搜档网
当前位置:搜档网 › 近世代数期末考试题库

近世代数期末考试题库

近世代数期末考试题库
近世代数期末考试题库

世代数模拟试题一

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c )

A、满射而非单射

B、单射而非满射

C、一一映射

D、既非单射也非满射

2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素。

A、2

B、5

C、7

D、10

3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说

A、不是唯一

B、唯一的

C、不一定唯一的

D、相同的(两方程解一样)

4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c )

A、不相等

B、0

C、相等

D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d )

A、倍数

B、次数

C、约数

D、指数

二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。

1、设集合;,则有。

2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个--变换的乘法作成的群叫做A的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。

8、设和是环的理想且,如果是的最大理想,那么---------。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)

1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。奇1、解:把和写成不相杂轮换的乘积:

可知为奇置换,为偶置换。和可以写成如下对换的乘积:

2解:设A是任意方阵,令,,则B是对称矩阵,而C是反对称矩阵,且。若令有,这里和分别为对称矩阵和反对称矩阵,则,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:,,所以,表示法唯一。

3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)是不是群,为什么?

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、设是群。证明:如果对任意的,有,则是交换群。

2、假定R是一个有两个以上的元的环,F是一个包含R的域,那么F包含R的一个商域。

1、对于G中任意元x,y,由于,所以(对每个x,从可得)。

2、证明在F里

有意义,作F的子集

显然是R的一个商域证毕。

近世代数模拟试题二

一、单项选择题

二、1、设G 有6个元素的循环群,a是生成元,则G的子集(c )是子群。

A、B、C、D、

2、下面的代数系统(G,*)中,(d )不是群

A、G为整数集合,*为加法

B、G为偶数集合,*为加法

C、G为有理数集合,*为加法

D、G为有理数集合,*为乘法

3、在自然数集N上,下列哪种运算是可结合的?( b )

A、a*b=a-b

B、a*b=max{a,b}

C、a*b=a+2b

D、a*b=|a-b|

4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=(b )

A、B、C、D、

5、任意一个具有2个或以上元的半群,它( a )。

A、不可能是群

B、不一定是群

C、一定是群

D、是交换群

二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。

1、凯莱定理说:任一个子群都同一个---变换全-------同构。

2、一个有单位元的无零因子-交换环----称为整环。

3、已知群中的元素的阶等于50,则的阶等于-25-----。

4、a的阶若是一个有限整数n,那么G与--模n乘余类加群-----同构。

5、A={1.2.3} B={2.5.6} 那么A∩B=---2--。

6、若映射既是单射又是满射,则称为---双射--------------。

7、叫做域的一个代数元,如果存在的--不都等于林---使得。

8、是代数系统的元素,对任何均成立,则称为----单位元-----。

9、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、--消去律成立-------。

10、一个环R对于加法来作成一个循环群,则P是----------。

三、解答题(本大题共3小题,每小题10分,共30分)

1、设集合A={1,2,3}G是A上的置换群,H是G的子群,H={I,(1 2)},写出H的所有陪集。

2、设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?

1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )}

H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )}

2、答:(E,)不是群,因为(E,)中无单位元。

3、解方法一、辗转相除法。列以下算式:

a=b+102

b=3×102+85

102=1×85+17

由此得到(a,b)=17, [a,b]=a×b/17=11339。

然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b.

所以p=4, q=-5.

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、证明设e是群的幺元。令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。所以,x=a-1*b是a*x =b的解。

若x∈G也是a*x=b的解,则x=e*x=(a-1*a)*x=a-1*(a*x)=a-1*b=x。所以,x=a-1*b是a*x=b的惟一解。

2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为[a]={x∈Z;m︱x–a}或者也可记为,称之为模m剩余类。若m︱a–b也记为a≡b(m)。

当m=2时,Z2仅含2个元:[0]与[1]。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。

2、设m是一个正整数,利用m定义整数集Z上的二元关系:a?b当且仅当m︱a–b。

近世代数模拟试题三

一、单项选择题

1、6阶有限群的任何子群一定不是( c )。

A、2阶

B、3 阶

C、4 阶

D、6 阶

2、设G是群,G有(c)个元素,则不能肯定G是交换群。

A、4个

B、5个

C、6个

D、7个

3、有限布尔代数的元素的个数一定等于( d )。

4、下列哪个偏序集构成有界格(d )

A、偶数

B、奇数

C、4的倍数

D、2的正整数次幂

A、(N,)

B、(Z,)

C、({2,3,4,6,12},|(整除关系))

D、(P(A),)

5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有(a )

A、(1),(123),(132)

B、12),(13),(23)

C、(1),(123)

D、S3中的所有元素

二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。

1、群的单位元是--------的,每个元素的逆元素是--------的。

2、如果是与间的一一映射,是的一个元,则----a------。

3、区间[1,2]上的运算的单位元是--2-----。

4、可换群G中|a|=6,|x|=8,则|ax|=———24———————。

5、环Z8的零因子有-----------------------。

6、一个子群H的右、左陪集的个数---相等-------。

7、从同构的观点,每个群只能同构于他/它自己的-----商权----。

8、无零因子环R中所有非零元的共同的加法阶数称为R的---特征--------。

9、设群中元素的阶为,如果,那么与存在整除关系为---mIn----。

三、解答题(本大题共3小题,每小题10分,共30分)

1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?

