搜档网
当前位置:搜档网 › 城市土壤碳储量估算方法综述

城市土壤碳储量估算方法综述

城市土壤碳储量估算方法综述
城市土壤碳储量估算方法综述

龙源期刊网 https://www.sodocs.net/doc/577719270.html,

城市土壤碳储量估算方法综述

作者:王甜甜黄艳萍聂兵

来源:《安徽农学通报》2017年第01期

摘要:城市作为主要的人类活动集中地,在碳循环中占据着重要地位。伴随着全球气候

变化的加剧,城市土壤碳库研究被赋予了新的内涵,受到了广泛关注。该文综述了土壤类型法、模型法、生命地带法及GIS估算法等几种主要的城市土壤碳储量估算方法,并分析了其优缺点。

关键词:城市土壤;碳储量;估算方法

中图分类号 S153.6 文献标识码 A 文章编号 1007-7731(2017)01-0069-03

Abstract:The urban,as the main gathering place for human activities nowadays,takes an important role in carbon cycling.Nowadays,with the exacerbating of global climate change,the urban soil carbon pool is given a new connotation,and was widely concerned.This thesis summarizes several main methods of estimating the carbon storage,such as soil type method,model method,life zone method and GIS estimation method,etc.In addition,the thesis analyzed the merits and demerits of each method in order to reduce or avoid the mistakes caused by the improper research methods in the process of estimating carbon storage of the soil.

Key words:Urban soils;Carbon storage;Estimation method

1 引言

陆地生态系统碳循环及碳平衡对土地利用/覆被变化(LUCC)的响应是当前全球变化和碳平衡研究的重点内容[1-2]。人口增长压力导致的LUCC正深刻影响着生态系统地上和地下的碳储量[3],已经成为改变陆地生态系统碳库的主要驱动因素,对人类的生存环境和社会经济的

可持续发展产生着重要的影响[4-5]。由于人口的高度集中和经济活动频繁,快速发展过程中的城市用地在迅速扩张。城市用地的改变深刻影响着城市土壤的理化性质,使得土壤既可能成为碳汇,也可能成为碳源[6]。章明奎等的研究表明,城市土壤碳具有明显的积累并具较大的空

间变异性,城区土壤的平均有机碳贮量远高于远郊区土壤,且城市土壤有机碳较为稳定[7]。Pouyat的研究发现随着相邻的土地利用类型的城市化,城市的土壤碳储量将受到强烈影响[8]。研究表明,大约60%~70%已损耗的碳,可通过采取合理的土地利用和管理方式被重新固定[9]。因此,精确估算城市生态系统土壤碳储量,准确评价其对土地利用/覆被变化的响应,是制定合理的土地政策,增加陆地碳汇量的基础[10]。

2 城市土壤碳储量估算主要方法

河北省麦田土壤硒的含量、形态及其有效性研究

河北省麦田土壤硒的含量、形态及其有效性研究 唐玉霞;王慧敏;刘巧玲;吕英华;孟春香 【摘要】采用田间取样和室内分析相结合的方法,研究了河北省麦田土壤硒的含量、形态及其有效性.结果表明:河北省麦田土壤全硒含量为0.061~0.584 mg/kg,平均值0.341 mg/kg,略高于全国平均值.河北省麦田土壤有效硒含量为4.93~83.88 μg/kg,平均值为31.51 μg/kg.河北麦省田土壤硒主要以有机物硫化物结合及元素 态硒存在,占土壤全硒含量的42.25%~58.46%,其次为残渣态硒,占28.28%~ 40.99%,其余形态之和占12.26%~17.36%,而作物可吸收利用的可溶态、可交换 态及碳酸盐结合态硒仅占8.12%~10.37%.河北麦省田土壤硒的平均有效度为 9.69%.麦田土壤有效硒与土壤全硒、土壤有机质、土壤pH及土壤阳离子代换量(CEC)均呈显著或极显著正相关,因此在农业生产中通过提高土壤有机质含量可以有效地增加土壤有效硒的含量. 【期刊名称】《华北农学报》 【年(卷),期】2010(025)00z 【总页数】4页(P194-197) 【关键词】麦田土壤;硒;含量;形态分布;有效性 【作者】唐玉霞;王慧敏;刘巧玲;吕英华;孟春香 【作者单位】河北省农林科学院,农业资源环境研究所,河北,石家庄,050051;河北省农林科学院,农业资源环境研究所,河北,石家庄,050051;河北省农林科学院,农业资源环境研究所,河北,石家庄,050051;河北省土壤肥料总站,河北,石家庄,050021;河北省农林科学院,农业资源环境研究所,河北,石家庄,050051

