时采取措施。

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

汽车电子系统的电磁兼容设计

汽车电子系统的电磁兼容设计 1引言电磁兼容性(EMC,Electro-MagneTIc CompaTIbility)是指电器电子产品能在电磁环境中正常工作,并不对该环境中其它产品产生过量的电磁干扰(EMI,Electro- MagneTIc Interference)。这就包含着2方面要求,其一是要求产品对外界的电磁干扰有一定的承受能力;其二是要求产品在正常运转过程中,该产品对周围环境产生的电磁干扰不能超过一定的限度。汽车电器的电磁兼容性就是指在汽车及其周围空间中,在运行时间内,在可用的频谱资源条件下,汽车本身以及周围的用电设备可以共存,不致引起降级。ABS防抱死制动系统,发动机燃油点火电子控制系统,GPS全球定位系统等电子设备的正常可靠工作都必须重视对电磁兼容技术的设计和研究,可以从传统的汽车电器(诸如起动机、刮水电动机、闪光器、空调启动器、燃油泵等)入手进行探讨,交流发电机电缆的连接和间歇切断也是产生较大功率电磁辐射的干扰源,只是其它设备对其工作可靠性的影响较那些小功率高频段的电子设备为小。现在,交流发电机的调节器与电子点火系统一样,已经设计成集成模块化结构,同样面临抗干扰的问题。 2汽车电磁兼容性简介随着汽车电子产品数量的增加和复杂电子模块在整个车辆中分布的增加,工程师面临日益严峻的电磁兼容性设计挑战,问题主要存在于三个方面: 如何把电磁易感性(EMS)降低到最小?以保护电子产品免受其它电子系统(如移动电话、GPS或信息娱乐系统)的有害电磁辐射的影响。 如何保护电子产品免受恶劣汽车环境的影响?包括电源电压大的瞬间变化、重负载或感性负载(如车灯和启动机)引起的干扰。 如何将可能对其它汽车电子电路产生影响的EME控制为最小? 随着系统电压、车载电子设备数量以及频率的增加,这些问题将更加具有挑战性。此外,许多电子模块将与廉价的、线性度较低、偏移较大的低功率传感器接口,这些传感器工作在小信号状态,电磁干扰对它们工作状态的影响可能是灾难性的。 随着现代汽车中电子设备的增加,越来越要求进行良好的设计以确保符合电磁兼容标准的要求。与此同时,随着集成度的提高,汽车设计工程师需要系统级芯片ASIC和ASSP方

电磁兼容EMC设计指南

EDP电磁兼容设计平台专注EMC解决方案,规范EMC设计流程; 打造智能化的EMC设计平台。 1、企业面临的EMC设计应用现状 ?投入成本高,解决问题周期长;为解决产品EMC问题,不断进行测试验证, 反复的进行改版设计。 ?企业设计人员EMC知识储备不全面;解决EMC问题往往靠设计人员过去的 工作经验。 ?EMC设计流程不规范,EMC设计没有参透于电子产品开发过程各个阶段(总 体方案阶段、设计阶段、开发阶段、测试阶段、认证阶段等)。 ?公司技术文献和多年积累的产品开发经验不能良好的共享、消化,没有一个 系统将公司无形的技术经验转化为有形的产品开发技术要求。 2、企业面临的EMC问题 ?激烈的产品竞争要求企业开发的产品有更高的品质。 ?快速的市场变化要求企业有更高的产品开发效率。 ?高规格的EMC认证和EMC设计技术要求企业有更高的产品开发能力。 ?规范化的企业文化要求有更高效的产品开发流程。 3、EDP电磁兼容设计平台优势 ?赛盛技术多位专家10多年的经验融合荟萃; ?赛盛技术多项产品电磁兼容设计专利技术; ?智能化标准化项目管理设计平台 ?几十种典型接口电磁兼容解决方案; ?上百种PCB层叠电磁兼容设计方案; ?完整的电磁兼容布线设计规则; ?完整的结构屏蔽电磁兼容设计方案; ?多行业电缆与连接器电磁兼容解决方案; ?多行业、近百个产品实际电磁兼容设计验证与经验总结;