2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗?

3、设有置换,。

1.求和;

2.确定置换和的奇偶性。

群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。

2、证由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2:

因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 ,

因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。

S1+S2不一定是子环。在矩阵环中很容易找到反例:

3、解:1.,;

2.两个都是偶置换。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、一个除环R只有两个理想就是零理想和单位理想。

2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。

1、证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元

这就是说=R,证毕。

2、证必要性:将b代入即可得。

充分性:利用结合律作以下运算:

ab=ab(ab2a)=(aba)b2a=ab2a=e,

ba=(ab2a)ba=ab2 (aba)=ab2a=e,

近世代数模拟试题四

一、单项选择题(本大题共5小题,每小题3分,共15分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素。

A.2

B.5

C.7

D.10

2.设A=B=R(实数集),如果A到B的映射

:x→x+2,x∈R,

则是从A到B的( c )

A.满射而非单射

B.单射而非满射

C.一一映射

D.既非单射也非满射

3.设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( a )

A.(1),(123),(132)

B.(12),(13),(23)

C.(1),(123)

D.S3中的所有元素

4.设Z15是以15为模的剩余类加群,那么,Z15的子群共有( d )个。

A.2

B.4

C.6

D.8

5.下列集合关于所给的运算不作成环的是( b )

A.整系数多项式全体Z[x]关于多项式的加法与乘法

B.有理数域Q上的n级矩阵全体Mn(Q)关于矩阵的加法与乘法

C.整数集Z关于数的加法和新给定的乘法“”:m, n∈Z, mn=0

D.整数集Z关于数的加法和新给定的乘法“”:m, n∈Z, mn=1

二、填空题(本大题共10小题,每空3分,共30分)

请在每小题的空格中填上正确答案。错填、不填均无分。

6.设“~”是集合A的一个关系,如果“~”满足___________,则称“~”是A的一个等价关系。

7.设(G,·)是一个群,那么,对于a,b∈G,则ab∈G也是G中的可逆元,而且(ab)-1=

___________。

8.设σ=(23)(35),τ=(1243)(235)∈S5,那么στ=___________(表示成若干个没有公共数字的循环置换之积)。

9.如果G是一个含有15个元素的群,那么,根据Lagrange定理知,对于a∈G,则元素a的阶只可能是

____5,15,1,3,_______。

10.在3次对称群S3中,设H={(1),(123),(132)}是S3的一个不变子群,则商群G/H中的元素(12)H=___________。

11.设Z6={[0],[1],[2],[3],[4],[5]}是以6为模的剩余类环,则Z6中的所有零因子是___2,3,4________。

12.设R是一个无零因子的环,其特征n是一个有限数,那么,n是___________。

13.设Z[x]是整系数多项式环,(x)是由多项式x生成的主理想,则(x)=_____________

___________。

14.设高斯整数环Z[i]={a+bi|a,b∈Z},其中i2=-1,则Z[i]中的所有单位是___________

___________。

15.有理数域Q上的代数元+在Q上的极小多项式是___________。

三、解答题(本大题共3小题,每小题10分,共30分)

16.设Z为整数加群,Zm为以m为模的剩余类加群,是Z到Zm的一个映射,其中

:k→[k],k∈Z,

验证:是Z到Zm的一个同态满射,并求的同态核Ker。

17.求以6为模的剩余类环Z6={[0],[1],[2],[3],[4],[5]}的所有子环,并说明这些子环都是Z6的理想。

18.试说明唯一分解环、主理想环、欧氏环三者之间的关系,并举例说明唯一分解环未必是主理想环。

四、证明题(本大题共3小题,第19、20小题各10分,第21小题5分,共25分)

19.设G={a,b,c},G的代数运算“”

由右边的运算表给出,证明:(G,)作成一个群。

a b c

a a

b c

b b

c a

c c a b

20.设

已知R关于矩阵的加法和乘法作成一个环。证明:I是R的一个子环,但不是理想。

21.设(R,+,·)是一个环,如果(R,+)是一个循环群,证明:R是一个交换环。

近世代数模拟试题一参考答案

一、单项选择题。

1、C;

2、D;

3、B;