资源储量估算注意问题

固体矿产资源储量估算 常用方法及应注意的问题 一、概述 ?矿产勘查、资源储量核实的核心是查明工作区的的资源储量,资源储量估算是各类 勘查和核实报告最重要的环节,也是业主、评审机构和政府主管部门审查的重点。 只有做到资源储量估算的全过程正确无误,才能保证资源储量的可靠性。所以,必须对资源储量估算予以高度重视。 ?资源储量估算的方法选择正确与否,直接关系到资源储量估算的最终结果。因此, 要根据矿床自身的特点,并结合勘查工作实际,以有效、准确、简便、能满足要求为依据,选择合理的估算方法。 ?估算矿产资源/储量的方法主要有几何图形法、地质统计学法和SD储量计算法 (简称SD法)等。 ?几何图形法:是将矿体空间形态分割成较简单的几何形态,将矿石组分均一化,估 算矿体的体积、平均品位、矿石量、金属量等。这种方法目前运用最多,也是这次要讲的重点。 ?地质统计学法:是以区域化变量理论作为基础,以变异函数作为主要工具,对 既具有随机性、又具有结构性的变量进行统计学研究,估算时能充分考虑品位的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,置信度高,但需有较多的样本个体为基础。此方法还能制定或检验合理的勘探工程间距。 SD法:以最佳结构地质变量为基础,以断面构形替代空间构形为核心,以spline函数及分维几何学为工具的估算方法,立足于传统的断面法。适用于不同矿床类型、矿体规模、产状、不同矿产勘查阶段,还可对估算成果作精度预测。 目前,国家鼓励和提倡运用新技术、新方法进行资源储量估算。 二、资源储量估算的一般原则 ?1、参与资源储量估算的各项探矿工程的质量,应符合有关规范、规程和规定的要求。 ?2、资源储量估算必须在综合研究矿床地质条件、控矿因素的基础上,严格按工 业指标正确圈定矿体的前提下进行。 3)根据矿床资源储量的分类结果,按矿体、资源储量类型、矿石类型[当选(冶)试验证实矿石性质差异大,有可能进行分采、分选时,应考虑分矿石类型进行估算]和块段分别估算各矿体及矿床的矿石量、金属量(金属矿产)和平均品位。 4)金属矿床中,当氧化带、混合带、原生带发育时,应分别估算资源储量。混合带不发育时,可视实际情况将其划入氧化带或原生带进行估算。 ?5)达到工业要求的共生组分应分别圈定矿体估算资源储量。 ?6)资源储量的单位按各矿种规范的要求确定。 ?通常情况下,一般矿产矿石量单位为万吨,金属量为吨,伴生稀贵金属的金属 量为千克;独立或共生金及稀贵金属矿石量单位为吨,金属量为千克。一般矿产的矿石品位以质量分数(%)计,金、银及稀贵金属矿石品位以质量分数(10-6)计。 ?7)估算资源储量时,应扣除截至勘查工作结束时采空区的资源储量。永久性建筑物 等压覆的资源储量应予说明。

矿产资源储量估算方法

国体矿产资源储量各估算方法的适用条件及优缺点 1储量估算方法的定义: 估算方法:是指矿产资源埋藏量估算过程中,各种参数及其资源的计算方法和相关软件的统称。由于矿产资源赋存方式也不尽相同,因此,必须要研究适合的矿产资源储量计算方法。矿产资源划分为三大大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤:第二类是石油天然气、天然气、煤层气资源;第三类是地下水资源。 2矿产资源储量估算放法的主要种类: (1)传统方法,据计算单元划分方式的不同,又可分为断面法和块段法两种。 断面法进一步分为:平行断面法、不平行断面法。垂直断面法,有分为勘探线剖面法和先储量计算法。 块段法:依据块段划分依据的不同,分为:地质块段法。开采块段法法、最近地区法、三角形法。等值线法、等高线法等。 地质断块法,是勘探阶段计算资源储量较为常用的一种方法。是将矿体投影到某个方向的平面上,按照矿石类型,品级,地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干各块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查技术手段比较单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区

的资源储量计算。 地质块段发按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法适用于陡倾斜的矿体:水平投影法适用于产状平缓的矿体;倾斜投影法通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用。 (2)克立格法 克立格法,是由南非地质学家克里格创立的,它以地质统计学理论为基础。目前西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法,评价矿产资源,估计矿产资源储量。地质统计学方法,是一套方法传统。目前在我国应用的主要有:二维及三维普通克里格法,二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。 (3)SD法(最佳结构曲线断面积分储量计算法) SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面结构为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。