4、EMC设计平台介绍 利用计算机技术,整合人工智能、数据库、互联网等开发手段,对于现有的电磁兼容技术资源(包括各种设计规则,解决方案等)以及企业产品研发积累的技术检验等进行全面的管理和应用,实现现阶段对于企业电磁兼容的研发流程规范化和研发工程师电磁兼容设计的技术支持和辅助开发;未来电磁兼容专家系统一提供智能化技术支持(包括产品开发电磁兼容风险评估功能,自动检查和纠正电磁兼容设计功能、产品设计系统仿真和功能电路仿真等)为主要目标和发展方向。 电磁兼容设计平台:主要包括PCB设计、原理图设计、结构设计、电缆设计等四部分组成;系统依据用户设计要求和EMC设计要素,智能化输出相应的产品PCB设计方案、产品原理图设计方案、产品结构设计方案、产品电缆设计方案,然后用户依据产品信息保存方案(方案为标准技术设计模板,内容依据设计内容自动生成格式化的文件)。 使用电磁兼容设计(EDP)软件,会让我们很轻松的完成这些复杂困难的工作,用户输入产品产品设计的相关要素,软件就能够智能化输出产品EMC设计方案。 不管企业之前是否有电磁兼容设计经验?是否有电磁兼容设计规范?是否有电磁兼容标准化设计流程?是否有电磁兼容技术专家?企业在应用EDP软件后,EDP软件能够快速帮助企业解决以下方面问题: 1、快速提升企业产品电磁兼容性能:系统一旦使用上就能够快速地指导企业产品进行电磁兼容有效的设计工作,迅速提升企业产品的电磁兼容性能; 2、能够解决企业多型号产品同时开发,技术专家资源不够使用的情况:智能化的软件可以同时多款多个型号产品,不用设计阶段并行进行开发;能够在很短的时间内给出相应的设计方案,结合产品设计要求指导设计人员进行设计,不耽误产品由于专家资源不足而造成正常设计进度延误; 3、提高产品研发人员EMC技术设计水平:由于有规范化、标准化的方案输出,设计人员在进行新产品开发的时候,能够参考、学习标准化的技术方案;提升自身EMC设计知识水平,减少后期类似设计问题; EDP软件在手,EMC设计得心应手!

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

电磁兼容技术及应用

电磁兼容技术及应用 摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理 摘要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理方法,从干扰源、耦合路径、敏感源方面逐步分析验证,提高产品可靠性。 关键词:电磁兼容接地屏蔽滤波 目前,电磁兼容技术已经发展成为专门的针对电子产品抗电磁干扰和电磁辐射的技术,成为考察电子产品的安全可靠性的一个重要指标,覆盖所有电子产品。 各个电子设备在同一空间工作时,会在其周围产生一定强度的电磁场,这些电磁场通过一定的途径(辐射、传导)耦合给其他的电子设备,影响其他设备的正常工作,可能使通讯出错或者系统死机等,设备间相互干扰相互影响,这种影响不仅仅存在设备间,同时也存在元件与元件之间,系统与系统之间。甚至存在与集成芯片内部。 电磁兼容技术主要包括接地、滤波、屏蔽技术等,在特定场合需要注意的是不一样的,A、在结构方面,需要注意屏蔽和接地,B、在线缆方面注意接地和滤波,C、在PCB设计方面,需要注意信号布局布线、滤波等。 一、电磁兼容技术 首先从构成电磁干扰的三要素入手,即干扰源、敏感源、耦合路径,★干扰源是产生电磁干扰的设备,通过电缆、空间辐射等耦合路径影响干扰敏感源设备。高频电压/电流是产生干扰的根源,电磁能量在设备之间传播有两种方式:传导发射和辐射发射,传导