4、C;

5、D;

二、填空题(本大题共10小题,每空3分,共30分)。

1、;

2、单位元;

3、交换环;

4、整数环;

5、变换群;

6、同构;

7、零、-a ;

8、S=I或S=R ;

9、域;

三、解答题(本大题共3小题,每小题10分,共30分)

1、解:把和写成不相杂轮换的乘积:

可知为奇置换,为偶置换。和可以写成如下对换的乘积:

2、解:设A是任意方阵,令,,则B是对称矩阵,而C是反对称矩阵,且。若令有,这里和分别为对称矩阵和反对称矩阵,则,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:,,所以,表示法唯一。

3、答:(,)不是群,因为中有两个不同的单位元素0和m。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、对于G中任意元x,y,由于,所以(对每个x,从可得)。

2、证明在F里

有意义,作F的子集

显然是R的一个商域证毕。

近世代数模拟试题二参考答案

一、单项选择题(本大题共5小题,每小题3分,共15分)。

1、C;

2、D;

3、B;

4、B;

5、A;

二、填空题(本大题共10小题,每空3分,共30分)。

1、变换群;

2、交换环;

3、25;

4、模n乘余类加群;

5、{2};

6、一一映射;

7、不都等于零的元;

8、右单位元;

9、消去律成立;10、交换环;

三、解答题(本大题共3小题,每小题10分,共30分)

1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )}

H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )}

2、答:(E,)不是群,因为(E,)中无单位元。

3、解方法一、辗转相除法。列以下算式:

a=b+102

b=3×102+85

102=1×85+17

由此得到(a,b)=17, [a,b]=a×b/17=11339。

然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b.

所以p=4, q=-5.

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、证明设e是群的幺元。令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。所以,x=a-1*b是a*x =b的解。

若x∈G也是a*x=b的解,则x=e*x=(a-1*a)*x=a-1*(a*x)=a-1*b=x。所以,x=a-1*b是a*x=b的惟一解。

2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为[a]={x∈Z;m︱x–a}或者也可记为,称之为模m剩余类。若m︱a–b也记为a≡b(m)。

当m=2时,Z2仅含2个元:[0]与[1]。

近世代数模拟试题三参考答案

一、单项选择题1、C;2、C;3、D;4、D;5、A;

二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。

1、唯一、唯一;

2、;

3、2;

4、24;

5、;

6、相等;

7、商群;

8、特征;

9、;

三、解答题(本大题共3小题,每小题10分,共30分)

1、解在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。

2、证由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2:

因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 ,

因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。

S1+S2不一定是子环。在矩阵环中很容易找到反例:

3、解:1.,;

2.两个都是偶置换。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

1、证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元

这就是说=R,证毕。

2、证必要性:将b代入即可得。

充分性:利用结合律作以下运算:

ab=ab(ab2a)=(aba)b2a=ab2a=e,

ba=(ab2a)ba=ab2 (aba)=ab2a=e,

所以b=a-1。

近世代数试卷

一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)

1、设与都是非空集合,那么。(f )

2、设、、都是非空集合,则到的每个映射都叫作二元运算。(f )

3、只要是到的一一映射,那么必有唯一的逆映射。(t )

4、如果循环群中生成元的阶是无限的,则与整数加群同构。(t )

5、如果群的子群是循环群,那么也是循环群。( f )

6、群的子群是不变子群的充要条件为。(t )

7、如果环的阶,那么的单位元。(t )

8、若环满足左消去律,那么必定没有右零因子。(t )

9、中满足条件的多项式叫做元在域上的极小多项式。( f )

10、若域的特征是无限大,那么含有一个与同构的子域,这里是整数环,是由素数生成的主理想。( f )

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分)

1、设和都是非空集合,而是到的一个映射,那么(2 )

①集合中两两都不相同;②的次序不能调换;

③中不同的元对应的象必不相同;

④一个元的象可以不唯一。

2、指出下列那些运算是二元运算(3 )4

①在整数集上,;②在有理数集上,;

③在正实数集上,;④在集合上,。

3、设是整数集上的二元运算,其中(即取与中的最大者),那么在中( 4 )3

①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

4、设为群,其中是实数集,而乘法,这里为中固定的常数。那么群中的单位元和元的逆元分别是(4 )

①0和;②1和0;③和;④和。

5、设和都是群中的元素且,那么(2 )1

①;②;③;④。

6、设是群的子群,且有左陪集分类。如果6,那么的阶(3 )2

①6;②24;③10;④12。

7、设是一个群同态映射,那么下列错误的命题是(2 )4

①的同态核是的不变子群;②的不变子群的逆象是的不变子群;③的子群的象是的子群;④的不变子群的象是的不变子群。

8、设是环同态满射,,那么下列错误的结论为(4 )3

①若是零元,则是零元;②若是单位元,则是单位元;

