搜档网
当前位置:搜档网 › 中低压缸连通管数值模拟与导流叶片可靠性分析

中低压缸连通管数值模拟与导流叶片可靠性分析

中低压缸连通管数值模拟与导流叶片可靠性分析
中低压缸连通管数值模拟与导流叶片可靠性分析

风管制作步骤及要求

风管制作步骤及要求 一、制作步骤 1. 金属风管制作 1.1 咬边连接金属风管制作工艺流程 1.2 焊接金属风管制作工艺流程 2. 非金属风管制作 2.1 硬聚氯乙烯风管制作工艺流程 2.2 玻璃钢风管制作工艺流程 3. 圆风管圈圆示意

二、制作要求 1. 总体要求 1.1 加固 1.1.1 风管周长<1190mm 不加固 1.1.2 风管周长≥1190mm 须加固 1.1.3 金属风管加固,一般可采用楞筋、立筋、角钢、扁钢、加固筋和管内支撑等形式,如下图 1.1.4 常用加固方式:起凸(环向压筋),间距约为300mm(筋宽30~50mm ,筋高5~6mm)(铝制间距490mm ),如下图: 注意点:压筋须在卷板前做好! 1.2 导流叶片制作 1.2.1 弯头的弯曲半径R=l.4倍风管当量直径范围内的局部阻力最小,在弯头中应避免出现死弯;如果矩形风管沿转弯方向的边长过大而其R 值又偏小时,或者弯头内弯曲半径为100mm 或者角度≥30°的矩形风管应设置导流片。 1.2.2 当400mm <B <1120mm 时,安装一片导流叶片(半径为250mm);当B ≥1120mm 时,安装两片导流叶片(半径为250mm),如下图:

1.2.3 弯管导流叶片制作 1.2.4 固定

H:导流叶片长度 1400mm≤H<2000mm,等距安装两个 H≥2000mm,等距安装三个,且当α﹥60°时,叶片两端各安装一个加强件 600mm≤H<900mm,且当30°<α≤60°时,安装一个加强件 900mm≤H<1200mm,且当30°<α≤60°时,等距安装两个加强件 1200mm≤H<1500mm,且当30°<α≤60°时,等距安装三个加强件

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

质量和可靠性报告

×密 产品名称(产品代号) 质量和可靠性报告 编制:日期: 校对:日期: 审核:日期: 标审:日期: 会签:日期: 批准:日期: 第 1 页共 15 页

目次 1 概述 (3) 1.1 产品概况 (3) 1.2 工作概述 (3) 2 质量要求 (3) 2.1 质量目标 (3) 2.2 质量保证原则 (3) 2.3 产品质量保证相关文件 (3) 3 质量保证控制 (3) 3.1 质量管理体系控制 (4) 3.2 研制过程质量控制 (4) 4 可靠性、维修性、测试性、保障性、安全性情况 (9) 4.1 可靠性 (9) 4.2 维修性 (10) 4.3 测试性 (10) 4.4 保障性 (11) 4.5 安全性 (11) 5 质量问题分析与处理 (12) 5.1 重大和严重质量问题分析与处理 (12) 5.2 质量数据分析 (12) 5.3 遗留质量问题及解决情况 (13) 5.4 售后服务保证质量风险分析 (13) 6 质量改进措施及建议 (13) 7 结论意见 (13) 第 2 页共 15 页

产品名称(产品代号) 质量和可靠性报告 1 概述 1.1 产品概况 主要包括: a)产品用途; b)产品组成。 1.2 工作概述 主要包括: a) 研制过程(研制节点); b) 研制技术特点; c) 产品质量保证特点; d) 产品质量保证概况; e) 试验验证情况; f) 配套情况; g) 可靠性维修性测试性保障性安全性工作组织机构及运行管理情况; h) 可靠性维修性测试性保障性安全性文件的制定与执行情况。 i) 其它情况。 2 质量要求 2.1 质量目标 说明通过产品质量工作策划对实现顾客产品的要求,承制方需要满足期望的质量并能持续保持该质量的能力。 2.2 质量保证原则 简要通过产品质量工作策划对实现顾客产品的要求的原则。如:用户至上,持续改进,过程控制,激励创新,一次成功等。 2.3 产品质量保证相关文件 简要说明产品质量保证大纲的要求及质量保证相关文件。 3 质量保证控制 第 3 页共 15 页

可靠性、维修性设计报告

XX研制 可靠性、维修性设计报告 编制: 审核: 批准: 工艺: 质量会签: 标准化检查: XX 2015年4月

目录 1 概述 (2) 2维修性设计 (2) 2.1 设计目的 (2) 2.2设计原则 (2) 2.3 维修性设计的基本容 (2) 2.3.1 简化设计 (2) 2.3.3 互换性 (2) 2.3.5 防差错设计 (3) 2.3.6 检测性 (3) 2.7 维修中人体工程设计 (3) 3 维修性分析 (3) 3.1 产品的维修项目组成 (3) 3.2 系统平均故障修复试件(MTTR)计算模型 (4) 3.3 MTTR值计算 (4) 4可靠性设计 (5) 4.1可靠性设计原则 (5) 4.2 可靠性设计的基本容 (5) 4.2.1简化设计 (6) 4.2.2降额设计 (6) 4.2.3缓冲减振设计 (6) 4.2.4抗干扰措施 (6) 4.2.5热设计 (6) 5 可靠性分析 (6) 5.1可靠性物理模型(MTBF) (6) 5.2可靠性计算 (7)