方舱医院系统中的电磁兼容设计

方舱医院系统中的电磁兼容设计 Design of Electromagnetic Compatibility in the Shelter Hospital System 黄鹏,刘志国,祁建城 (军事医学科学院卫生装备研究所,天津,300161) 摘要:目的:对方舱医院系统进行了一系列的电磁兼容设计,用于对抗未来复杂电磁环境下的电磁干扰问题。方法:采取系统布局分开放置干扰源与敏感设备,设置屏蔽空间隔离不同设备,利用良好接地保护敏感设备,使用滤波技术去除骚扰信号等措施,为方舱医院系统的电磁兼容提出了设计思想和解决方法。结果:通过电磁兼容仿真和试验检测,该方舱医院系统基本消除了由电磁干扰所引起各分系统或设备的故障及不容许的响应,达到了系统的电磁兼容。结论:该方舱医院系统的电磁兼容设计方案,可满足野战条件下应急医疗救治机构电磁安全防护的需要。 关键词:方舱医院, 电磁兼容, 电磁干扰, 系统布局, 屏蔽 Abstract:Objective: On the shelter hospital system conducted a series of electromagnetic compatibility (EMC) design, used against the electromagnetic interference (EMI) under complicated electromagnetic environment problem in the future. Methods: For the shelter hospital system of EMC design ideas and solutions methods are put forward, such as take the system layout placed separate sources of interference and sensitive equipment, set up the shield spatial segregation of different devices, apply a good grounding to protect sensitive equipment, use filtering techniques to remove the disturbance signal and other measures. Results: Through the EMC simulation and experimental testing, the impermissible response and faults of each system or equipment caused by the electromagnetism interference are eliminated,to achieve the EMC of the system. Conclusion: The application of shelter hospital system EMC design, can satisfy the electromagnetic field under the condition of emergency medical treatment institution security needs. Key words:shelter hospital, EMC, EMI, system layout, shield 1 引言 未来信息化战争,将是一场争夺电磁空间的战争,能否取得制电磁权将成为战争胜负的关键。由于电子信息设备的使用不断加大,战场空间中的电磁信号非常密集,使得战场电磁

汽车电子接口CAN的电磁兼容设计方案

汽车电子接口CAN的电磁兼容设计方案 Controller Area Network简称为CAN,多用于汽车以及工业控制,用于数据的传输控制。在应用的过程中通讯电缆容易耦合外部的干扰对信号传输造成一定的影响,单板内部的干扰也可能通过电缆形成对外辐射。 本方案从EMC原理上,通过接口的原理图、PCB、结构及电缆方面进行相关的抑制干扰和抗敏感度设计,从设计层次解决EMC问题。 一、原理图设计方案 二、PCB设计方案 1. CAN接口分地设计

方案特点: (1)为了抑制内部单板高频噪声通过接口向外传导辐射,也为了增强单板对外部干扰的抗扰能力。在CAN接口处增加防护和滤波隔离器件,并以隔离器件位置大小为界,划分出接口地; (2)隔离带中可以选择性的增加电容作为两者地之间的连接,电容取值建议为1000pF;信号线串联共模电感滤波,且共模电感要求置于隔离带内;为了防止外部强干扰通过端口耦合进内部PCB,引起内部器件性能下降,在靠近端口处信号线上增加防护器件TVS管,具体布局如图示。 方案分析: (1)当接口与单板存在相容性较差或不相容的电路时,需要在接口与单板之间进行“分地”处理,即根据不同的端口电压、电平信号和传输速率来分别设置地线。“分地”,可以防止不相容电路的回流信号的叠加,防止公共地线阻抗耦合; (2) CAN接口信号传输速率较高,内部PCB板高频噪声很容易由公共地线通过接口向外传导辐射,因此将公共地分割且通过电容相接,可以阻断共模干扰的传播路径。 2 CAN接口电路布局

