搜档网
当前位置:搜档网 › 非线性力学和混沌简介

非线性力学和混沌简介

非线性力学和混沌简介
非线性力学和混沌简介

非线性力学和混沌简介

非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。

一线性与非线性的意义

线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。

最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。

线性与非线性的区别

定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。

线性与非线性现象的区别一般还有以下特征:

(1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可

用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变;

(2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。

非线性问题研究的历史概况

非线性问题的“个性”很强,处理起来十分棘手。历史上曾有过一些解非线性方程的“精品”,但与大量存在的非线性方程相比,只能算是“凤毛麟角”。因此,长期以来,对非线性问题的研究一直分散在自然科学和技术科学的各个领域。本世纪六十年代以来,情况发生了变化。人们几乎同时从非线性系统的两个极端方向取得了突破:

(1)一方面从可积系统的一端,即从研究多自由度的非线性偏微分方程的一端获得重大进展。如在浅水波方程中发现了“孤子”,发展起一套系统的数学方法,如反散射法,贝克隆变换等,对一些类型的非线性方程给出了解法;

(2)另一方面,从不可积系统的极端,如在天文学、生态学等领域对一些看起来相当简单的不可积系统的研究,都发现了确定性系统中存在着对初值极为敏感的复杂运动。促成这种变化的一个重要原因十计算机的出现和广泛应用。科学家们以计算机为手段,勇敢地探索那些过去不能用解析方法处理的非线性问题,从中发掘出规律性的认识,并打破了原有的学科界限,从共性、普适性方面来探讨非线性系统的行为。

非线性科学研究的范围

非线性科学的研究范围究竟有多大?目前尚无定论。有人主张,非线性科学应包括那些可以定量分析、精确计算、有数学理论或实验研究的领域。也有人认为,耗散结构、协同学、突变论等应划归非线性科学,因为这“三论”中的许多定量分析,有些概念和方法

(如分岔、自组织、图形、分维等——是和非线性科学相同的。值得注意的是,这“三论”中有些内容是带有哲理性或思辩色彩的。但非线性科学的主体是明确的,这就是混沌(Chaos)、分形(Fractral)、孤子(Soliton)。)——孤立波与孤立子孤子或孤波为一种特殊的相干结构,是由于系统中的色散与非线性两种作用相互平衡的结果。事实上,虽然孤立子或孤立波一词常在广泛的范围内被引用,但无一般形式的定义,因为它还在发展中,给它下个严格的定义比较困难,且为时尚早。通常孤立波也叫定域行波,也就是“前无古人,后无来着”,一个孤零零的波在传播。而在应用数学和工程中,孤立子被理解为非线性演化方程局部化的行波解,经过互相碰撞后不改变波形和速度(或许相位发生变化)。在粒子物理等领域内,孤立子被看做是具有某个“安全系数”的特殊孤立波,在相互作用时,波形与速度只有微弱改变的孤立波,或被理解为:非线性演化方程能量有限的解,这些能量集中在空间有限区域,不随时间扩散到无限区域中去。可见,不是所有的孤立波都是孤立子,但有时人们并不严格区分二者。

孤立子的特点是,有出奇的稳定性,如同刚性粒子一样。在空间上局域,在时间上长寿。除孤立子外,自然界还存在大量的其他相干结构。它们与孤立子的不同之处在于,它们在相互作用时并不严格保持形状不变,而是汇合、分裂。最引人注目的是各种尺度的涡旋。几个流体涡旋可集合成一个大斡,一个大涡可被强大的外力作用打碎。对这些结构形成机理的认识和它们之间的相互作用的研究仍是

非线性科学的前沿。

混沌

混沌是确定性系统中由于内禀随机性而产生的一种外在复杂的、貌似无规的运动。混沌并不是无序和紊乱,更像是没有周期的秩序。在理想模型中,它可能包含着无穷的内在层次,层次间存在着“自相似性”。混沌的行为归宿就是奇怪吸引子,即分形。