矿业权评估利用资源储量指导意见

矿业权评估利用资源储量指导意见 (CMVS 30300-2008) 1总则 1.1为规范利用矿产资源储量报告、矿山设计文件,指导注册矿业权评估师合理确定评估利用可采储量,根据国家有关规范和《矿业权评估技术基本准则》,制定本指导意见。 1.2本指导意见适用于收益途径和市场途径评估方法中涉及固体矿产评估利用可采储量的估算。 收益途径和市场途径评估方法中涉及石油、天然气、矿泉水及地热等评估利用可采储量,应根据相应规范,参考本指导意见估算。 2定义 为本指导意见的需要,使用下列定义: (1)矿产资源储量报告,是指具有地质勘查资质单位编制的矿产勘查报告、资源储量核实报告、资源储量检测报告等。 (2)参与评估的保有资源储量,是指评估对象范围内评估计算时点的保有资源储量。保有资源储量评估计算时点一般为评估基准日,管理部门有特别规定及评估业务特殊要求等,可与评估基准日不同。 (3)可信度系数,是在估算评估利用资源储量时,将参与评估的保有资源储量中资源量折算为评估利用资源储量的系数。 (4)评估利用资源储量,是参与评估的保有资源储量中的经济基础储量与资源量经可信度系数调整后的资源储量之和。 (5)评估利用可采储量,是指评估利用资源储量扣除各种损失后可采出的储量。 3指导意见 3.1注册矿业权评估师应收集能满足参与评估的保有资源储量估算需要的、最近的矿产资源储量报告。 3.2核查矿产资源储量报告中资源储量估算范围与评估对象范围是否一致。不一致时,可以依据相关规范进行调整或依据委托方提供的补充说明确定参与评估的保有资源储量。

3.3注册矿业权评估师应根据不同的矿业权评估目的及相关规定,判断所收集的矿产资源储量报告是否应经评审或评审、备案(认定),谨慎引用未经评审或评审、备案(认定)的资源储量报告。 3.4生产矿山采矿权评估,参与评估的保有资源储量按不同方式确定。 (1)评估基准日在储量核实基准日之后: 参与评估的保有资源储量=储量核实基准日保有资源储量 -储量核实基准日至评估基准日的动用资源储量 +储量核实基准日至评估基准日的生产勘探净增资源储量(2)评估计算时点在储量核实基准日之前: 参与评估的保有资源储量=储量核实基准日保有资源储量 +储量核实基准日至评估计算时点的动用资源储量(3)延续登记采矿权价款评估,评估基准日在采矿许可证有效期后,应以采矿许可证有效期末时点的保有资源储量参与计算。 3.5生产矿山采矿权评估,动用资源储量按下列方式确定。 动用资源储量=采出矿石量X(1-矿石贫化率)+采矿损失量 =采出矿石量X(1-矿石贫化率)你矿回采率 式中:煤矿采矿回采率指采区回采率;煤矿及无需考虑废石混入的非金属矿不计矿石贫化率。 (1)对管理规范、生产报表齐全的矿山或国土资源管理部门出具证明的,可根据其报表或证明列明的动用资源期间的实际采出矿石量、矿石贫化率、采矿回采率和采矿损失量计算; (2)对管理不规范、生产报表不齐全的的矿山,可根据其实际采出量或采矿许可证核定生产规模以及矿山设计文件或相关规范规定的采矿损失率、矿石贫化率估算。 3.6评估利用资源储量,按下列方式确定。 评估利用资源储量=E(参与评估的经济基础储量+资源量X相应类型可信度系数) 对于金属矿产,应针对矿石量和金属量同时采用可信度系数折算,同类型资源量折算前后其矿石品位保持不变。 (1)参与评估的保有资源储量中的经济基础储量应直接作为评估利用资源