方案特点: (1)防护器件及滤波器件要靠近接口位置处摆放且要求摆放紧凑整齐,信号线上的防护器件TVS管与滤波电容要下接至接口地;按照信号流向摆放器件,走线时要尽量避免走线曲折的情况; (2)共模电感及跨接电容要置于隔离带中。 方案分析: (1)接口及接口滤波防护电路周边不能走线且不能放置高速或敏感的器件; (2)隔离带下面投影层要做掏空处理,禁止走线。 三、结构和线缆设计方案 EDP软件介绍 电磁兼容设计平台(EDP),依据最专业的EMC专家方案知识库,快速输出符合产品设计要求的指导性的EMC解决方案。 主要功能模块:

EMC结构电磁兼容设计规范

结构件电磁兼容设计规范

目 次 117.3.2 示例 (11) 7.3.1 编码描述规定 (10) 7.3 屏蔽材料的编码描述 (10) 7.2.3 示例 (10) 7.2.2 标注说明 (10) 7.2.1 绘图和标注规定 (10) 7.2 屏蔽材料的绘图和标注 (9) 7.1 屏蔽材料命名规则 (9) 7. 屏蔽材料 (8) 6.5.2 滤波器的安装 (8) 6.5.1 线缆的屏蔽措施 (8) 6.5 线缆的屏蔽 (7) 6.4.3 其他孔洞的屏蔽 (6) 6.4.2 通风孔的屏蔽 (6) 6.4.1 孔洞屏蔽效能影响因素 (6) 6.4 孔洞的屏蔽 (5) 6.3 缝隙的屏蔽 (4) 6.2 屏蔽方案的选择 (4) 6.1 屏蔽设计的基本原则 (4) 6. 结构件屏蔽设计指引 (3) 5.4 成本控制 (3) 5.3 屏蔽效能等级的确定 (2) 5.2 屏蔽效能测试标准 (2) 5.1 屏蔽效能等级的划分 (2) 5. 结构件屏蔽效能等级 (2) 4. 结构件电磁兼容设计程序要求 (1) 3. 术语 (1) 2. 引用标准 (1) 1. 范围.................................................................

129. 标识 (12) 8.3 地线的屏蔽 (12) 8.2 防静电设计 (11) 8.1 接地线 (11) 8. 接地 (11) 7.4 屏蔽材料选用原则...................................................

结构件电磁兼容设计规范 1. 范围 本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。 本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。 2. 引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GJB 1046 《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》 GJB 1210 《接地、搭接和屏蔽设计的实施》 GJB/z 25 《电子设备和设施的接地搭接和屏蔽设计指南》 MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》 IEC 61587-3 (草案)《第三部分:IEC 60917-...和IEC 60297-...系列机箱、机柜和插箱屏蔽性能试验》 《结构件分类描述优化方案及图号缩写规则》 3. 术语 本规范中的专业术语符合IEC50-161《电磁兼容性术语》的规定。

2021年电磁兼容与结构设计

xxxx大学硕士生课程论文 欧阳光明(2021.03.07) 电磁兼容与结构设计 电磁兼容概述 (2014—2015学年上学期) 姓名: 学号: 所在单位: 专业:

摘要 随着用电设备的增加,空间电磁能量逐年增加,人类生存环境具有浓厚的电磁环境内涵。在这种复杂的电磁环境中,如何减少相互间的电磁干扰,使各种设备正常运转,是一个亟待解决的问题;另外,恶略的电磁环境还会对人类及生态产生不良影响。电磁兼容正是为解决这类问题而迅速发展起来的学科。可以说电磁兼容是人类社会文明发展产生的无法避免的“副产品”。 电磁兼容一般指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的上述各种设备都能正常工作,又互不干扰,达到兼容状态。电磁兼容技术是一门迅速发展的交叉学科,其理论基础涉及数学、电磁场理论、电路基础、信号分析等学科与技术,其应用范围几乎涉及到所有用电领域。 关键字:电磁兼容、电磁发射、传导耦合、辐射耦合、静电放电 1 引言 信息技术已经成为这个时代的主题,而信息时代的最突出特征,就是将电磁作为记录和传递信息的主要载体,人们对于电磁的利用无处不在。电磁日益渗入到金融、通信、电力、广播电视等事关国家安全的各个重要领域和社会生活的各个角落,电磁已经成为了信息时代中将经济、军事等各方面各部门联成一体的纽带,它与每个人工作和生活息息相关。电磁空间对国家利益的实现具有越来越深刻的影响,经济社会发展、军队建设和作战对电磁空间的依赖程度日益提高[1]。 当前人类的生存环境已具有浓厚的电磁环境内涵。一方面,电力网络、用电设备及系统产生的电磁骚扰越来越严重,设备所处电磁环境越来越复杂;另一方面,先进的电子设备的抗干扰能力越来越弱,同时电气及电子系统也越来越复杂。在这种复杂的电磁环境中,如何减少相互间的电磁干扰,使各种设备正常运行,是一个亟待解决的问题。另外,恶略的电磁环境还会对人类及生态产生不良影响。对于生产厂家而言,只有出场设备具有一定的电磁兼容性并且适应目前这一复杂的电磁环境,才能使自己的产品更具有竞争力。而对于国家安全而言,构筑电磁空间安全防御体系,已成为各国和军队建设的重要内容,随着社会信息化

车载设备的电磁兼容设计方案

车载设备的电磁兼容设计方案 随着科学技术的不断发展,电子设备的数量及应用逐渐增多,结果必将造成电磁干扰越来越严重。 在日趋恶劣的电磁环境中,如若不采取恰当的电磁屏蔽措施,会导致设备之间的电磁干扰日益严重,电子设备的性能下降,甚者会危及到信息的安全。为了保证电子设备在复杂的电磁环境中既不干扰其他设备,而又不受其他设备干扰的影响而能正常工作,这就要求在设备研制的初期阶段必须从结构、技术等方面进行严格的电磁兼容设计。 1 电磁兼容设计的基本要求 电磁兼容性是电子设备的主要性能之一,在进行设备功能设计的同时,还应进行电磁兼容设计。 电磁兼容设计的目的是使所设计的设备在复杂电磁环境中实现电磁兼容,因此在进行电磁兼容设计时应满足以下要求: 首先明确设备所满足的电磁兼容指标,然后确定设备的敏感器件、干扰源及干扰途径,有针对性地采取措施,最后通过试验了解设备是否达到了电磁兼容指标要求。 2 电磁兼容设计所采取的方法 对于通信车而言,通常其所装载的设备量很多,包括配电设备、通信设备及终端设备等,各设备间很容易形成电磁干扰,进而影响通信质量,因此设备在进行电磁兼容设计时要从3 要素( 干扰源、耦合途径和敏感设备) 出发,采取各种有效手段,抑制干扰源,消除或减弱干

扰耦合,增加敏感设备的抗干扰能力。 以某车载电子设备为例,由数字电流表、数字电压表、转换开关、断路器、控制保护单元、互感器、接触器等单元及元器件组成,其中数字电流表、数字电压表、转换开关、断路器布置于前面板上,控制保护单元、互感器、接触器等单元及元器件放在机箱内部。此设备要满足GJB151A- 97 有关的电磁兼容指标要求,在结构设计等方面采取的主要措施有: 仪表窗口的屏蔽; 机箱缝隙的屏蔽; 各单元合理布局及其屏蔽; 电缆敷设以及电源线滤波等。 2.1 仪表窗口的屏蔽 仪表窗口对设备来说是比较大的泄漏口,必须采取有效的措施将其屏蔽,为此采用加装丝网屏蔽玻璃的方法对数字电流表、数字电压表进行外部屏蔽。丝网屏蔽玻璃是由一种低阻抗的金属丝网通过特殊工艺夹在两层玻璃之间制成,丝网筛孔的密度决定其主要的屏蔽效能。如图1 所示,由于玻璃周边预留了10~ 20 mm 金属丝网毛边,通过螺装金属外框将它紧紧压在机箱上,从而获得连续的导电表面,以达到减少电磁泄露的目的。