对混沌的研究是从对微分方程求解开始的。二十世纪初,著名的法国数学家和理论天文学家庞加莱发现某些特殊的微分方程的可解性与解值对其初始条件极为敏感,初始条件的细微差别可导致其解值的巨大偏差,甚至产生无解现象。但他的发现没有引起数学家和物理学家的重视。1963年,美国气象学家洛仑兹在计算机上用他建立的微分方程模拟气象变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛仑兹打了个比喻说,在南半球某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流几星期后可能变成席卷北半球某地的一场龙卷风,这就是天气的“蝴蝶效应”。它的本质仍然是非现性耦合。洛仑兹的发现意味着混沌理论的诞生。

分形

分形是不能用通常的长度、面积、体积表示的几何形体,其内部存在着无穷层次,具有见微知著、由点及面的自相似结构。自相似即局部与整体的相似性。适当放大或缩小几何尺寸,分形的真个结

构并不改变,这就是标度不变性。海岸线,闪电,松花蛋或数枝等,就具有分形特征。换言之,分形是局部以某种方式与整体相似的形态。分形可分多种类型,如简单分形、自仿射分形、多分形、随机分形、胖分形及复平面上的分形等。描述分形特征的参数叫分维。据称,分形理论开创了20世纪数学的新阶段,是刻画混沌运动的直观的几何语言,是更接近于现实生活的数学。它是美籍法国数学家罗德尔布罗特在本世纪70年代中期创立的。

小波

小波(Wavelet)分析技术是揭示分形局域标度性质的有力工具。可以说,分形概念的出现为人们认识事物的局部与整体的关系提供了以种辨证的思维方式,为描述自然和社会的复杂现象提供了以种简洁有力的几何语言。而小波分析,则是在工具和方法上的重大突破,以成功地应用于许多非线性问题的研究中。小波,也叫子波,从数学上说,小波是满足一定条件的函授(母小波)通过平移和伸缩得到的函授族。这一方法是从傅立叶变换中发展起来的,其核心是多分辨分析。它不仅可以实现信号的时频局部化,而且与加窗傅氏变换相比,具有局部化格式随频率高低变化的优点。通过小波变换,可以看到分析的丰富细节,为推测动力学根源提供了方便。

通达信指标公式源码 混沌操作法

VAR1:=(H+L)/2; AO:=SMA(VAR1,5,1)-SMA(VAR1,34,1),COLOR6699CC; AC:=SMA((AO-SMA(AO,5,1)),5,1),COLOR6699CC; X1:=AO>REF(AO,1) AND AC>REF(AC,1); X2:=AO

红:SMA(Y,5,1),COLORRED; 绿:SMA(Y,3,1),COLORGREEN; 上张:=蓝>=REF(蓝,1) AND 红>=REF(红,1) AND 绿>=REF(绿,1); 下张:=蓝=R2,UL,REF(UL,BARSLAST(H>R2))); 下碎:=IF(L<=R2,DL,REF(DL,BARSLAST(L<=R2))); STICKLINE(BARSLAST(ABS(上碎-REF(上碎,1)))上碎AND REF(C,1)REF(下碎,1)),下碎,下碎,3,1),COLORCYAN; LC := REF(C,4); RMI:=SMA(MAX(C-LC,0),7,1)/SMA(ABS(C-LC),7,1)*100; QS:= HHV(MA(RMI,3),13),COLOR00ADFF; RMIMA:= SMA(RMI,3,1),COLOR009C00; DRAWTEXT(C>上碎&&ISLASTBAR=1,H+0,'向上突破有效上碎型 '),COLOR0000FF; DRAWTEXT(C<下碎&&ISLASTBAR=1,L-0,'向下有效碎型被突破 '),COLORFFFF00; DRAWTEXT(X1>0&&ISLASTBAR=1,H+0.3,'AO与AC为多方趋势 '),COLORFF00FF; DRAWTEXT(X2>0&&ISLASTBAR=1,L-0.3,'AO与AC为空方趋势 '),COLOR00FF00; DRAWTEXT(上张&&ISLASTBAR=1,H+0.6,'鳄鱼向上张嘴'),COLOR999999; DRAWTEXT(下张&&ISLASTBAR=1,L-0.6,'鳄鱼向下张嘴'),COLOR999999; DRAWTEXT(上张&&X1>0&&ISLASTBAR=1,H+0.8,'怀疑中期多头 '),COLORFF00FF; DRAWTEXT(下张&&X2>0&&ISLASTBAR=1,L-0.8,'怀疑中期空头 '),COLOR00FF00; DRAWTEXT((RMI>RMIMA&&RMIRMIMA&&RMI>QS)&&ISLASTBAR=1,H+1,'坚决做多'),COLOR0000FF; DRAWTEXT((RMI20)&&ISLASTBAR=1,L-1,'坚决做空'),COLORFF0000; DRAWTEXT((RMI