不同林地土壤有机碳储量及垂直分布特征

0引言 全球气候的变化,引起了许多科学家对陆地生态系统中碳平衡、碳存储及分布的关注。据Post [1]和 Houghton [2]等研究表明,土壤中所存储的碳是植被中的2.5~3倍,而森林土壤约占全球土壤有机碳库的73%,是陆地生态系统最大的有机碳库[3-4],因而其储 基金项目:国家重点基础研究发展计划“973”项目(2007CB106803);国家自然科学基金重点项目(40730631);中国科学院重要方向项目(KZCX2-YW-441)、(KZCX2-YW-149)。 第一作者简介:杨晓梅,女,1983年出生,陕西宝鸡人,硕士,研究方向:恢复生态。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。E-mail:yangxiaomei.003@https://www.sodocs.net/doc/577719270.html, 。 通讯作者:程积民,男,1955年出生,陕西渭南人,研究员,研究方向:黄土高原植被恢复与生态环境建设。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。Tel :029-********,E-mail :gyzcjm@https://www.sodocs.net/doc/577719270.html, 。收稿日期:2009-12-28,修回日期:2010-01-14 不同林地土壤有机碳储量及垂直分布特征 杨晓梅1,程积民1,孟蕾2,韩娟娟2 (1中国科学院水利部水土保持研究所,陕西杨凌712100;2 西北农林科技大学动物科技学院,陕西杨凌712100) 摘要:基于样地调查与室内分析,研究了黄土高原子午岭林区天然柴松林、辽东栎林及人工油松林3种林地土壤有机碳储量及其垂直分布特征。结果表明:(1)3种林地土壤有机碳含量柴松林为13.67g/kg ,辽东栎林为13.95g/kg ,油松林为11.43g/kg ,并随着土壤深度的增加呈现递减的趋势,不同林分变化幅度差异不同,且各土层间的差异达到了显著性水平。(2)3种林地土壤有机碳密度差异显著,土层间碳密度变化范围为1.06~3.67kg/m 2,并随土壤深度增加而减少;在整个土壤垂直剖面上,有机碳碳密度在9.38~11.43kg/m 2之间,其中0~50cm 深度碳密度的贡献率达80%以上。(3)3种林地土壤碳储量偏低,平均为105.2t/hm 2,不同林分间的差异较大。关键词:土壤有机碳;碳储量;垂直分布;森林类型中图分类号:S714.5 文献标志码:A 论文编号:2009-2786 Features of Soil Organic Carbon Storage and Vertical Distribution in different Forests Yang Xiaomei 1,Cheng Jimin 1,Meng Lei 2,Han Juanjuan 2 (1Institute of Soil and Water Conservation ,Chinese Academy of Sciences and Ministry of Soil Resources ,Yangling Shaanxi 712100; 2 College of Animal Sciences ,Northwest A &F University ,Yangling Shaanxi 712100) Abstract:Based on the field data and laboratory analysis,we studied the soil organic carbon storage and vertical distribution features about natural Pinus tabulaeformis f.shekannesis ,Quercus liaotungensis and artificial P.tabulaeformis forest in Ziwuling forest area of Loess Plateau.The results were showed as followings:1)Content of soil organic carbon was:13.67g/kg,13.95g/kg,and 11.43g/kg,respectively for Pinus tabulaeformis f.shekannesis,Quercus liaotungensis and artificial P.tabulaeformis .With depth of soil,organic carbon contents generally decreased,but the range was different in these three forest types.Meanwhile,great significance differences have appeared among different soil layers.2)Soil carbon density in the three forest types changed greatly,with a range of 1.06~3.67kg/m 2for five soil layers.Furthermore,soil carbon density decreased generally with the depth,as well as carbon content.In the whole soil profile,the range of carbon density in these three forests was from 9.38kg/m 2to 11.43kg/m 2.However,80%carbon concentrated in 50cm depth of soil.3)Soil carbon storage is low in these three forests.The average of storage was 105.2t/hm 2,and great differences appeared between forest types. Key words:soil organic carbon;carbon storage;vertical distribution;forest types 中国农学通报2010,26(9):132-135 Chinese Agricultural Science Bulletin

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

固体矿产资源、储量分类与编码

固体矿产资源、储量分类及编码-----------------------作者:

-----------------------日期:

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

资源储量估算章节

5.4.4、资源储量估算 5.4.4.1、工业指标及勘探类型 1、工业指标 (1)边界品位 (2)块段最低工业品位 (3)最小可采厚度 (4)夹石剔除厚度 2、勘探类型 (1)勘探类型 (2)勘探间距 5.4.4.2、资源量估算方法的选择及依据 1、资源/储量估算的方法 (1)距离反比法,简述方法及原理。 距离反比加权插值法(Inverse Distance Weighting)首先是由气象学家和地质工作者提出的,后来由于D.Shepard 的工作被称为谢别德法(Shepard)方法。它的基本原理是设平面上分布一系列离散点,己知其位置坐标(xi,yi)和属性值zi(i= 1,2,…,n), p(x,y)为任一格网点,根据周围离散点的属性值,通过距离反比加权插值求P 点属性值。距离反比加权插值法综合了泰森多边形的邻近点法和多元回归法的渐变方法的长处,它假设P点的属性值是在局部邻域内中所有数据点的距离反比加权平均值,可以进行确切的或者圆滑的方式插值。周围点与P 点因分布位置的差异,对P(z)影响不同,我们把这种影响称为权函数W i(x, y),方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额;对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时,给予一个特定数据点的权值,与指定方次的结点到观测点的距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当