1 概述 XX是集音视频无缝切换、实时字幕叠加、采集、存储、传输、显示于一体的综合性集成设备。在平台上集成了视频编辑、图片编辑、文稿编辑软件,编辑后的视频、图片能通过平台播放出去。系统配置2-4部4G手机,置专用软件,通过云平台与本处理平台连接,把手机视频、图片、草图、短消息、位置实时上传到处理平台上,处理平台可以实时将手机视频无缝切播出去,在手机上可以在地图上看到相互的轨迹与位置,平台的地图窗口也可以看到手机的位置与轨迹。也可通过联网远程对本平台上的实时视频流或存储的视频资料进行选择读取播放、存储、编辑。使用专门定制的带拉杆的高强度安全防护箱,外形尺寸56x45x26cm, 重量小于20kg, 便于携带。 2维修性设计 2.1 设计目的 维修性工程是XX研制系统工程的重要部分,为了提高XX的可维修性,XX 在研制过程中必须进行有效的维修性设计,提出设计的目标,以便在随后的试制、试验等环节中严格贯彻设计要求,保证XX的维修性达到设计的要求。 2.2设计原则 设计遵循可达性、互换性、防差错性、标准化的原则;严格参照GJB368A-94《装备维修性通用大纲》的规定执行。 2.3 维修性设计的基本容 2.3.1 简化设计 2.3.1.1不少于2部4G手机,远程采集音频视频图片,绘制草图,短消息,手机实时运动轨迹,发送到平台上显示。手机与平台通信应适当加密。

连接器检验方法[1]非常实用-可做检验试验

连接器检验方法 上海航天技术研究院808所杨奋为 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。 但根据作者多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,作者认为:针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 具体: 2接触电阻检验 2.1作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。 实际接触面可分为两部分; 一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的5-10%。 二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1)集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2)膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。

可靠性数据分析的计算方法

可靠性数据分析的计算方法

PROCEEDINGS,Annual RELIABILITY and MAINTAINABILITY Symposium(1996) 可靠性数据分析的计算方法 Gordon Johnston, SAS Institute Inc., Cary 关键词:寿命数据分析加速试验修复数据分析软件工具 摘要&结论 许多从事组件和系统可靠度研究的专业人员并没有意识到,通过廉价的台式电脑的普及使用,很多用于可靠度分析的功能强大的统计工具已经用于实践中。软件的计算功能还可以将复杂的计算统计和图形技术应用于可靠度分析问题。这大大的便利了工业统计学家和可靠性工程师,他们可以将这些灵活精确的方法应用于在可靠度分析时所遇到的许多不同类型的数据。 在本文中,我们在SAS@系统中将一些最有用的统计数据和图形技术应用到例子的当中,这些例子主要包涵了寿命数据,加速试验数据,以及可修复系统中的数据。随着越来越多的人意识到创新性软件在可靠性数据分析中解决问题的需要,毫无疑问,计算密集型技术在可靠性数据分析中的应用的趋势将会继续扩大。 1.介绍 本文探讨了人们在可靠性数据分析普遍遇到的三个方面: 寿命数据分析 试验加速数据分析 可修复系统数据的分析 在上述各领域,图形和分析的统计方法已被开发用于探索性数据分析,可靠性预测,并用于比较不同的设计系统,供应商等的可靠性性能。 为了体现将现代统计方法用于结合使用高分辨率图形的使用价值,在下面的章节中图形和统计方法将被应用于含有上述三个方面的可靠性数据的例子中。2.寿命数据分析 概率统计图的寿命数据分析中使用的最常见的图形工具之一。Weibull 图是最常见的使用可靠性的概率图的类型,但是当Weibull概率分布并不符合实际数据的时候,类似于对数正态分布和指数分布这一类的概率图在寿命数据分析中也能够起到帮助。 在许多情况下,可用的数据不仅包含故障时间,但也包含在分析时没有发生故障的单位的运行时间。在某些情况下,只能够知道两次故障发生之间的时间间隔。例如,在测试大量的电子元件时,如果记录每一个发生故障的元件的故障时间,那么这可能不经济。相反,在固定的时间间隔内