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

新版混沌操作法

混沌第一章 Alligator 第一章:鳄鱼线(Alligator) 于本章,我们将叙述鳄鱼线:做什么用的?如何构成的?如何用之为交易策略??… ⊙ The Alligator - Our Compass and Odds Maker 基本上,无论实时价格往任何方向移动,鳄鱼线(如图标)扮演着使我们的交易保持正当方向的 罗盘角色。 而且, 鳄鱼线会协助我们在有方向的趋势中获利 (见电子期仿真交易日记 9/17~1/16) 。 并且将这个获利持续到会吃掉我们利润的盘整趋势(见电子期仿真交易日记 1/16~目前)出现为 止。 ⊙ What the Alligator is 动量监视器:一个与市场结合并接近市场的动量监视器。(详章三:AO) 交易的指针:一个简单且仅在现在的趋势中交易的指针。(详章二:Fractal) 保护的装备:一个使你在盘整走势中不会损失的保护装备。 ⊙ What is the Alligator? 鳄鱼线是结合了不规则碎形几何学和非线性动力学的平均线。有蓝、红、绿三条。 蓝线,是鳄鱼的颚。(如图标) 它的画法是取 13 根 bar 的平滑移动平均,然后将算出来的结果往未来的方向移动 8 根 bar。 红线,是鳄鱼的牙齿。(如图标) 红色线是取 8 根 bar 的平滑移动平均,然后将算出来的结果往未来的方向移动 5 根 bar 所构成。 绿线,是鳄鱼的上唇。(如图标) 绿色线是取 5-bar 平滑移动平均数,然后将算出来的结果往未来的方向移动 3 根 bar 所构成。 ⊙ Trading the Alligator 当蓝、红、绿三条移动平均线纠缠在一起时(如图 1/16~目前),表示鳄鱼他睡着了。 当他从长时间的睡眠中醒来时,会十分饥饿。而且进一步的追捕价格(如图 9/17~1/16),以填 满他的胃,直到他得到满足。 然后,他开始闭上嘴巴,并且丧失了进食的兴趣(如图 1/16)。 只要嘴巴开始闭起来,就是告诉我们:取得利润。并等待。观察鳄鱼是否将打个盹儿? 所以,当鳄鱼睡觉时,我们通常会逗留在市场外,并且等待。直到有个碎形(详章二:Fractal) 在下颚外被触发为止。 他能让我们远离波动不定的市场,并使我们能进入重要且趋势明显的市场中。 亦即价格向上或向下突破碎形(详章二:Fractal)时,便是你从趋势中开始获利的时候。 ⊙ Alligator behavior 我们的交易策略是: ﹡不进行交易,直到第一个在鳄鱼嘴巴外面的碎形(详章二:Fractal)被突破时。 ﹡若价格在鳄鱼的嘴巴之上,仅取用买的讯号而且不卖。并且将停利单向上移动。 ﹡若价格在鳄嘴向下的另一边,只取用卖的讯号。且仅在停损离场时才买。不做多。

蔡氏混沌非线性电路的分析研究

研究生课程论文(2018-2018学年第二学期> 蔡氏混沌非线性电路的研究 研究生:***

蔡氏混沌非线性电路的研究 *** 摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly. Key words:chaos phenomenon;Chua’S circuit;simulation 引言: 混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。混沌行为是确定性因素导致的类似随机运动的行为,即一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性。混沌中蕴含着有序,有序的过程中也可能出现混沌。混沌的基本特征是具有对初始条件的敏感依赖性,即初始值的微小差别经过一段时间后可以导致系统运动过程的显著差别。混沌揭示了自然界的非周期性与不可预测性问题而成为20 世纪三大重要基础