一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值,这就是一个准确插值。权函数主要与距离有关,有时也与方向有关,若在P点周围四个方向上均匀取点,那么可不考虑方向因素,这时: 式中: 表示由离散点(xi,yi)至P(x,y)点的距离。P(z)为要求的待插点的值。权函数 储量估算u值取2时为(距离平方成反比)。 (2)封闭多面体估算法,简述方法及原理。 封闭多面体估算法计算的步骤是,首先根据圈定的矿体模型(三角形网)的体积,按以下过程进行储量估算,估算的结果较精确。 1)确定三角网的最小Z值(最低海拔标高),将该值作为所有参与体积计算的立体三角形的基准平面; 2)对于每个三角形,计算其与基准平面之间的体积; 3)确定三角形和基准平面之间的体积是位于模型之内还是模型之外,通常根据每个三角形的方向来进行判断; 4)如果在模型以内,就将其加到总体积中;如果在模型以外,就将其从总体积中减掉。 然后对模型内的所有样品使用简单平均或系数加权的方法得到总的品位和比重。如果样品在模型内间隔均匀,并且使用样长加权计算,而且选择了忽略缺失区间的话,那么三角网格模型的品位应该与块模型非常相似。如果样品间隔不是非常均匀,并且有很多探槽和坑道的话,那么由于线框内的样品聚集,线框品位和块模型品位之间可能会存在差异。 最后,用模型的体积乘以比重得到矿石量,再用矿石量乘以品位得到金属量。 (1)数据准备及数据处理

土壤有机碳储量的影响因素研究

龙源期刊网 https://www.sodocs.net/doc/577719270.html, 土壤有机碳储量的影响因素研究 作者:杨慧敏 来源:《种子科技》2019年第08期 摘 ; 要:通过对土壤有机碳储量及影响因素进行研究,以期找到维持和提高土壤有机碳库的有效措施,为我国土壤资源的可持续开发利用提供参考,最终达到土壤固碳和农业增产的目的。 关键词:土壤;有机碳;储量;影响因素 1 ; 土壤有机碳储量 土壤有机碳(Soil Organic Carbon,SOC)作为土壤有机质的一种化学量度,在提高土壤 肥力、改善土壤结构、促进植物生长等方面发挥着重要作用。SOC在全球碳总量(2 344 Pg)中占有巨大比重。据估算,土壤有机碳库储量为1 550 Pg,大于植被和大气碳的总和[1]。其中,农田生态系统的碳储量占陆地土壤碳储量的8%~10%(120~150 Pg)[2],但是全球农业土壤的固碳潜力仅为20 Pg。以往研究有机碳时,注重其对农业生产的作用,而如今的研究更注重其对于生态环境的意义[3]。 2 ; 影响因素 2.1 ; 自然因素 2.1.1 ; 环境因素 土壤有机碳是指土壤有机质(SOM)中的碳含量,是陆地生态系统碳氮循环的重要组成 部分。有机碳释放和降解的速率主要取决于SOC本身的分子结构、化学性质和地表枯落物与死亡根系的数量与质量,其中土壤有机碳分子结构又是影响有机碳质量和功能的重要内在因素。研究发现,一些结构比较稳定的有机碳(如木质素)在土壤中分解转化的速率竟然比其他有机碳短[4-6],而一些性质比较活跃的有机碳(如糖类)却可以稳定在土壤中长达10年之久[7]。这也许是因为不同种类细菌代谢方式不同,所以分解的机制也有一定区别[8]。SOC虽然是由微小的化学分子组成的,但是其持久性却不是由分子性质所决定的,而是取决于生态系统的属性,如生物群的空间异质性、环境条件等。所以,分子结构的抗性并非完全地控制有机碳在土壤中的长期持久性[9]。而有机碳在与环境的相互作用下却可以显著降低土壤有机碳被降 解的可能性。 2.1.2 ; 微生物因素 土壤中产生大量的CO2,是微生物对有机物进行分解所产生的结果。而微生物的生长活动又受土壤养分含量的高低、C和N的有效性以及土壤pH值的影响。当微生物所需的营养元