紧固件连接可靠性研究

紧固件连接可靠性研究 (2018版) 技术中心办公室 **有限公司

前言 高端紧固件是指用于高端装备或装备的高端部位紧固件,在汽车领域、特种车辆或特殊用途领域的农机装备,其某些部位的连接和紧固件也涉及高的连接强度、先进的防腐蚀技术以及长寿命等要求,不是普通意义上认为的螺钉螺帽所能够胜任的,而是需要选用高端紧固件。显而易见,由于使用中的高端紧固件非正常失效可能造成的危害或损失难以估量,所以,如果说质量是紧固件的生命,那么,可靠性就是高端紧固件的灵魂。针对高端紧固件的连接,尤其是高端装备制造的生产,在实践中人们重视所要求的连接即符合性的要求,更强调连接的适用性要求,也就是说,紧固件在使用时能成功地适合用户的明确的要求和隐含的需求才是高质量的。 保证高端紧固件的可靠性,就要采用系统的方法,实行可靠性工程。可靠性工程是指为了达到产品的可靠性要求而进行的使用设计(包括选型)、产品设计、生产、试验验证等一系列的工作。这里特别提出使用设计的问题,是因为高端紧固件产品不同于其他产品,其使用设计和正确选型对于高端紧固件完成设定的功能具有非常重要的意义。 紧固件的连接,根据需要有大有小,大部分是群体使用,要能够适应连接的强度、应力、温度、环境等工况要求,还要受到安装操作空间的限制等等,因此,做好使用设计、正确合理选择高端紧固件的型号规格、防松形式、耐环境方式等是高端紧固件使用中实现可靠性的前提。 这就要求在特别重要的部位,除理论计算连接强度等力学要求外,还要综合考虑冲击、振动等综合特性,以及应力腐蚀、氢脆、耐久性等理化因素,必要时要建立连接可靠性的数学模型,进行理论分析,并根据模拟仿真来进行验证。 汽车紧固件分基础件和重要件两个档次,重要件的质量和使用不当等是造成汽车质量问题的主因,因此做好紧固件可靠性的研究工作至关重要。 紧固件结构简单,品种繁多,约占整车零件数的30%~40%。它是车辆的主要连接件,约占整车装配的工作量的70%。正确合理的选用装配紧固件可以优化车辆结构设计,提高装配效率,降低成本,保障车辆行驶的安全性。 目前紧固件可靠性研究方面的资料很多,但比较零散,系统性研究的不多,未对车辆设计人员连接结构设计及装配工艺参数的编制确定提供系统性的参考指导意见。为提高我公司的工作效率,我们根据设计生产的需要,选取机械设计手册、紧固件选用手册、表面处理手册、国内外紧固件期刊杂志等资料内有关车辆连接设计可靠性相关的内容编制本文件。 由于水平所限,难免有错误和欠妥之处,请相关部门进行批评指正! 技术中心办公室 2018年8月

通风管道就算规范

一 工程量计算规则 一、工程量清单项目的工程量计算规则 1.通风及空调设备及部件制作安装 (1)空气加热器(冷却器)除尘设备安装依据不同的规格、重量,按设计图示数量计算,以台为计量单位。 (2)通风机安装依据不同的形式、规格,按设计图示数量计算,以台为计量单位。 (3)空调器安装依据不同形式、重量、安装位置,按设计图示数量计算,以台为计量单位;其中分段组装式空调器按设计图示所示重量以千克为计量单位。 (4)风机盘管安装依据不同形式、安装位置,按设计图示数量计算,以台为计量单位。 (5)密闭门制作安装依据不同型号、特征(带视孔或不带视孔),按设计图示数量计算,以个为计量单位。 (6)挡水板制作安装依据不同材质,按设计图示按空调器断面面积计算,以平方米为计量单位。 (7)金属空调器壳体、滤水器、溢水盘制作安装依据不同特征、用途,按设计图示数量计算,以千克为计量单位。 (8)过滤器安装依据不同型号、过滤功效,按设计图示数量计算,以台为计量单位。 (9)净化工作台安装依据不同类型,按设计图示数量计算,以台为计量单位。 (10)风淋室、洁净室安装依据不同重量,按设计图示数量计算,以台为计量单位。 (11)设备支架依据图示尺寸按重量计算,以千克为计量单位。 2.通风管道制作安装 (1)各种通风管道制作安装依据材质、形状、周长或直径、板材厚度、接口形式,按设计图示以展开面积计算,不扣除检查孔、测定孔、送风口、吸风口等所占面积;风管长度一律以设计图示中心线长度为准(主管与支管以其中心线交点划分)。包括弯头、三通、变径管、天圆地方等管件的长度。风管展开面积不包括风管、管口重叠部分面积。直径和周长按图注尺寸为准展开。整个通风系统设计采用渐缩管均匀送风者,圆形风管按平均直径、矩形风管按平均周长计算,以平方米为计量单位。 (2)柔性软风管安装依据材质、规格和有无保温套管按设计图示中心线长度计算。包括弯头、三通、变径管、天圆地方等管件的长度。但不包括部件的长度,以米为计量单位。 (3)风管导流叶片制作安装按图示叶片的面积计算,以米为计量单位。 (4)风管检查孔制作安装按设计图示尺寸计算重量,以千克为计量单位。 (5)温度、风量测定孔制作安装依据其型号,按设计图示数量计算,以个为计量单位。 3.通风管道部件制作安装 (1)各种调节阀制作安装应依据材质、类型、规格、周长、重量按设计图示数量计算,以个为计量单位。