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

证券混沌操作法-低风险获利指南

证券混沌操作法-低风险获利指南 比尔.威廉姆 1.市场是自然的函数,它们的行为并不遵循古典物理学、参数统计学、线性数学 2.分形几何学(fractal geometry)提供一种截然不同的观点来稳定获利 3.混沌理论的另外一项结论是:没有人根据市场来交易,我们都是根据自己的信念系统来 交易 4.任何人都可以计算苹果内的种子,然而,没有人可以计算种子内的苹果 5.理想的交易基本上并不是来自于头脑,它来自于勇气与心灵。不需过度的思考,你需要 的是自觉、对于自身需求与市场需求的敏锐感觉、以及扎扎实实的普通常识。 6.如果你认为自己可以学习如何精确预测行情,你已经把自己剔除于10%的顶尖交易员 之外。 7.未来并不如同过去 8.我们都是已自己的信念系统来交易。这便是“一致性获利法”的精髓。我们发现市场的 根本结构时,调整个人的根本结构,使个人的根本激斗与市场的根本结构相互融合,结构便是几何学上的协调性。 9.市场具有能量(energy)的特质,能量永远是遵循阻力最小的途径移动(如:河流的河 床变化)。期货市场的根本结构具有“分形”(fractal)的性质,他最适合以混沌理论处理。 10.所有的商品市场都是由一群对于价值看法不同,而对于价格看法相同的人们所创造。 11.我们所了解的真理,是特定真理而非普遍真理,例如:在地球重力下三角形内角和等于 180度,而在太空将超过180度 12.我们如法直接观察世界,永远是透过范式(模型或模式,一组共同认定的假设,是我们 感知世界的方法)的滤镜来观察世界。永远无法观察世界的整体,仅能够看见其中的片段。 13.混沌并不是随机性的,恰好相反。混沌是一种较高层次的次序,其中的组织原则是随机 性与刺激,而不是牛顿与欧几里德传统下大“因果关系”。因为自然界与人类的脑部都是混沌的现象,而市场则是自然界的一部分,并反映人类的性质,所以市场也是一种混沌的现象。 14.分形几何学是混沌理论的一项工具,研究对象是混沌的现象。 15.市场能量的分析原则 15.1.能量永远遵循阻力最小的途径 15.2.始终存在而通常不可见的根本结构,将决定阻力最小的途径 15.3.这些始终存在而通常不可见的根本结构,可以被发现,并加以改变。 16.结构:要素(成份)(parts or components)、计划(plan)、能源(power source)、宗旨 (purpose) 17.影响交易绩效结构的要素构成:欲望、信念、假设、志向、对市场和自己结构的了解 18.在人生当中,所有最严重与最重要的问题,基本上都是无法解决的,它们永远无法解决, 而仅可以“扁的不重要”(outgrown) 19.学习任何新知识的五个阶段 19.1.初学交易者:学习基本知识,术语等,保证盈亏基本持平 19.2.进阶交易者:工具是艾略特波浪与分形,单合约稳定获利后才能增加资金 19.3.胜任交易者:交易伙伴(?)、计划交易,增加投资额并多合约、价差交易 19.4.精炼交易者:以自身的信念系统交易(将自身和市场的根本机构互相融合),金钱