③若不是零因子,则不是零因子;④若是不交换的,则不交换。

9、下列正确的命题是( 4 )1

①欧氏环一定是唯一分解环;②主理想环必是欧氏环;

③唯一分解环必是主理想环;④唯一分解环必是欧氏环。

10、若是域的有限扩域,是的有限扩域,那么(1 )4

①;②;

③;④。

三、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分。每空1分,共10分)

1、设集合;,则有。

2、如果是与间的一一映射,是的一个元,则 a 。

3、设集合有一个分类,其中与是的两个类,如果,那么0 。

4、设群中元素的阶为,如果,那么与存在整除关系为。

5、凯莱定理说:任一个子群都同一个同构。

6、给出一个5-循环置换,那么。

7、若是有单位元的环的由生成的主理想,那么中的元素可以表达为x 。

8、若是一个有单位元的交换环,是的一个理想,那么是一个域当且仅当是一个最大理想。

9、整环的一个元叫做一个素元,如果、p既不是零元,也不是单位,且q只有平凡因子。

10、若域的一个扩域叫做的一个代数扩域,如果。

四、改错题(请在下列命题中你认为错误的地方划线,并将正确的内容写在预备的横线上面。指出错误1分,更正错误2分。每小题3分,共15分)

1、如果一个集合的代数运算同时适合消去律和分配律,那么在里,元的次序可以掉换。

结合律与交换律

2、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、交换律成立。

消去律成立

3、设和是环的理想且,如果是的最大理想,那么。

S=I或S=R

4、唯一分解环的两个元和不一定会有最大公因子,若和都是和的最大公因子,那么必有。

一定有最大公因子;d和d′只能差一个单位因子

5、叫做域的一个代数元,如果存在的都不等于零的元使得。

不都等于零的元

五、计算题(共15分,每小题分标在小题后)

1、给出下列四个四元置换

组成的群,试写出的乘法表,并且求出的单位元及和的所有子群。

2、设是模6的剩余类环,且。如果、,计算、和以及它们的次数。

六、证明题(每小题10分,共40分)

1、设和是一个群的两个元且,又设的阶,的阶,并且,证明:的阶。

2、设为实数集,,令,将的所有这样的变换构成一个集合,试证明:对于变换普通的乘法,作成一个群。

3、设和为环的两个理想,试证和都是的理想。

4、设是有限可交换的环且含有单位元1,证明:中的非零元不是可逆元就是零因子。

近世代数试卷参考解答

一、判断题 1 2 3 4 5 6 7 8 9 10

× × √ √ × √ √ √ × ×

二、单项选择题 1 2 3 4 5 6 7 8 9 10

②④③④①②④③①④

三、填空题

1、。

2、。

3、。

4、。

5、变换群。

6、。

7、。

8、一个最大理想。

9、p既不是零元,也不是单位,且q只有平凡因子。

10、E的每一个元都是F上的一个代数元。

四、改错题

1、如果一个集合的代数运算同时适合消去律和分配律,那么在里,元的次序可以掉换。

结合律与交换律

2、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、交换律成立。消去律成立

3、设和是环的理想且,如果是的最大理想,那么。

S=I或S=R

4、唯一分解环的两个元和不一定会有最大公因子,若和都是和的最大公因子,那么必有d=d′。

一定有最大公因子;d和d′只能差一个单位因子

5、叫做域的一个代数元,如果存在的都不等于零的元使得。

不都等于零的元

测验题

一、填空题(42分)

1、设集合与分别有代数运算与,且,则当满足结合律时,也满足结合律;当满足交换律时,也满足交换律。

2、对群中任意元素= ;

3、设群G中元素a的阶是n,n|m则= e ;

4、设是任意一个循环群,若,则与整数加群同构;若,

则与n次单位根群;同构;

5、设G=为6阶循环群,则G的生成元有;;;子群有;

6、n次对称群的阶是n!; ;置换的阶是 4 ;

7、设,则7、;

8、设,则;

9、设H是有限群G的一个子群,则|G|= |H|:(G:H) ;

10、任意一个群都同一个双射)变换群;同构。

二、证明题(24)

1.设G为n阶有限群,证明:G中每个元素都满足方程。

1、已知,|a|=k,则

k|n

令n=kq,则

即G中每个元素都满足方程

1、叙述群G的一个非空子集H作成子群的充要条件,并证明群G的任意两个子群H与K的交仍然是G的一个

子群。

2、证明:如果群G中每个元素都满足方程,则G必为交换群。

三、解答题(34)

1、叙述群的定义并按群的定义验证整数集Z对运算作成群。

2、写出三次对称群的所有子群并写出关于子群H={(1),(23)}的所有左陪集和所有右陪集。

基础测试参考答案:

一、填空题

1、满足结合律;满足交换律;

2、;

3、e;

4、整数加群;n次单位根群;

5、;;

6、n!;4

7、

8、(456)(32)

9、|H|:(G:H)

10、(双射)变换群;

二、证明题

1、已知,|a|=k,则

k|n

令n=kq,则

即G中每个元素都满足方程

2、充要条件:;

证明:已知H、K为G的子群,令Q为H与K的交设,则

H是G的子群,有

K是G的子群,有

综上所述,H也是G的子群。

3、证:

G是交换群。

三、解答题

1、解:设G是一个非空集合,是它的一个代数运算,如果满足以下条件:(1)结合律成立,即对G中任意元素

(2)G中有元素e,它对G中每个元素

(3)对G中每个元素

则G对代数运算作成一个群。

对任意整数a,b,显然a+b+4由a,b唯一确定,故为G的代数运算。(ab)c=(a+b+4) c=(a+b+4)+c+4=a+b+c+8

a (bc)=a+b+c+8

即(ab)c= a (bc)满足结合律

a均有(-4)a=-4+a+4=a

故-4为G的左单位元。

(-8-a)a=-8-a+a+4=-4

故-8-a是a的左逆元。

2、解:其子群的阶数只能是1,2,3,6

1阶子群{(1)}

2阶子群{(1)(12)}{(1)(13)}{(1)(23)}

3阶子群{(1)(123)(132)}

6阶子群

左陪集:(1)H={(1)(23)}=(23)H

(12)H={(12)(123)}=(123)H

(13)H={(13)(132)}=(132)H

右陪集:H(1)={(1)(23)}=H(23)

H(13)={(13)(23)}=H(123)

H(12)={(12)(132)}=H(132)

近世代数期末考试试卷及答案Word版

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ= (1324),则 3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得

多所高校近世代数期末考试题库[]

多所高校近世代数题库 一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( )

[精华版]近世代数期末考试试卷及答案

[精华版]近世代数期末考试试卷及答案 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。 33,,,,aa,e,,e,a,,e,a,aA、 B、 C、 D、 2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的,( ) A、a*b=a-b,,,B、 a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| ,,,,,,3322114、设、、是三个置换,其中=(12)(23)(13),=(24)(14),= ,3(1324),则=( ) 22,,,,,,122121A、 B、 C、 D、 5、任意一个具有2个或以上元的半群,它( )。 A、不可能是群,,,B、不一定是群 C、一定是群 D、是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 4Gaa3、已知群中的元素的阶等于50,则的阶等于------。 4、a的阶若是一个有限整数n,那么G与-------同构。 5、A={1.2.3} B={2.5.6} 那么A?B=-----。 6、若映射既是单射又是满射,则称为-----------------。,,

近世代数期末考试题库

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出得四个备选项中只有一个就就是符合题目要求得,请将其代码填写在题后得括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B得映射:x→x+2,x∈R,则就就是从A到B得( )A、满射而非单射?B、单射而非满射 C、一一映射??? D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B得积集合A×B中含有( )个元素。 A、2 ??? B、5 C、7????D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解就就是( )乘法来说 A、不就就是唯一 B、唯一得 C、不一定唯一得D、相同得(两方程解一样) 4、当G为有限群,子群H所含元得个数与任一左陪集aH所含元得个数( ) A、不相等B、0 C、相等 D、不一定相等。 5、n阶有限群G得子群H得阶必须就就是n得( ) A、倍数 B、次数C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题得空格中填上正确答案。错填、不填均无分。 1、设集合;,则有---------。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R得--------。 3、环得乘法一般不交换。如果环R得乘法交换,则称R就就是一个------。 4、偶数环就就是---------得子环。 5、一个集合A得若干个--变换得乘法作成得群叫做A得一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0得有理数对于普通乘法来说作成一个群,则这个群得单位元就就是---,元a得逆元就就是-------。 8、设与就就是环得理想且,如果就就是得最大理想,那么---------。 9、一个除环得中心就就是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换与分别为:,,判断与得奇偶性,并把与写成对换得乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之与。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)就就是不就就是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设就就是群。证明:如果对任意得,有,则就就是交换群。 2、假定R就就是一个有两个以上得元得环,F就就是一个包含R得域,那么F包含R得一个商域。 近世代数模拟试题二 一、单项选择题 二、1、设G有6个元素得循环群,a就就是生成元,则G得子集( )就就是子群。 A、 B、 C、 D、 2、下面得代数系统(G,*)中,( )不就就是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法