可靠性软件评估报告

可靠性软件评估报告 目前,关于可靠性分析方面的软件产品在市场上出现的越来越多,其中比较著名的有以下3种产品:英国的ISOGRAPH、广五所的CARMES和美国Relex。总体上来说,这些可靠性软件都是基于相同的标准,因此它们的基本功能也都十分类似,那么如何才能分辨出它们之间谁优谁劣呢?根据可靠性软件的特点和我厂的实际情况,我认为应主要从软件的稳定性、易用性和工程实用性三个方面进行考虑,现从这几个方面对上述软件进行一个简单的论证,具体内容如下。 稳定性 要衡量一个可靠性软件的好坏,首先是要看该软件的运行是否稳定。对一个可靠性软件来说,产品的稳定性十分重要。一个没有经过充分测试、自身的兼容性不好、软件BUG很多、经常死机的软件,用户肯定是不能接受的。当然,评价一个可靠性分析软件是否具有良好的稳定性,其最好的证明就是该产品的用户量和发展历史。 ISOGRAPH可靠性分析软件已将近有20年的发展历史,目前全球已有7000多个用户,遍布航空、航天、铁路、电子、国防、能源、通讯、石油化工、汽车等众多行业以及多所大学,其产品的每一个模块都已经过了isograph的工程师和广大用户的充分测试,因而其产品的稳定性是毋庸置疑的。而广五所的CARMES和美国Relex软件相对来说,其用户量比较少,而且其产品的每一个模块的发布时间都比isograph软件的相应模块晚得多,特别是一些十分重要的模块。 例如,isograph的故障树和事件树分析模块FaultTree+是一个非常成熟的产品,它的发展历史已经有15年了。Markov模块和Weibull模块也具有多年的发展历史,这些模块目前已经拥有一个十分广泛的用户群,它们已经被Isograph的工程师和大量的客户广泛的测试过,产品的稳定性值得用户信赖。而Relex的故障树和事件树相对比较新,它大约在2000年被发布,而Markov模块和Weibull模块2002年才刚刚发布,这些模块还没有经过大量用户的实际使用测试,其功能的稳定性和工程实用性还有待于时间的考验。广五所的CARMES软件的相应模块的发布时间就更晚了,有些甚至还没有开发出来,而且其用户主要集中在国内,并没有经过国际社会的广泛认可。 易用性 对一个可靠性分析软件产品来说,其界面是否友好,使用是否方便也十分重要,这关系到工程师能否在短时间内熟悉该软件并马上投入实际工作使用,能否充分发挥其作用等一系列问题。一个学习十分困难、使用很不方便的软件,即使其功能十分强大,用户也不愿使用。 ISOGRAPH软件可以独立运行在Microsoft Windows 95/98/Me/2000/NT/XP平台及其网络环境,软件采用大家非常熟悉的Microsoft产品的特点,界面友好,十分容易学习和使用。该软件提供了多种编辑工具和图形交互工具,便于用户在不同的模块间随时察看数据和进行分析。你可以使用剪切、复制、粘贴等工具,或者直接用鼠标“托放”来快速的创建各种分析项目,你还可以将标准数据库文件,如Microsoft Access数据库、Excel电子表格以及各种格式的文本文件作为输入直接导入到isograph软件中,使项目的建立变得非常简单。另外,Isograph 各软件工具都提供了功能强大的图形、图表和报告生成器,可以用来生成符合专业设计要求的报告、图形和表格,并可直接应用到设计分析报告结果中。 ISOGRAPH软件的一个显著特性就是将各软件工具的功能、设计分析信息、分析流程等有机地集成在一起,其全部的分析模块可以在同一个集成界面下运行,这既可以保证用户分析项目的完整性,还可以使用户在不同的模块间共享所有的信息,不同模块间的数据可以实时链接,而且还可以相互转化。例如,你可以在预计模块和FMECA模块之间建立数据链接,当你修改预计模块中的数据时,FMECA模块中对应的数据会自动修改,这既可以节省