关于新的矿产资源储量勘查规范总则.doc

关于新的矿产资源储量勘查规范总则 及地质勘查报告编写要求介绍(摘要) 一、我国矿产资源储量分类与勘查规范历史 1954年翻印了原苏联的固体矿产储量分类规范,将储量分为平衡表内、表外两类和A1、A2、B、C1、C25个级别,按用途分为开采储量(A1)、设计储量(A2、B、C1)、远景储量(C2)及地质储量;勘探阶段划分为初步普查、详细普查、初步勘探、详细勘探,初步普查前为区域地质调查,详细勘探后为开发勘探; 1959年编制了《矿产储量分类暂行规范(总则)》,“金属、非金属矿产储量分类暂行规范(总则)”,仍将储量分为平衡表内、表外两类和A1、A2、B、C1、C25个级别,此外,还有地质储量。其中,A1级为开采储量、A2、B、C1级为设计储量、C2级为远景储量,A1、A2、B、C1又称工业储量。 1977年编制了“金属矿床地质勘探规范总则”,“非金属矿床地质勘探规范总则”,仍将储量分为平衡表内、表外两类将储量级别分为A、B、C、D四个级别,两总则的内容除了储量分类分级外,还规定了地质勘探阶段(初勘和详勘)勘探工作的原则和要求。指出各级储量比例应根据矿床地质条件、矿床规模、矿山建设规模和开采技术条件等综合考虑,并强调要实行地质勘探、矿山设计、生产建设单位的“三结合”,以便共同研究解决矿山和勘探区段的选择、高级储量的分布和比例、工业指标以及有关勘探工作和建设设计的要求等问题。1983年原地质部搞资源总量预测工作时,又划分出了E、F、G三个级别,据全国储委办公室1982-1986年组织的储量分类分级专题研究,经过条件的对比,认为其中的E级大致相当1972年两总则中D级的一部分;在此期间,煤炭部、冶金部、建材部、化工部、核工业部等也编制了本部门的规范,大体与地质部的规范相当,只有些个别差异,如,1980年煤炭部曾颁发“煤炭资源地质勘探规范(试行)”,将储量分为二类四级,即A、B、C、D级,实际上A级相当于前述的B级,其余各级别也均相应降低一个级别;1980年二机部的“铀矿地质勘探规范(征求意见稿)”,将储量分为二类五级,眼A、B、C1、C2、D级,其C2+D级相当于前述的D级; 1987年全国储委、国家经委、国家计委联合发出“矿产勘查工作分段划分的暂行规定”、“矿产勘查各阶段矿床技术经济评价的暂行规定”,将地质勘探阶段划分为普查、详查、勘探三个阶段(表 3),强调了在地质报告编写中必须增加技术经济评价章节。 1992年编制了“固体矿产地质勘探规范总则”,将金属、非金属和煤等所有固体矿产包括在一个统一的总则中。将储量分为能利用(表内)和尚难利用(表外)两大类,其中,将能利用储量又划分为a亚类和b亚类,前者为目前能利用的,后者为目前暂难利用的,将储量级别划分为A、B、C、D、E5个级别,A 级为备采储量、B级为首期开采依据储量、C级为中期开采依据储量、D级为后期开采依据储量、E级为远景储量。 二、对于我国以往储量分类及勘查规范的评价 (一)优点:①门类齐全。我国以前共编制了45个单矿种规范(涉及了84个矿种),从普查到勘探,从野外施工、原始资料编录到地质报告编写等各个方面都有严格规定,同时还有各专业、行业的规范和规定。 ②内容十分丰富。如,矿床类型、矿床规模、矿床勘探类型、勘探网度、地质研究程度等方面均有详细规定。③易于操作。 (二)缺点:静态性强、动态性差;国家计划性强、注重完成任务,市场经济性差;储量与资源概念模糊,不易与国际对比;行业分工过细,各行其是;注重储量规模,忽视经济意义,工程网度及各级储量比

土壤有机碳库分类及其研究进展

土壤有机碳库的分类及其研究进展 土壤有机碳库(SOC)是地球表层系统中最大的碳库之一(霍连杰2012),全球土壤有机碳库储量约为1500Pg(Batjes 1996)。由于土壤有机碳库的巨大储量及其较活跃的化学属性,其微小变化就会影响大气CO2浓度的波动,另外,土壤有机碳的含量被认为是评估土壤质量的重要指标之一,其动态平衡直接影响到土壤肥力和作物的产量。因此,研究土壤有机碳库对全球气候变化的研究有重要意义。本文将根据不同的分类依据对土壤有机碳库的分类进行阐述并简要分析其研究进展。 1 土壤有机碳的化学分类 1.1根据化学组成分类 腐殖质类物质是土壤有机碳库重要的组成部分,根据化学成分组成对土壤有机碳库分类主要是对土壤腐殖质进行分类。根据腐殖质类物质在酸和碱溶液中的溶解性将其分为富啡酸、胡敏酸和胡敏素(唐世明1994)。 由于各类提取剂对土壤腐殖质的提取能力的变化很大,几乎很难将土壤腐殖质全部提取出来,而且土壤腐殖质的性质并不能完全代表土壤有机碳的性质。有研究证明,腐殖质类物质与生态学过程之间没有十分紧密的联系(R.R. 1999)。因此,对土壤腐殖质类物质的研究从20世纪80年的逐渐淡出土壤碳库的研究领域。 1.2根据化学性质分类 随着土壤有机碳库分类研究的不断深入,很多学者开始从化学性质的角度上研究土壤有机碳库的分类。 第一,根据被KMnO4氧化的程度对土壤有机碳的易氧化程度进行分类。根据不同浓度的KMnO4(33mmol\L、167mmol\L、333mmol\L)氧化的土壤有机碳的数量,把易氧化的有机碳分成3个级别(Loginow et al. 1987)。 第二,根据被H2SO4氧化的程度对土壤有机碳的易氧化程度进行分类。根据不同浓度的H2SO4(6.0mol\L、9.0mol\L、12.0mol\L)和K2Cr2O7氧化的土壤有机碳的数量,把易氧化的有机碳分成4个级别(Chan et al. 2001)。