近世代数期末考试试卷

近世代数模拟试题二 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

近世代数复习试题2010级

《近世代数》复习试题 一 填空题 1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类. 2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射. 3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________. 4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______. 5. 在3S 中,)23()12)(123(1-= . 6. 模6的剩余类环6Z 的所有可逆元: . 7. 模6的剩余类环6Z 的所有零因子: . 8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a . 9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________. 10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________. 二 解答、证明题 1.设Z 是全体整数的集合,在Z 中规定: .,,2Z b a b a b a ∈?-+= 证明:),( Z 是一个交换群. 2.证明:群G 不能表示成两个真子群的并. 3.证明:r-循环为偶置换的充要条件是r 为奇数. 4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群. 5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =?≤. 6.设H G ≤,N G ,证明:HN G ≤. 7.设H G ≤,且2]:[=H G ,证明:.G H 8.证明:每个素数阶的群都是循环群. 9.设N 是群G 的子群,N 的阶是r (1)证明1()gNg g G -∈也是G 的一个子群.

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都就是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 就是循环群,那么G 也就是循环群。 ( ) 6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算就是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο就是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),那么ο在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设()ο,G 为群,其中G 就是实数集,而乘法k b a b a ++=οο:,这里k 为G 中固定

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算就是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、 2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能就是群 B 、不一定就是群 C 、一定就是群 D 、 就是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若就是一个有限整数n,那么G 与-------同构。 5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。 6、若映射?既就是单射又就是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。 8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为

近世代数期末考试题库45962

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射 2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 A 、2 B 、5 C 、7 D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样) 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。 5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B ---------。 2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。 3、环的乘法一般不交换。如果环R 的乘法交换,则称R 是一个------。 4、偶数环是---------的子环。 5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。 8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么---------。 9、一个除环的中心是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换σ和τ分别为:??? ???=6417352812345678σ,? ? ? ???=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

近世代数期末考试真题

近世代数期末练习题 一、判断题(在括号里打上 √ 或 ? ) 1、一个阶是11的群只有两个子群。( ) 2、循环群的子群是循环子群。( ) 3、在一个环中,若右消去律成立,则左消去律成立。( ) 4、消去律在无零因子环中一定成立。( ) 5、在环中,逆元一定不是零因子。( ) 6、在一个域中一定不存在零因子。( ) 7、模99的剩余类环99Z 是一个域。( ) 8、模19的剩余类环19Z 是一个整环。( ) 9、整除关系是整数集Z 的元素间的一个等价关系。( ) 10、同余关系是整数集Z 的元素间的一个等价关系。( ) 11、群G 的两个子群的交还是子群。( ) 12、环R 的一个子环和一个理想的交一定是R 的子环。( ) 13、群G 的不变子群也是G 的子群,环R 的理想也是R 的子环。( ) 14、设群G 与群G'同态,则G 的不变子群的同态像是G'的不变子群。 ( ) 15、一个域一定是一个整环。( ) 二、填空题 1、在3次对称群3S 中,元素(123)的阶为 ,(123)的逆元为 ,(123) 所生成的子群在3S 中的指数为 ,该子群是否3S 的不变子群? 。 2、环Z 6的全部零因子是 ,全部可逆元是 。 3、在环Z 10中,[6]+[7]= ,[6][7]= ,[6]-[7]= ,[6]3= , [7]-1= 。 三、证明:(1)若群G 的元a 的阶为2, 则a – 1 = a . (2)若群G 的元 a 的阶大于2, 则a – 1 ≠ a . (3)在群G 中, 元 a 与逆元a –1有相同的阶. 四、证明:设群G 中元a 的阶为n . 证明a s = a t ? n | ( s – t ) . 五、设R 是一个环,证明R 是交换环当且仅当(a+b) 2=a 2+2ab+b 2。 六、设G 是一个群,证明G 是交换群当且仅当(ab) -1=a -1b -1。

张禾瑞 近世代数基础(复习要点·定理)

定理 同态满射保持运算律(包括结合律、交换律) P21 左右逆元的统一性 P33-34 左右逆元的唯一性 P36 (由此可称为幺元而省掉“左右”) 群的两个定义的等价性 P33 群满足消去律(由逆元的存在性) P38 仅限有限集合的群判定:封闭+结合律+消去律 P39 群的几个分类标准: 1、 有限 / 无限 ——元素个数 2、 交换 / 非交换 ——运算是否满足交换律 3、 循环 / 非循环 ——是否有一元可以遍历其他元 P35 n a : 次n n a aa a ≡ n 是正整数 (由结合律知其有意义) a 的阶: 对群G 中的元a ,若存在最小正整数m ,使得e a =m , 则m 称为 a 的阶;否则我们称a 是无限阶的 P37 群中幂形式的元的运算法则: 若规定:e a =0, n n a a )(1--= 则对任意整数m,n 有:m n m n a a a +=, nm m n a a =)( (由结合律易得) 两种循环群: 整数加群 与 剩余类加群 同构定理: 任何一个群 有一个变换群与之同构 任何一个有限群 有一个置换群与之同构 任何一个无限循环群 与整数加群同构 任何一个有限循环群 与剩余类加群同构 子群的左陪集和右陪集的个数,或都为无限,或相等 P68