连接器可靠性测试项目及其测试标准

连接器检测一般涉及以下几个项目:插拔力测试、耐久性测试、绝缘电阻测试、振动测试、机械冲击测试、冷热冲击测试、混合气体腐蚀测试等。 连接器具体测试项目如下: (一)连接器插拔力测试 参考标准:EIA-364-13 目的:验证连接器的插拔力是否符合产品规格要求。 原理:将连接器按规定速率进行完全插合或拔出,记录相应的力值。 (二)连接器耐久性测试 参考标准:EIA-364-09 目的:评估反复插拔对连接器的影响,模拟实际使用中连接器的插拔状况。 原理:按照规定速率连续插拔连接器直至达到规定次数。 (三)连接器绝缘电阻测试 参考标准:EIA-364-21 目的:验证连接器的绝缘性能是否符合电路设计的要求或经受高温,潮湿等环境应力时,其阻值是否符合有关技术条件的规定。 原理:在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出来的电阻值。 (四)连接器耐电压测试 参考标准:EIA-364-20 目的:验证连接器在额定电压下是否能安全工作,能否耐受过电位的能力,从而评定连接器绝缘材料或绝缘间隙是否合适。 原理:在连接器接触件与接触件之间,接触件与外壳之间施加规定电压并保持规定时间,观察样品是否有击穿或放电现象。 (五)连接器接触电阻测试 参考标准:EIA-364-06/EIA-364-23 目的:验证电流流经接触件的接触表面时产生的电阻值。 原理:通过对连接器通规定电流,测量连接器两端电压降从而得出电阻值。 (六)连接器振动测试

参考标准:EIA-364-28 目的:验证振动对电连接器及其组件性能的影响。 振动类型:随机振动,正弦振动。 (七)连接器机械冲击测试 参考标准:EIA-364-27 目的:验证连接器及其组件耐冲击的能力或评定其结构是否牢固。 测试波形:半正弦波,方波。 (八)连接器冷热冲击测试 参考标准:EIA-364-32 目的:评估连接器在急速的大温差变化下,对于其功能品质的影响。 (九)连接器温湿度组合循环测试 参考标准:EIA-364-31 目的:评估连接器在经过高温高湿环境储存后对连接器性能的影响。 (十)连接器高温测试 参考标准:EIA-364-17 目的:评估连接器暴露在高温环境中于规定时间后端子和绝缘体性能是否发生变化。(十一)连接器盐雾测试 参考标准:EIA-364-26 目的:评估连接器,端子,镀层耐盐雾腐蚀能力。 (十二)连接器混合气体腐蚀测试 参考标准:EIA-364-65 目的:评估连接器暴露在不同浓度混合气体中的耐腐蚀能力及对其性能的影响。(十三)连接器线材摇摆测试

风管导流叶片计算规则

通风管道工程量计算规则 1, 薄钢板风管 (1)风管按不同规格以展开面积计算,管上检查孔、测定孔、送风口、吸风口等所占 面积不扣除。 (2)计算风管长度时一律以图注中心线长度为准,包括弯头、三通、变径管、天圆地 方等管件的长度,但不得包括通风部件(如风阀、风口等)所在位置的长度。风管直径和 周长按图注尺寸展开。但咬口风管的接口及翻边量不得计算在展开面积内。 (3)风管导流叶片按叶片的面积计算。 (4)风管附件(除软性接头按平方米计算外),检查孔、测定孔等按不同类型、规格分 别以个为单位计算。 2,不锈钢风管及铝板风管 风管的计算规则同薄钢板风管,部件按设计成品重量计算。 3. 塑料风管及部件 (1)风管按图注不同规格以展开面积计算,检查孔、测定孔、送风口、吸风口等所占 面积不扣除。

(2)计算风管长度时,一律以图注中心线长度为准, 包括弯头、三通、变径管、天圆地 方等管件的长度,但不得包括通风部件(如风阀、风 口等)所在位置的长度,风管直径和 周长以图注尺寸展开。 (3)标准部件和非标准部件均按成品的重量计算。 导流叶片计算: 导流叶片的作用:是将从空气调节主机压出通过交换 的冷气,顺着风管从风口排除,达到调节室内空气的 目的。当冷气通过风管弯头处时,如果不对其进行导 流,势必产生涡流影响冷气传导!因此风管弯头处必 须安装导流叶片!往往有一些年轻筒子们忽视导流叶 片计算,要么就过估很不准确。老侠提供列表计算如 下: 风管导流叶片长边确定片数表: 长边规格(mm)500 630 800 1000 1250 1600 2000 导流叶片数(片) 4 4 6 7 8 10 12 短边导流叶片与面积表: 短边规格(mm)

可靠度分析方法的一般概念

精心整理基于性能的设计过程为分为三个步骤: ①按照建筑物的用途以及用户对建筑物的需求来确定性能的要求,从而建立一个目标性能; ②根据建立好的目标性能选用一种合适的结构设计方法; ③对各项性能指标进行综合评定,判断所设计的建筑物能否满足目标性能的要求。一般采用风险率 (1 (2 (3 (4 在实际工程中,极限状态函数往往是很难用显式表达出来,响应面法是在设计验算点附近用多项式来拟合复杂的极限状态函数,然后用一般的可靠度计算方法计算结构可靠度,因此响应面法在实际工程的计算当中得到广泛应用。 蒙特卡洛法的原理是: 对所研究的问题建立相似的概率模型,根据其统计特征值(如均值、方差等),采用某种特定方法