土壤有机碳库的分类及其研究进展

土壤有机碳库(SOCP)的库容量巨大,其微小的变化会在很大程度上影响大气中二氧化碳的浓度,因此SOCP在全球碳循环中起着重要作用[1]。土壤有机碳(SOC)是地球表层系统中最大且最具有活动性的生态系统碳库之一。其有机碳总贮量约在1 400~1 500 Pg 之间[1(] 1 Pg=1015 g),是陆地植被碳库的2~3 倍,大气碳库的2 倍多,其较小幅度的变动都会引起大气中CO2浓度变化,进而影响全球气候变化。 土壤有机碳库分为两部分:活泼碳和不活泼碳。其中不活泼碳约占土壤总有机碳库的25%甚至更高[2],这部分不活泼的碳具有较长的周转时间(千年以上)。国外好多文献把土壤有机碳库分为三部分:活跃碳库(active carbon pool),缓效性碳库(slow carbon pool)和惰性碳库(passive carbon pool)。其中,土壤活性有机碳指在一定的时空条件下,受植物、微生物影响强烈、具有一定溶解性、在土壤中移动比较快、不稳定、易氧化、分解、易矿化,其形态、空间位置对植物、微生物来说活性比较高的那一部分土壤碳素,大约是土壤活生物量的2~3倍;缓效性碳库包含难分解的植物和较稳定的微生物,而惰性碳库是那些化学性质和物理性质都稳定的部分[3]。 土壤有机碳库是陆地生态系统长期光合作用和分解作用动态平衡的结果因此凡是影响生态系统光合和呼吸过程的因子如气候、地形、土壤质地等都将控制着土壤有机碳库的动态变化[4]。放牧、围封、土地利用变化等人为因素会导致土壤有机碳的动态变化[5]。夏海勇等研究秸秆添加量对黄潮土和砂姜黑土有机碳库分解转化和组成的影响规律,结果表明: 秸秆添加越多, 碳库活度便越高, 越有利于有机物料分解, 降低腐殖化系数; 黏粒含量越高, 有机物料的分解受阻, 腐殖化系数便越高[6]。对大兴安岭区域研究发现,土壤有机碳含量近似于土壤有机质含量的分布趋势,也和土层厚度有一定关系[7]。造林使农田土壤有机碳含量先下降后上升[8]。 对土壤有机碳分组方法相关研究也取得了一系列进展。随着国内外学者对土壤有机碳研究的不断深入,其分组方法也在不断的改进和完善。由于化学分组方法对土壤结构和形态的破坏性大,生物学分组方法所需培养时间长和限制因子要求高,物理分组方法存在较大的空间异质性,得到的组分之间有重叠等,所以导致研究结果无法进行比较和评估。物理-化学联合分组方法改善了这些弊端,该方法不仅消除了生物学分组过程中培养所需时间长的困扰,还打破了各单一分组方法过程中出现的异质性组分重叠的现象,相比之下是更好的有机碳分组方法。但是,在物理-化学联合分组过程中,对样品进行酸解时还是沿用的盐酸溶液,具有一定的破坏性,而核磁共振技术通过固态13 C 交叉极化魔角旋转技术分析有机物的烷基碳、烷氧碳、芳香碳和羰基碳等化学结构组成,能够实现有机物的原位不破坏分析和评价有机物的生物化学稳定性。所以,结合核磁共振分析的物理-化学联合分组,有望成为土壤有机碳分组方法的一个未来趋势。 [1] 霍莲杰, 纪雄辉, 吴家梅, et al. 土壤有机碳分类研究进展. 湖南农业科学, 2012: 65-69 [2] Harrison A F, Ineson P, Heal O. Nutrient cycling in terrestrial ecosystems: Field methods, application and interpretation. Elsevier Applied Science Publishers Ltd., 1990: [3] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society Of America Journal, 1987, 51(5): 1173-1179 [4] Allen D E, Pringle M J, Page K L, et al. A review of sampling designs for the measurement of soil organic carbon in australian grazing lands. Rangeland Journal, 2010, 32(2): 227-246 [5] Fang J Y, Yang Y H, Ma W H, et al. Ecosystem carbon stocks and their changes in china's grasslands. Science China-Life Sciences, 2010, 53(7): 757-765 [6] 夏海勇, 王凯荣, 赵庆雷, et al. 秸秆添加对土壤有机碳库分解转化和组成的影响. 中国