子群陪集(左或右算一边)的个数叫做子群的指数 群的阶: 群中元素的个数 对有限群G 而言: G 的子群的阶,与子群陪集的个数(指数),其乘积即为群G 的阶 (即都整除群G 的阶) G 中任意元的阶,都整除群G 的阶(因为任意元可生成循环子群) 子群充要条件: H ab H b a ∈?∈?-1, P63 定理2 子群正规充要条件: N ana N n G a ∈?∈∈?-1, P72 定理2 (首先N 须得是一个子群,然后再有…)

近世代数期末考试题库

世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c ) A、满射而非单射 B、单射而非满射 C、一一映射 D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素。 A、2 B、5 C、7 D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说 A、不是唯一 B、唯一的 C、不一定唯一的 D、相同的(两方程解一样) 4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c ) A、不相等 B、0 C、相等 D、不一定相等。 5、n阶有限群G的子群H的阶必须是n的(d ) A、倍数 B、次数 C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合;,则有。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。 3、环的乘法一般不交换。如果环R的乘法交换,则称R是一个交换环。 4、偶数环是整数环的子环。 5、一个集合A的若干个--变换的乘法作成的群叫做A的一个变换全。 6、每一个有限群都有与一个置换群同构。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。 8、设和是环的理想且,如果是的最大理想,那么---------。 9、一个除环的中心是一个-域-----。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。奇1、解:把和写成不相杂轮换的乘积: 可知为奇置换,为偶置换。和可以写成如下对换的乘积: 2解:设A是任意方阵,令,,则B是对称矩阵,而C是反对称矩阵,且。若令有,这里和分别为对称矩阵和反对称矩阵,则,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:,,所以,表示法唯一。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)是不是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设是群。证明:如果对任意的,有,则是交换群。 2、假定R是一个有两个以上的元的环,F是一个包含R的域,那么F包含R的一个商域。 1、对于G中任意元x,y,由于,所以(对每个x,从可得)。 2、证明在F里 有意义,作F的子集 显然是R的一个商域证毕。 近世代数模拟试题二 一、单项选择题 二、1、设G 有6个元素的循环群,a是生成元,则G的子集(c )是子群。 A、B、C、D、 2、下面的代数系统(G,*)中,(d )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( b ) A、a*b=a-b B、a*b=max{a,b} C、a*b=a+2b D、a*b=|a-b| 4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=(b )

近世代数期末复习

m m m m m 1、模m 的剩余类环的理想都是主理想。 证明,首先是循环环,则的理想就是的子加群。而的子加群都是循环群,是一个元素生成的。所以也是主理想。 0||,,0,0.I a I a I I a I a b I q r b qa r r a I r b qa I a r b qa I I a I a >∈?<> =<>?∈∈=+≤<=-∈==∈?<>=<> 2、证明:是主理想整环。 显然,是整环。所以我们只证的理想都是主理想。 设,则存在,使得是中元素最小的。显然我们证明,,事实上,对。 由带余除法,存在使得因为是理想,则但根据的选取,必有则所以,则,即的任何理想都是主理想。 22112211221212121212112212121203|,,,|000(1)(2)(1)-0000000a b x R a b c I x c R I R a b a b a b a b a a b b R R c c c c c c a b a b a a a b c c ?????????=∈=∈???????????????? --???????????∈=∈??????????-??????? ???????=???????? 、设证明是的子环是的理想 证:对,,则121222000000(2),-0000000000000000000000000000b c R c c R x y x y x y I I a b x a b x ax R I I c c x a b cx I c I R ?+??∈??? ?-???????????∈=∈???????????????????? ???????????∈?∈=∈???????????????????? ??????=∈???????????? 则是的子环。,对,,则是的加法子群,I R 且是左理想和又理想。故是的理想。 4R R I R I I R I R I R I I ?、证明:是主理想整环,是的一个理想,则是域当且仅当是由素元生成的主理想。 证明:是域是的极大理想。而在主理想整环中,极大理想和素元生成的主理想是等价的。 则是域当且仅当是由素元生成的主理想