电磁兼容屏蔽的设计

电磁兼容屏蔽的设计 本文讨论的主要是电磁辐射的屏蔽问题。现今产业界已愈来愈注意到SE/EMC的需求,而随着更多电子组件的使用,电磁兼容性亦更受到关切。电磁辐射照射及耐受程度应在产品设计之初即开始考虑,但因产品性能和成本需求常使电磁干扰(EMI)问题无法在电子组件的选用上获得解决,因此产品机箱(外壳)及导线应加以屏蔽,以符合电磁波兼容性的各种规范。 EMI屏蔽可使产品快速且有效的符合EMC的规范,当频率在10MHz以下时电磁波大多为传导的形式,而较高频率的电磁波则多为辐射的形式。设计时可以采用单层实心屏蔽材料、多层实心屏蔽材料、双重屏蔽或者双重以上屏蔽等新型材料屏蔽。对于低频的电磁波需用厚的屏蔽层,最合适使用磁导率高的材料或磁性材料,如镍铜合金等,以获得最大的吸收损耗,而对于高频电磁波可使用金属屏蔽材料。 新型屏蔽结构材料和屏蔽方法 新型屏蔽结构和常用材料。由铝、钢、铜组合的屏蔽体,对电磁波有很大的反射损耗,所以只适用电屏蔽。铁和高导磁率的合金体则对磁场波有很大的吸收损耗,所以适合用在磁屏蔽环境。如果条件允许可用不锈钢制造具有很高可靠性的电磁屏蔽机壳。当设备处于机械应力下时,防倾斜拐角有助于机壳保持机械性能的完整性和屏蔽效能。在通信、计算机、自动化、医疗等商用电子设备上选择最有效的电磁屏蔽衬垫时,通常可以考虑以下三种衬垫类型:导电橡胶、导电布、铍铜指簧。现在流行的新型的屏蔽材料还有导电塑料、活化导电镀膜塑料、发泡铝、发泡镍、超微晶纳米晶合金、镍基/钴基非晶态合金、坡莫合金箔带等等。 多重屏蔽。多重屏蔽的原则是:各屏蔽层之间不能连接在一起,其间应该隔开空气或者填充其他介质,否则就失去多层屏蔽的作用,各层屏蔽体的材质也不应该相同。除了要考虑磁导率外,还要考虑饱和电平。有的时候由于需要不得不对系统/分系统进行双重甚至更多层的电磁屏蔽。有些系统设备内部电磁环境非常恶劣,使得对外壳屏蔽效能的要求也就很高。一般设备中最大的干扰源是振荡电路,这种电路应该用辅助分屏蔽体封闭后再装入系统主屏蔽体中。这些分屏蔽体和主屏蔽箱内、外屏蔽体/其他分屏蔽体之间只有一个必要的连接点,其他地方必须分开,不能连接。 多层屏蔽(系统箱屏蔽体或电缆)在很宽的频段内可以提供最佳的屏蔽效果。但在多种可供选择的电磁兼容性方式中,是否选用多层屏蔽,主要由它的成本来决定。此外,电缆线采用多层编织线屏蔽后,其柔软性将降低。 屏蔽效能SE(Shielding Effectiveness)有时候也称屏蔽损耗、屏蔽衰减、屏蔽效果,是指未加屏蔽时某一测点的场强(E0、H0)与加屏蔽后同一测点的场强(E1、H1)之比,并以dB为单位。屏蔽效能的理论值由R(反射损耗)、A(吸收损耗)、B(校正因子)三项因素决定。一个简单的屏蔽罩会使电磁场强度衰减十倍,即SE等于20dB;而有些场合可能会要求SE等于100dB。吸收损耗A 是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为 AdB=1.314(f×s×m)1/2×t,其中 f:频率(MHz),m:铜的导磁率,s:铜的导电率,t:屏蔽罩厚度。多孔薄型屏蔽层的例子很多,比如薄金属片上的通风孔等等,当各孔间距较近时设计上必须要仔细考虑。此类情况下屏蔽效率计算公式 SE=[20lg (fc/o/s)]-10lg n,其中 fc/o:截止频率,n:孔洞数目。注意此公式仅适用于孔间距小于孔直径的情况,也可用于计算金属编织网的相关屏蔽效率。愈高频的电磁波其波长愈短,这表示随着电磁波频率的增加,它能穿过的缝隙愈小。 金属网和导电玻璃屏蔽效能的比较 市场上一般可以购买到的导电玻璃表面电阻10W/方块,其屏蔽效能最接近于金属屏蔽网。但是频率越高,二者差别就越大,在无线电频率范围内,特别是在30MHz以上频率时,导电玻璃的屏蔽性能要比金属网的低的多。但若从美观角度看,导电玻璃则比屏蔽网好,因此采用那一种作为系统设备的窥视窗,要根据屏蔽要求及实际情况来定。从表1可以知道,导电玻璃的屏蔽效能要比金属屏蔽网低。 连接器的屏蔽 连接器屏蔽设计要注意在插针接通以前,连接器的屏蔽环先接地,而在断开时,插针应在连接器外壳脱开以前断开;接到负载线路的插针应该是阴性的或者是凹形的,以避免和连接器外壳上的其他部分发生接触。 显示仪器的屏蔽方法 显示屏、阴极射线管和表头等数据输出口会在设备的机箱上造成屏蔽的不连续性。为此,可在读出装置后背的外面安装一个屏蔽罩,并对读出装置的所有引入、引出线采取滤波措施。屏蔽玻璃可以用在显示装备上。这些材料包括铜质网、铜质