资源储量基本概念理解

固体矿产勘查资源储量估算 对于从事地质勘查的同事来说,储量估算是一项必须要面对的工作,虽然比较简单,可是对于像我这样工作经验比较少的人来说,也还是有很多地方需要注意。所以,最近在学习这块内容的同时,也将它分享给需要的朋友们。学习的主要内容包括以下几个方面: 1.资源储量基本概念理解 2.工业指标与勘查类型 3.资源储量估算方法的选择 4.矿体的圈定 5.块段划分 6.资源储量估算参数 7. 资源储量计算 8.资源储量估算图件的编制 9.资源储量估算表格的制定 1.资源储量基本概念理解 1.1 勘查阶段:是针对勘查区或矿床而言。 在某一勘查阶段内,不同地段存在不同的勘查程度,具有 不同的资源储量类型。如勘探阶段一般有探明的(331)、控制的(332) 、推断的(333)资源量类型;详查阶段一般有控制的 (332) 、推断的(333)资源量类型;普查阶段一般有推断的(333) 预测的(334)资源量类型;预查阶段一般有预测的(334)资源

量类型。 1.2 地质可靠程度:是针对勘查块段而言。 每一块段对应一种资源储量类型,应根据矿床具体特点、选 矿结果、开采技术条件等勘查和研究程度,参考勘查工程间距 综合确定。 1.3 经济意义:针对矿产开发投资项目而言。 对于同一个投资项目,可行性研究、技术经济分析在其论证分析范围内只产生一种经济蕙义,即同一项目不应同时出现经济的、边际经济的或者次边际经济的经济结论。论证分析范围外的部分,视为末开展可行性研究或技术经济分析。 1.4 预测资源量(334) 1.4.1 详查以上阶段不应有334。 勘查境界内应对矿床整体有总体控制,矿产资源赋存情况基本查明或查明,不应有334 。 1.4.2 普查阶段可视具体情况估算334。 对有极少量工程验证的物化探矿致异常区、矿床深部或边部,可视具体情况估算334。 1.4.3 334主要出现在预查阶段: 334是未查明的潜在矿产资源,主要出现在预查阶段。 1.4.4 (334)再写成3341、3342、334?、3341?等都是错误的。 1.5 推断的内蕴经济资源量(333)的工程间距问题。几乎所有单矿种勘查规范中涉及工程间距都是以控制的(332)勘查工程间距为准。

资源储量估算各种参数的确定

资源储量估算各种参数的确定 一、矿体平均品位(C )的确定 (一)勘探工程矿体平均品位的计算 采用样品代表长度加权平均的方法计算。其公式为: C =n 321n 332211l ......l ......++++++++l l l C l C l C l C n 式中:C —勘探工程矿体平均品位 C 1……C n —单个样品品位 l 1……l n —单个样品代表长度。 (二)剖面矿体平均品位的计算 剖面矿体平均品位的计算采用剖面上同一块段内各勘探工程的见矿代表厚度加权平均的方法计算。计算公式: C =n n n m m m m m C m C m C m C ++++++++............321332211 式中:C —剖面矿体平均品位 C 1……C n —勘探工程矿体平均品位 m 1……m n —勘探工程见矿代表厚度。 (三)相邻两剖面间块段矿石平均品位的计算 采用两剖面面积加权平均的方法计算。 C =2 12211S S S C S C ++ 式中:C —相邻两剖面间块段矿石平均品位 C 1,C 2—剖面矿体平均品位 S 1,S 2—剖面面积 (四)矿体平均品位的计算 采用矿体总锡金属量除以总矿石量计算。 C =∑∑Q P C ——矿体锡平均品位

∑P——矿体锡总金属量 ∑Q——矿体总矿石量 (五)特高品位的处理 当单样品位≥工程平均品位的8倍时,作为特高品位进行处理,以特高品位所在工程的矿体各样品品位平均值代替该样品的品位值,进行矿体平均品位的计算。矿区内需处理的仅一处,在ZK801孔中,该工程的52号样锡品位达20.86%,计算时以该工程的首次平均品位7.32%代替参与资源储量估算。 二、矿体面积(S)的计算 剖面矿体面积在剖面图上直接使用计算机求得。要求两次所求面积相对误差不超过3%。 三、块段矿体体积(V)的计算 根据相邻两剖面面积差与大剖面面积之比值,分以下三种情况分别选择公式进行计算: 1、当(S 1-S 2 )/S 1 ≤40%时,计算公式为:V=L*(S 1 +S 2 )/2; 2、当(S 1-S 2 )/S 1 >40%时,计算公式为:V=L*(S 1 +S 2 +S2 * S1)/3。 3、当S1(S2)为0时,计算公式为: V=L* S/3(锥形)。式中:V为相邻两剖面间块段矿体体积; L为相邻两剖面的距离; S 1 为两剖面相对较大面积值; S 2 为两剖面相对较小面积值。

相关主题