近世代数期末考试题库包括模拟卷和1套完整题

多所高校近世代数题库 一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打,错的打“X” ;每小题1分,共10 分) 1、设A与B都是非空集合,那么A_. B」xx?A且B:。() 2、设A、B、D都是非空集合,则A B到D的每个映射都叫作二元运算。() 3、只要f是A到A的一一映射,那么必有唯一的逆映射f」。() 4、如果循环群G = a中生成元a的阶是无限的,贝U G与整数加群同构。() 5、如果群G的子群H是循环群,那么G也是循环群。() 6、近世代数中,群G的子群H是不变子群的充要条件为-g ? G,-h? H;g'Hg H 。() 7、如果环R的阶_2,那么R的单位元1-0。 () 8若环R满足左消去律,那么R必定没有右零因子。() 9、F(x)中满足条件p(「)=0的多项式叫做元[在域F上的极小多项式。() 10、若域E的特征是无限大,那么E含有一个与%p)同构的子域,这里Z是整数环,(p )是由素数p生成的主理想。() 二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号 内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设A,A2,…,A n和D都是非空集合,而f是A1 A2… A n到D的一个映射,那么() ①集合A,A2,…,A n,D中两两都不相同;② A1,A2/ , A n的次序不能调换; ③A1A2A n中不同的元对应的象必不相同; ④一个元a1,a2,…,a n的象可以不唯一。 2、指出下列那些运算是二元运算() ①在整数集Z上,a °b = —b;②在有理数集Q上,a°b = Jab ; ab 、 ③在正实数集R*上,a ^b=alnb:④在集合{n^Zn^。}上,a"b=a — b。 3、设是整数集Z上的二元运算,其中a ^max:a,b?(即取a与b中的最大者),那么?在Z中() ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设G,为群,其中G是实数集,而乘法:a ^a b k,这里k为G中固定的常数。那么群G/中的单位元e和元x的逆元分别是() ①0和-x ;②1和0 ;③k和x-2k ;④-k和-(x 2k)。 5、设a,b,c和x都是群G中的元素且x2a =bxc」,acx =xac,那么x=() ① bc J a 4;② c °a ';③ a J bc J;④ b 'ca。 6、设H是群G的子群,且G有左陪集分类 5 , aH ,bH ,cH }。如果6,那么G的阶G =() ①6;②24;③10 ;④12。 7、设f :G1 > G2是一个群同态映射,那么下列错误的命题是() ①f的同态核是G1的不变子群;②G2的不变子群的逆象是G1的不变子群;③G1的子群的象是G2的子群;④G1的不变子群的象是G2的不变子群。 8设f :尺> R2是环同态满射,f(a)二b,那么下列错误的结论为() ①若a是零元,则b是零元;②若a是单位元,则b是单位元; ③若a不是零因子,则b不是零因子;④若R2是不交换的,则R1不交换。 9、下列正确的命题是() ①欧氏环一定是唯一分解环;②主理想环必是欧氏环; ③唯一分解环必是主理想环;④唯一分解环必是欧氏环。 10、若I是域F的有限扩域,E是I的有限扩域,那么() ①E:I = E:I I :F ;② F:E=I:FE:I ; ③ I:…E:FF:I ;④ E:…E:II:F。

北航2012抽象代数试卷与答案

班号学号姓名成绩 《抽象代数》期末考试卷 注意事项: 1、请大家仔细审题 2、千万不能违反考场纪律 题目: 一、判断题(每小题2分,共20分)(?) 1、设* 是集合X上的二元运算,若a∈ X是可约的,则a是可逆的。(√) 2、任何阶大于1的群没有零元。 (√) 3、任何群都与一个变换群同构。 (√) 4、奇数阶的有限群中必存在偶数个阶为2的元素。 (√) 5、素数阶群必为循环群。 (?) 6、x 2 + 5 是GF (7) 上的不可约多项式。 (√) 7、环的理想构成其子环。 (?) 8、有补格中任何元素必有唯一的补元。 (?) 9、格保序映射必为格同态映射。 (√) 10、设A?S,则< P(A),? > 是格< P (S),? > 的子格。 二、填空题(10分) 1、设〈G,*〉为群,a,b∈G且a的阶为n,则b-1a b的阶为__n______。 2、设〈G,*〉为群且a∈G。若k∈I且a的阶为n,则a k 的阶为_n/(n,k) _; 并且 a k = e 当且仅当__n | k 3、域的特征为___0或素数___________ ;有限域的阶必为___素数的幂______。 4、GF(3)上的二次不可约首1多项式有_x2+1,x2+x+2,x2+2x+2 5、设D 是I+ 上的整除关系,即对任意的a,b∈I+ ,a D b 当且仅当a | b。 对任意a,b∈I+ ,则a * b = __(a, b)__, a ⊕b = __[a, b]__。 三、计算题(40分,每小题8分) 1、试求群< N11—{0},·11 > 的所有子群。 解: 所有子群是: <{1}, ?11 > <{1, 3, 4, 5, 9}, ?11 > <{1, 10}, ?11 > < N11—{0},?11 >

相关主题