产生随机数和随机变量来模拟随机事件,然后对所得的结果进行统计处理,从而得到问题的解。(1)根据待求的问题构造一个合适的随机模型,所求问题的解应该对应于该 模型中随机变量的均值和方差等统计特征值;在主要特征参数方面,所构造的模 型也应该与实际问题相一致。 (2)根据模型中各个随机变量的统计参数和概率分布,随机产生一定数量的 随机数。通常我们先产生服从均匀分布的随机数,然后通过某种变换转化为服从 (3 (4 (5 1 2 3 4、重复2、3过程过程N次(N=600)。 5、统计分析上述过程产生的组抗力,得到偏压柱在偏心距为时的抗力 平均值和标准差。 6、给出一组偏心距值,重复以上步骤,便可得到混凝土偏心受压柱截面抗 力—曲线,平均值及标准差。

验算点法(JC): 洛赫摩和汉拉斯在研究荷载组合时提出了按当量正态化条件,将非正态随机变量当量为正态随机变量进行可靠度计算的新方法。该方法较为直观、易于理解,是国际安全度联合会推荐(JCSS)推荐使用的方法,又称为JC法。 需要已知验算点的坐标值,但对于非正态随机变量和非线性极限状态方程,其坐标值不能预先求得,所以需进行迭代计算。 JC (2)BP 1957 则应对边界条件具 有“最小偏见”的,这实际上是个优化问题,即最大熵原理的定义。 随机有限元法 采用有限元法分析具有确定性物理模型的结构可靠度,可先确定极限状态函数中每项参数如作用效应和结构抗力等的统计参数和概率分布;再通过有限元分析求出结构的随机反应,如结构反应的平

厂房建筑结构可靠性鉴定报告材料完整版

厂房建筑结构可靠性鉴定报 告 委托单位: 建筑地址: 鉴定日期: 报告编写人: 报告审核人: 报告签发人: xxxx有限公司 xx年 xx月 xx日

目录 建筑结构可靠性鉴定报告 (1) 一、建筑物概况 (3) 二、鉴定目的、内容、依据及检测仪器 (3) 2.1 鉴定目的 (3) 2.2 检测鉴定内容和方法 (3) 2.3 主要依据 (4) 2.4 检测仪器设备 (4) 三、建筑使用历史及图纸资料调查 (4) 3.1 建筑使用历史、现状和使用环境调查 (4) 3.2 建筑资料调查 (5) 四、结构构件工作状态检查 (5) 4.1 地基基础检查情况 (5) 4.2 上部结构变形、损伤检查情况 (5) 4.2.1 上部承重结构 (5) 4.2.2 围护构件 (6) 五、建筑主体结构构件检测 (6) 5.1 结构平面布置图测绘 (6) 5.2构件尺寸检测 (6) 5.3钢筋配置检测 (8) 5.4 材料强度检测 (9) 5.4.1混凝土强度检测 (9) 5.4.2钢材的强度检测 (11) 5.5钢结构构件焊缝检测 (11) 六、结构承载力验算 (11) 6.1 计算参数 (12) 6.2 结构分析模型 (13) 6.3 柱承载力验算及安全性评定 (13) 6.3.1柱承载力验算 (13)

6.3.2框架柱的轴压比验算 (14) 6.4 梁承载力验算及安全性评定 (15) 6.5 屋桁架杆件验算及安全性评定 (15) 七、结构系统的鉴定评级 (16) 八、结构可靠性鉴定结论 (17) 九、处理建议 (18) 评级解释 (20) 附图一:结构平面布置图............................... 错误!未定义书签。附件1 部分现场工作照片及部分缺陷照片................. 错误!未定义书签。附件2 混凝土芯样抗压强度检验报告..................... 错误!未定义书签。附件3 钢材力学及工艺性能检验报告..................... 错误!未定义书签。附件4 焊缝质量检测报告............................... 错误!未定义书签。

可靠性分析

七.山东电网可靠性分析 7.1算法 7.1.1发输电系统可靠性分析 电力系统可靠性是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能能力的度量。一般由故障对电力系统用户造成不良影响的概率、频率、持续时间、故障引起的期望电力损失及期望电量损失等定量指标对系统可靠性进行度量。 电力系统可靠性分析通常包括一下四方面的内容: 1、确定元件停运模型:电力系统由大量的发电机、架空输电线路、电缆、变压器、隔离开关以及各种无功补偿设备等组成。元件停运是系统失效的根本原因,系统可靠性评估首先要确定元件的停运模型。元件失效可分为独立和相关两类停运,每一类又可进一步加以细分。大多数情况下,只计入可修复的强迫停运,有时也是对计划停运进行模拟。 2、选择系统状态和计算它们的概率:选择系统的失效状态并计算它们的概率。有两种选择系统状态的基本方法:状态枚举和蒙特卡洛模拟,二者各有千秋。通常,如果严重事件的数量相对较大,或计及复杂运行工况,则往往首选蒙特卡洛模拟法。 3、评估所选择状态的后果:进行系统失效状态分析,以及评估它们的后果。根据所研究系统的不同,分析过程可能是简单的功率平衡,或者网络结构连通性识别,也可能是包括潮流、优化潮流,甚至暂态和电压稳定性分析在内的计算。 4、计算风险指标:根据第二、三项工作获得的信息,即可建立其正确表征系统风险的指标。对于不同的要求,可能存在多个风险指标。虽然在某些情况下可以计算指标的概率分布,但大多数指标主要是随机变量的期望值。重要的是应当清楚了解,期望值并非确定性的参数,而是所研究现象的长期平均数字特征。我们选择相应的期望指标作为反映元件容量和停运、负荷曲线及其预测的不确定性、系统结构、运行工况等各种因素在内的风险标识。可将电力系统风险评估按照系统状态分析的性质,区分为系统充裕度分析和系统安全性分析两个方面。充裕度分析表明系统设施是否能满足用户的系统负荷需求和系统运行的约束条件,因此充裕性分析只设计系统的稳态条件,而不要求动态和暂态分析;安全性则表明系统对动态和暂态扰动的响应能力,因而要对系统中出现的扰动及其后果进行评价。 电力系统可靠性分析相关的重要概念:元件失效模型。 重点介绍一下可修复强迫失效模型。可修复强迫失效模型可以通过稳态“运行-停运-运行”的循环来模拟。图7-1与图7-2分别为循环过程图和状态转移图。长期循环过程中的