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

混沌经济学

混沌经济学,也称为非线性经济学(nonlinear economics),是20世纪80年代兴起的一门新兴的学科,是指应用非线性混沌理论解释现实经济现象,在经济建模中充分考虑经济活动的非线性相互作用,在模型的分析上充分利用非线性动力学的分叉、分形和混沌等理论与方法,分析经济系统的动态行为,以期产生新的经济概念、新的经济思想、新的经济分析方法,得到新的经济规律的一门新兴交叉科学。 传统经济学自亚当·斯密1776年《国富论》问世以来,已逐步在西方经济学中确立统治地位。“完全竞争”市场的自动调节机制在瓦尔拉斯一般均衡理论和马歇尔的“均衡价格论”体系上取得规范的形式,并在经典科学的基础上建立了一整套分析方法。实际上,传统经济学所构建的经济分析框架,是牛顿力学的绝对时空观(即均衡流逝的绝对时间和恒等且不动的绝对空间)和皮埃尔-西蒙·拉普拉斯决定的可预测宇宙观(即一个单一的公式可以解释所有的现象并结束不确定性)在经济领域的重现。而从现状经济角度看,由于种种意外因素的存在和人类所面临的不确定性。不确定性是现实经济运行过程中最主要的特征之一。自然地,混沌学作为一种科学范式也就成为经济学家们研究经济系统的复杂性、不确定性和非线性的有力工具,成为社会、经济、技术预测的有力工具。混沌经济学(或非线性经济学)已经成为当代经济学研究的前沿领域,并取得迅速的进展。 在研究对象和研究方法上,混沌经济学与传统经济学都是利用提出假设,利用数学工具通过规范推演和实证检验来揭示社会经济现象的客观规律;但是由于客观地认识到经济系统的非均衡、非线性、非理性、时间不可逆、多重解和复杂性等特点,混沌经济学在研究和解决问题的具体思维方式和假设前提上以及确切的方法论上,与传统经济学存在显著差异。 混沌经济学假设关系是非线性的,认为经济系统所呈现的短期不规则涨落并非外部随机冲击的结果,而是系统内部的机制所引起的。经济系统中时间不可逆、多重因果反馈环及不确定性的存在使经济系统本身处于一个不均匀的时空中,具有极为复杂的非线性特征。非对称的供给需求、非对称的经济周期波动(现已证明:经济周期波动呈“泊松分布”而非“正态分布”)非对称的信息、货币的对称破缺(符号经济与实物经济的非一一对应)、经济变量迭代过程中的时滞、人的行为的“有限理性”等正是这种非线性特征的表现。 混沌经济学的方法论是集体(整体)主义,即“理论必须根植于不可再分的个人集团的行为”。在混沌经济学看来,经济系统由数以百万计的个体和组织的相互作用所决定,而每一个个体和组织又涉及到数以千计的商品和数以万计的生产过程,因此,个体行为并非是一种孤立的存

非线性电路的应用——混沌电路

非线性电路的应用——混沌电路 摘要 本文给出了一种含有由两个运算放大器组成的非线性负电阻的蔡氏混沌电路,如图一所示。利用非线性电阻电路,设计了如图二所示的非线性伏安特性曲线。图二即为在示波器中得到的伏安特性曲线。在实现图二的伏安特性曲线的基础上,设计了图三所示的混沌电路。使用示波器,连续改变混沌电路的敏感参数(如图中的可变电阻由2K欧姆逐渐减小到零),得到了各种情况下的涡旋现象,得到双涡旋到大极限环变化时的参数,从理论分析与仿真实验两个角度分别研究蔡氏电路的混沌行为,研究结果表明在相同的混沌行为预期下,仿真实验与理论分析结论十分吻合,仿真实验能准确地观测到混沌吸引子的行为特征.通过利用Mutisim7.0进行仿真,观察到由直流平衡态经周期倍增分岔到Hopf分岔形成类似于Rossler吸引子,然后再过渡到双涡卷状的蔡氏吸引子大极限环的全过程。 关键词 蔡氏电路;非线性伏安特性曲线;Mutisim7.0仿真;双涡卷混沌吸引子;倍周期分岔 引言 蔡式电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简的一种自治电路。该典型电路并不唯一。蔡式电路在非线性系统及混沌研究中,占有极为严重的地位。 许多非线性动力系统的特性曲线不是跟踪简单、有规则和可预测的轨线,而是围绕像随机且似乎不规则但是明确的形式滑动。只要有关的过程是非线性的,甚至简单的严格确定性的模型可能发展这样复杂的行为。这行为被理解或接受为混沌,而且它已经导致非线性科学和动力系统工程的惊人发展。 混沌理论是近年来国际上兴起的新理论,它广泛应用于电路系统,并具有很强的抽象性,不容易被接受.本文通过对一种含由两个运算放大器组成的非线性电阻的RLC电路混沌现象实验分析,让人们从感性上更加清晰地了解混沌现象产生的机理,熟悉混沌现象产生的条件,掌握电路中混沌状态的基本规律,使人们对电路中的混沌现象具有更具体、更形象的认识。 正文 电路中存在混沌现象已经是在理论和实验中证明了的不争的事实。在传统的电路理论中,通常将电路划分为线性电路和非线性电路两大类。从严格意义上来讲,线性电路是不存在的,它仅仅是在特定的工作点附近呈现出所谓的“线性”特征,一旦电路的外部条件或内部参数发生变化使其偏离工作点(有时仅仅是微小的偏离),电路的线性特征将会大大地削弱,如发生信号波形失真、电路出现“噪声过量”等现象。非线性是所有电气电路、电子电路具有的固有特性。 混沌科学的发展,不仅大大拓宽了人们的视野,并加深了人们对客观世界的认识,而且由于混沌的奇异特性,尤其是对初始条件微小变化的高度敏感性及