RJ45以太网接口EMC设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC设计方案。 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明:

(1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。 图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值μF~μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2)

电子产品结构设计中的电磁兼容性(EMC)设计

电子产品结构设计中的电磁兼容性(EMC)设计 江苏省电子信息产品质量监督检验研究院胡寅秋 1 引言 随着科学技术的迅速发展,现代各种电子、电气、信息设备及家用电器的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电气电子系统内、设备内的相互干扰愈加严重。在这种情况下,要保证设备在各种复杂的电磁环境中正常地工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。 2 电磁干扰方式 电子设备结构设计中常见的电磁干扰方式主要有: 传导干扰 传导干扰一般是指通过电源,电缆,布线系统,接地系统引起的串扰。 辐射干扰 在高频情况下,电磁能量比较容易产生辐射。通常,在MHz以上,辐射就较明显,当导线长度超过四分之一波长时,辐射功率将很大。 感应及耦合引起的干扰 3 电磁兼容(EMC)设计的主要内容及方法 电磁兼容设计的主要方法有屏蔽、滤波、接地等。 3.1屏蔽 电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗干扰要求进行有针对性的电磁屏蔽设计。 (1)静电屏蔽 静电屏蔽主要是为了抑制寄生电容的耦合,使电路由于分布电容泄漏出来的电磁能量经屏蔽接地而不致于串入其它电路,从而使干扰得到抑制。 静电屏蔽的基本方法是采用低电阻率材料作屏蔽体,在感应源与受感器之间加一块与机壳接触良好的金属隔板网、罩或盒。可用铜、铝材做屏蔽外壳,要求不高的也可用钢材。机壳必须是导电良好、稳定可靠的导电体。静电屏蔽必须保