连接器检测不良及原因

连接器检测不良及原因 1引言 不论是高频电连接器,还是低频电连接器,绝缘电阻、介质耐压(又称抗电强度)和接触电阻都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据笔者多年来从事电连接器检验的实践发现,目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素不同,直接影响到检验准确和一致。为此,笔者认为,针对目前这三个常规电性能检验项目和实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2绝缘电阻检验 2.1作用原理 绝缘电阻是指在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出的电阻值。即绝缘电阴(MΩ)=加在绝缘体上的电压(V)/泄漏电流(μA)。通过绝缘电阻检验,确定连接器的绝缘性能能否符合电路设

计的要求,或在经受高温、潮湿等环境应力时,其绝缘电阻是否符合有关技术条件的规定。 绝缘电阻是设计高阻抗电路的限制因素。绝缘电阻低,意味着漏电流大,这将破坏电路和正常工作。如形成反馈回路,过大的漏电流所产生的热和直流电解,将使绝缘破坏或使连接器的电性能变劣。 2.2影响因素 主要受绝缘材料、温度、湿度、污损、试验电压及连续施加测试电压的持续时间等因素影响。 2.2.1绝缘材料 设计电连接器时选用何种绝缘材料非常重要,它往往影响产品的绝缘电阻能否稳定合格。如某厂原使用酚醛玻纤塑料和增强尼龙等材料制作绝缘体,这些材料内含极性基因,吸湿性大,在常温下绝缘性能可满足产品要求,而在高温潮湿下则绝缘性能不合格。后采用特种工程塑料PES(聚苯醚砜)材料,产品经200℃、1000h和240h潮湿试验,绝缘电阻变化较小,仍在105MΩ以上,无异常变化。 2.2.2温度 高温会破坏绝缘材料,引起绝缘电阻和耐压性能降低。对金属壳体,高温可使接触件失去弹性、加速氧化和发生镀层变质。如按GJB598生产的耐环境快速分离电连接器系列II产品,绝缘电阻规定25℃时应不小于5000MΩ,而200℃时,则降低至不小于500MΩ。 2.2.3温度

弯管导流叶片制作施工工艺标准

金属风管矩形弯管导流叶片施工工艺标准 陕建一建集团安装公司 第二工程公司

金属风管矩形弯管导流叶片 施工工艺标准 桂建平 1.范围 本标准适用于新建、扩建和改建的工业与民用建筑通风空调工程中金属风管矩形弯管制作过程中导流叶片的设置原则及要求。并规定了矩形弯管导流叶片制作的方法、要求及质量控制等方面的相关要求。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所用的修改单(不包括勘误的内容)或修订版不适用于本标准。 《建筑工程施工质量验收统一标准》GB50300—2001; 《通风与空调工程施工质量验收规范》GB50243—2002; 《通风管道技术规程》JGJ141—2004; 陕西省《通风与空调工程施工工艺标准》DBJ/T61-39-2005。 3.术语 3.1金属风管 是指采用金属薄板制作而成,用于空气流通的管道。 3.2导流叶片 是指将从通风设备压出的气流,顺着风管从风口送出或排出,达

到调节室内空气的目的。当气流通过风管弯头处时,如果不对其进行导流,势必产生涡流影响气流传导,增加气流阻力。为了消除或减小涡流对气流产生的影响,因此在风管弯头处必须安装导流叶片。 4.施工准备 4.1、技术准备 风管及风管弯管制作完成后,风管系统安装前,应根据弯管形式及管道尺寸,确定风管矩形弯管是否需要设置导流叶片。 4.2、工、机具准备 电剪、手剪、手电钻、抽芯铆钉、拉铆枪、划针、划规、木榔头、铁榔头、钢板尺、钢卷尺、直角尺等。 5.施工工艺 5.1. 矩行弯管的分类: 矩形弯管按下图所示,分为内外同心弧型、内弧外直角型、内斜线外直角型及内外直角型。 内外同心弧形内弧外直角型内斜线外直角型内外直角型 5.2矩形弯管宜采用内外同心弧型,弯管曲率半径宜为一个平面边长,圆弧应均匀。当矩形内外弧型弯管平面边长大于500mm,且内弧半径(r)与弯管平面边长(a)之比小于或等于0.25时应设置导流叶片。导流叶片弧度应与弯管弧度相等,迎风边缘应光滑,片数及设置位置

可靠性分析报告..