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

非线性电阻的应用——混沌现象

非线性电阻电路的应用 --混沌电路 作者:0908190162 周勇权 【摘要】 本文从能产生混沌行为的一种最简自治电路——蔡氏电路着手,以非线性负电阻电路为基础,简单介绍了非线性负电阻混沌电路实验的实验原理。通过实现非线性负电阻电路和设计混沌电路,熟悉非线性电阻电路的应用,了解混沌电路最基本的原理。同时利用Multisim仿真软件模拟测定非线性负电阻的伏安特性曲线,观察不同参数条件下混沌现象。 【关键字】 非线性电阻电路混沌现象蔡氏电路 Multisim 【引言】 混沌(Chaos)的英文意思是混乱的,无序的。混沌研究最先起源于Lorenz研究天气预报时用到的三个动力学方程。后来的研究表明,无论是复杂系统,如气象系统,太阳系,还是简单系统,如钟摆,滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象。混沌现象及其应用是非线性科学研究领域的一个热点。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用研究的重要途径。近年来,学者对非线性电路中的混沌现象进行了广泛地研究。蔡式混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视和研究。本文以蔡式混沌电路为例进行仿真研究。首先,借助Multisim仿真软件模拟显示非线性负电阻电路的伏案特性曲线,再通过将点测法得到的曲线与之对比来验证蔡氏电路;其次,通过对实验电路中敏感参数的研究,得出其对混沌电路的影响,观察不同时期的混沌现象,并分析总结。

【正文】 一、实验目的 1、通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义; 2、学会借助Multisim仿真软件对电路进行研究; 3、掌握非线性电阻的非线性特征,以及其非线性电阻特征的测量方法; 4、以非线性电阻电路为基础,设计混沌电路,观察混沌现象。 二、实验器材 示波器函数信号发生器电压表电流表5端运算放大器直流电源电阻 三、实验过程 1、非线性负电阻电路 在混沌电路中,非线性电阻的实现是整个实验成功的关键所在。 (1)实验原理:本实验用两个运算放大器(型号为OPA1013CN8)和六个电阻来实现非线性负电阻电路。电路图如下:

新版混沌操作法

新版混沌第一章:鳄鱼线(Alligator) 混沌第一章:鳄鱼线(Alligator) 于本章,我们将叙述鳄鱼线:做什么用的如何构成的如何用之为交易策略… ⊙ The Alligator - Our Compass and Odds Maker 基本上,无论实时价格往任何方向移动,鳄鱼线(如图标)扮演着使我们的交易保持正当方向的罗盘角色。 而且,鳄鱼线会协助我们在有方向的趋势中获利(见电子期仿真交易日记9/17~1/16)。 并且将这个获利持续到会吃掉我们利润的盘整趋势(见电子期仿真交易日记 1/16~目前)出现为止。 ⊙ What the Alligator is 动量监视器:一个与市场结合并接近市场的动量监视器。(详章三:AO) 交易的指针:一个简单且仅在现在的趋势中交易的指针。(详章二:Fractal)保护的装备:一个使你在盘整走势中不会损失的保护装备。 ⊙ What is the Alligator 鳄鱼线是结合了不规则碎形几何学和非线性动力学的平均线。有蓝、红、绿三条。蓝线,是鳄鱼的颚。(如图标) 它的画法是取13根bar的平滑移动平均,然后将算出来的结果往未来的方向移动8根bar。 红线,是鳄鱼的牙齿。(如图标) 红色线是取8根bar的平滑移动平均,然后将算出来的结果往未来的方向移动5根bar所构成。 绿线,是鳄鱼的上唇。(如图标) 绿色线是取5-bar 平滑移动平均数,然后将算出来的结果往未来的方向移动3根bar所构成。 ⊙ Trading the Alligator 当蓝、红、绿三条移动平均线纠缠在一起时(如图1/16~目前),表示鳄鱼他睡着了。 当他从长时间的睡眠中醒来时,会十分饥饿。而且进一步的追捕价格(如图9/17~1/16),以填满他的胃,直到他得到满足。 然后,他开始闭上嘴巴,并且丧失了进食的兴趣(如图1/16)。 只要嘴巴开始闭起来,就是告诉我们:取得利润。并等待。观察鳄鱼是否将打个盹儿 所以,当鳄鱼睡觉时,我们通常会逗留在市场外,并且等待。直到有个碎形(详章二:Fractal)在下颚外被触发为止。 他能让我们远离波动不定的市场,并使我们能进入重要且趋势明显的市场中。亦即价格向上或向下突破碎形(详章二:Fractal)时,便是你从趋势中开始获利的时候。 ⊙ Alligator behavior 我们的交易策略是: ﹡不进行交易,直到第一个在鳄鱼嘴巴外面的碎形(详章二:Fractal)被突破时。 ﹡若价格在鳄鱼的嘴巴之上,仅取用买的讯号而且不卖。并且将停利单向上移动。﹡若价格在鳄嘴向下的另一边,只取用卖的讯号。且仅在停损离场时才买。不做

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua ’s Circuit)。就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性;了解非线性电路混沌现象的本质;学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121)(1 C C C C U g U U G dt dU C ?--?= L C C C i U U G dt dU C +-?=)(2112 2 (1) 2C L U dt di L -=

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

12.非线性电路混沌

非线性电路混沌 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解.但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。1975年混沌作为一个新的科学名词首次出现在科学文献中。此后,非线性动力学迅速发展,并成为有丰富内容的研究领域,该学科涉及非常广泛的科学从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法形容LC 振荡器产生的正弦波与经过RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一初步了解;学会自己制作和测量一个带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法 [实验原理] 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121 )(1C C C C U g U U G dt dU C ????= L C C C i U U G dt dU C +??=)(2112 2 (1) 2C L U dt di L ?= 式中,导纳,和分别为表示加在电容器C V R G /1=1C U 2C U 1和C 2上的电压,表示流过电感器L的电流,G表示非线性电阻的导纳。 L i 2.有源非线性负阻元件的实现

-非线性电路混沌现象的探究以及基于Multisim的仿真设计

非线性电路混沌现象的探究以及基于Multisim的仿真设计

摘要 本文从非线性电路中的混沌现象着手,详细回顾了混沌电路的实验原理、实验方法以及实验现象,并通过一元线性回归对有源非负阻的伏安特性曲线实进行了拟合。此外,本文也着重通过MultiSim软件,对实验中的混沌电路进行了仿真,仔细记录了仿真下来的各个波形。同时,也利用该软件,通过搭建电路,用示波器获得了有源非线性负阻的伏安特曲。 关键词 混沌电路有源非线性负阻MultiSim软件

一、引言 混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用[1]。 20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。混沌现象出现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。 二、混沌电路简介 对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。 根据Li-York定义,一个混沌系统应具有三种性质: (1)存在所有阶的周期轨道; (2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道; (3)混沌轨道具有高度的不稳定性。 可见,周期轨道与混沌运动有密切关系,表现在两个方面: 第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态; 第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。 根据文献[2][3],混沌主要特征表现在: (1)敏感依赖于初始条件; (2)伸长与折叠; (3)具有丰富的层次和自相似结构; (4)在非线性耗散系统中存在混沌吸引子。 同时,混沌运动还具有如下特征: (1)存在可数无穷多个稳定的周期轨道; (2)存在不可数无穷多个稳定的非周期轨道; (3)至少存在一个不稳定的非周期轨道。 非线性电路是指电路中至少包含一个非线性元件的电路。事实上一切实际元件都是非线性的。因为给任何元件上加足够大的电压或电流后都将破坏其线性。

相关主题