证良好的接地,否则屏蔽效果将大大下降。 (2)磁屏蔽 磁屏蔽主要是针对一些低阻抗源。例如变压器、线圈及一些示波器、显示器就可考虑用磁屏蔽。良好的低频屏蔽必须具有合适的电导率和高磁导率。磁屏蔽的基本方法是用高磁导率材料,如铁镍合金、镍铅合金、纯铁、铜作屏蔽材料,做成屏蔽罩。磁屏蔽罩在结构上按加工工艺不同一般可分为两类:一类为用平板坯料深冲成形的,另一类为焊接成形的。 (3)电磁屏蔽 电磁屏蔽就是对高频电磁辐射的屏蔽。 电磁屏蔽的主要方法是用金属材料做成屏蔽壳体。金属材料可以是铁磁性材料,也可以是非铁磁性材料,通过对电磁场的反射和吸收损耗起到屏蔽作用,具体选用哪种材料,则应根据工作频率(f )来确定。其临界频率为 )(1067.522 0Hz t f ×= 式中,t ——材料厚度(mm ); 当f >f0时,铁磁性材料比非铁磁性材料屏蔽效果好; 当f <f0时,非铁磁材料比铁磁性材料屏蔽效果好。 一般来讲,频率大于1MHz 时,其屏蔽效能主要取决于吸收损耗。 就反射损耗而言,非铁磁材料比铁磁材料优越,反射损耗与材料厚度无关。 电磁屏蔽理论指出:电磁干扰在通过屏蔽体时,一部分被反射,未被反射的部分进入屏蔽层而被吸收转化为热能,剩余的部分则穿透屏蔽层,继续向外传播。屏蔽体所具有的这种反射和吸收电磁波能量的能力被定义为屏蔽体的屏蔽效能。假定屏蔽体是均质无缝的,则屏蔽体的屏蔽效能与干扰场的场型有关,其屏蔽效果可按下面的公式计算。 远场屏蔽效果: ))(/log(10168131.0dB f f t SE r r r r σμμσ?+=

结构件电磁兼容设计规范电磁屏蔽设计

结构件电磁兼容设计规范 1、概述: 本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。 本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GJB 1046《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》 GJB 1210《接地、搭接和屏蔽设计的实施》 GJB/Z 25《电子设备和设施的接地搭接和屏蔽设计指南》 MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》 IEC 61587-3 (草案)《第三部分: IEC 60917-... 和 IEC 60297-... 系列机箱、机柜和插箱屏蔽性能试验》 《结构件分类描述优化方案及图号缩写规则》 术语本规范中的专业术语符合 IEC50-161 《电磁兼容性术语》的规定。 2、设计程序要求 对于有EMC 要求的项目的开发程序,在遵守部门现有的结构造型设计流程基础上,提出以下特殊的要求: 所有需要考虑屏蔽的A 类项目以及产品定位为海外市场的所有项目,必须通过EMC 方案评审后才能进行详细的设计; 对于 C 级以上屏蔽等级(具体级别划分见 5.1)要求的项目,方案评审时必 须提交详细的 EMC 设计方案(包括屏蔽体的详细结构和具体处理措 施); 对于 C 级以上屏蔽等级的项目,样机评审时必须提交屏蔽效能测试报告;除通用结构件(例如 19" 标准机柜)外,如果样机的屏蔽效能测试结果达不到设计 134 指标的要求,只要整机(产品)的EMC 测试中相应指标符合要求,结构件 可以不要求再作优化。 3、屏蔽效能等级 3.1、屏蔽效能等级的划分 一般结构件的屏蔽效能分为以下六个等级,各级屏蔽效能指标规定如 下: E级: 30-230 MHz 20 dB;230-1000 MHz 10 dB D 级:30-230 MHz 30 dB;230-1000 MHz 20 dB C级: 30-230 MHz 40 dB;230-1000 MHz 30 dB B 级:30-230 MHz 50 dB;230-1000 MHz 40 dB A 级:30-230 MHz 60 dB;230-1000 MHz 50 dB T级:比A级高10dB或者以上,和/或对低频磁场、1GHz以上平面波屏蔽效能有特殊需求。 屏蔽效能等级由高至低分别为:T 级 A 级 B 级 C 级 D 级 E级。一

相关主题