可靠性工程结课论文 题目:混频器组件可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月

目录 摘要 (3) 关键词 (3) 1. 元器件清单 (3) 2. 可靠性预测 (4) 3. 可靠性分析 (6) 3.1可靠性数据分析 (7) 3.2故障模式影响 (7) 3.3 危害性分析 (8) 4. 结论和建议 (10) 参考文献 (10)

混频器组件可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 【摘要】变频,是将信号频率由一个量值变换为另一个量值的过程。具有这种功能的电路称为变频器(或混频器)。输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。混频器通常由非线性元件和选频回路构成。 【关键词】混频器,变频,组件 【Abstract】frequency conversion, is to signal frequency by a value transform into another process of the value. Which has the function of the circuit is called inverter (or mixers). The output signal frequency is equal to the sum of two input signal frequency, or for both other combination of the circuit. Mixer is usually composed of nonlinear components and frequency selective circuit. 【keywords】mixer, frequency conversion, components

连接器电气性能检测

1 引言 不论是高频电连接器,还是低频电连接器,绝缘电阻、介质耐压(又称抗电强度)和接触电阻都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B 组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据笔者多年来从事电连接器检验的实践发现,目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素不同,直接影响到检验准确和一致。为此,笔者认为,针对目前这三个常规电性能检验项目和实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2 绝缘电阻检验 2.1作用原理 绝缘电阻是指在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出的电阻值。即绝缘电阴(MΩ)=加在绝缘体上的电压(V)/泄漏电流(μA)。通过绝缘电阻检验,确定连接器的绝缘性能能否符合电路设计的要求,或在经受高温、潮湿等环境应力时,其绝缘电阻是否符合有关技术条件的规定。 绝缘电阻是设计高阻抗电路的限制因素。绝缘电阻低,意味着漏电流大,这将破坏电路和正常工作。如形成反馈回路,过大的漏电流所产生的热和直流电解,将使绝缘破坏或使连接器的电性能变劣。 2.2影响因素 主要受绝缘材料、温度、湿度、污损、试验电压及连续施加测试电压的持续时间等因素影响。 2.2.1绝缘材料 设计电连接器时选用何种绝缘材料非常重要,它往往影响产品的绝缘电阻能否稳定合格。如某厂原使用酚醛玻纤塑料和增强尼龙等材料制作绝缘体,这些材料内含极性基因,吸湿性大,在常温下绝缘性能可满足产品要求,而在高温潮湿下则绝缘性能不合格。后采用特种工程塑料PES(聚苯醚砜)材料,产品经200℃、1000h和240h潮湿试验,绝缘电阻变化较小,仍在105MΩ以上,无异常变化。 2.2.2温度 高温会破坏绝缘材料,引起绝缘电阻和耐压性能降低。对金属壳体,高温可使接触件失去弹性、加速氧化和发生镀层变质。如按GJB598生产的耐环境快速分离电连接器系列II产品,绝缘电阻规定25℃时应不小于5000MΩ,而200℃时,则降低至不小于500MΩ。 2.2.3温度 潮湿环境引起水蒸气在绝缘体表面的吸引和扩散,容易使绝缘电阻降低到MΩ级以下。长期处于高温环境下会引起绝缘体物理变形、分解、逸出生成物,产生呼吸效应及电解腐蚀及裂纹。如按GJB2281生产的带状电缆电连接器,标准大气条件下的绝缘电阻值应不小于5000MΩ,而经相对湿度90%~95%、温度40±2℃、96h湿热试验后的绝缘电阻降至不小于1000MΩ。 2.2.4污损 绝缘体内部和表面的洁净度对绝缘电阻影响很大,由于注塑绝缘体用的粉料或胶接上、下绝缘安装板的胶料中混有杂质,或由于多次插拔磨损残留的金属屑及锡焊端接时残留的焊剂渗入绝缘体表面,都会明显降低绝缘电阻。如某厂生产的圆形电连接器在成品交收试验时发现有一个产品接触件之间的绝缘电阻很低,仅20MΩ,不合格。后经解剖分析发现,这是因注塑绝缘体用的粉料中混有杂质而造成的。后只得将该批产品全部报废。 2.2.5 试验电压 绝缘电阻检验时施加的试验电压对测试结果有很大关系。因为试验电压升高时,漏电流的增加不成线性

相关主题