搜档网
当前位置:搜档网 › 物理法拉第电磁感应定律的专项培优 易错 难题练习题(含答案)附答案解析

物理法拉第电磁感应定律的专项培优 易错 难题练习题(含答案)附答案解析

物理法拉第电磁感应定律的专项培优 易错 难题练习题(含答案)附答案解析
物理法拉第电磁感应定律的专项培优 易错 难题练习题(含答案)附答案解析

物理法拉第电磁感应定律的专项培优易错难题练习题(含答案)附答案解析

一、法拉第电磁感应定律

1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.

(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?

(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?

(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?

【答案】(1)1.2 V(2)3.2 J(3)0.9 J

【解析】

【详解】

(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:

10.44V=1.6 V

E BLv

==??

因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:

U eb=3

4

E=1.2 V.

(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:

F安=BLI

根据闭合电路欧姆定律有:

I=E R

联立解得解得F安=4 N

所以克服安培力做功:

=2=420.4J=3.2J W F L ???安安

而Q =W 安,故该过程中产生的焦耳热Q =3.2 J

(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:

22122v v a L -=

而根据牛顿运动定律可知:

()M m g

a M m

-=

+

联立整理得:

1

2

(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:

W F -W'安+(M-m )g ·2L =

1

2

(M+m )( 21v -v 2) 联立解得:

W F -W'安=0

而W'安= Q',故Q'=3.6 J

又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:

Q eb =

1

4

Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.

2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。纸面内有一正方形均匀金属线框abcd ,其边长为L ,总电阻为R ,ad 边与磁场边界平行。从ad 边刚进入磁场直至bc 边刚要进入的过程中,线框在向左的拉力作用下以速度v 匀速运动,求:

(1)拉力做功的功率P ; (2)ab 边产生的焦耳热Q .

【答案】(1) P =222B L v R

(2)Q =234B L v

R

【解析】

【详解】

(1)线圈中的感应电动势

E=BLv 感应电流

I=E R

拉力大小等于安培力大小

F=BIL 拉力的功率

P=Fv=

222 B L v R

(2)线圈ab边电阻

R ab=

4

R 运动时间

t=L v

ab边产生的焦耳热

Q=I2R ab t =

23 4

B L v

R

3.如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I 内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=t x时刻(t x未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:

(1)通过cd棒电流的方向和区域I内磁场的方向;

(2)ab棒开始下滑的位置离EF的距离;

(3)ab棒开始下滑至EF的过程中回路中产生的热量。

【答案】(1)通过cd棒电流的方向从d到c,区域I内磁场的方向垂直于斜面向上;(2)3l

(3)4mgl sin θ。 【解析】 【详解】

(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动,

a =

sin mg m

θ

=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:

1Blv t

=? 2(sin )x x

B l I

BI g t t θ??= 解得

x t =

ab 棒在区域Ⅱ中做匀速直线运动的速度

1v

则ab 棒开始下滑的位置离EF 的距离

2

1232

x h at l l =

+= (3)ab 棒在区域Ⅱ中运动时间

22x

l t v =

= ab 棒从开始下滑至EF 的总时间

2x t t t =+= 感应电动势:

1E Blv ==

ab 棒开始下滑至EF 的过程中回路中产生的热量:

Q =EIt =4mgl sin θ

4.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,

图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:

(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。 【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】

(1)金属棒在AB 段匀速运动,由题中图象得:

v =

x

t ??=7 m/s 根据欧姆定律可得:

I =

BLv

r R

+ 根据平衡条件有

mg =BIL

解得:

B =0.1T

(2)根据电量公式:

q =I Δt

根据欧姆定律可得:

I =

()R r t

+?

磁通量变化量

ΔΦ=

S t

??B 解得:

q =0.67 C

(3)根据能量守恒有:

Q =mgx -

12

mv 2 解得:

Q =0.455 J

所以

Q R =

R

r R

+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J

5.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的

金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ??=- ??? ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ??

=-

???

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

6.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为

R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:

(1)金属棒匀速运动的速度大小;

(2)金属棒与金属导轨间的动摩擦因数μ;

(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】

【分析】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;

(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;

(3)根据功能关系结合焦耳定律求解。

【详解】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,

由于

解得:;

(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;

根据平衡条件可得:mg=μF A,

通过导体棒的电流I′=,则F A=BI′L1,

解得μ=;

(3)金属棒经过efgh区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;

根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W克=mgL2,

则Q总=mgL2,

定值电阻R上产生的焦耳热Q R=Q总=mgL2。

【点睛】

对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件

列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

7.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR gr

x =

,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:

(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?

(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =rh

x ?=12Q mgr =

【解析】 【分析】 【详解】

(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:

2

012

mgr mv =

解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:

012mv mv =

解得两棒以相同的速度做匀速运动的速度0

122gr

v v =

= (2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:

2222A B L x

I ILBt BL Rit R

?Φ===

由动量定理:

21A I mv mv --=

解得22gr

v =

由平抛运动规律得,两棒落到地面后的距离()

1222

h rh x v v g ?=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳

热:220111

(2)22

Q mv m v =

- 解得:1

2

Q mgr =

8.如图甲所示,两根间距L =1.0m 、电阻不计的足够长平行金属导轨ab 、cd 水平放置,一端与阻值R =2.0Ω的电阻相连.质量m =0.2kg 的导体棒ef 在恒定外力F 作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为f =1.0N ,导体棒电阻为r =1.0Ω,整个装置处于垂直于导轨平面向上的匀强磁场B 中,导体棒运动过程中加速度a 与速度v 的关系如图乙所示(取g =10m/s 2).求:

(1)当导体棒速度为v 时,棒所受安培力F 安的大小(用题中字母表示). (2)磁场的磁感应强度B .

(3)若ef 棒由静止开始运动距离为S =6.9m 时,速度已达v ′=3m/s .求此过程中产生的焦耳热Q . 【答案】(1);(2)

;(3)

【解析】 【详解】

(1)当导体棒速度为v 时,导体棒上的电动势为E,电路中的电流为I. 由法拉第电磁感应定律

由欧姆定律

导体棒所受安培力 联合解得:

(2)由图可以知道:导体棒开始运动时加速度 ,初速度

,导体棒中无电流.

由牛顿第二定律知

计算得出:

由图可以知道:当导体棒的加速度a=0时,开始以 做匀速运动

此时有:

解得:

(3)设ef 棒此过程中,产生的热量为Q, 由功能关系知 :

带入数据计算得出

故本题答案是:(1);(2)

;(3)

【点睛】

利用导体棒切割磁感线产生电动势,在结合闭合电路欧姆定律可求出回路中的电流,即可求出安培力的大小,在求热量时要利用功能关系求解。

9.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。求:

(1)金属杆在5s 末的运动速率 (2)第4s 末时外力F 的功率

【答案】(1) 2.5m/s v = (2) 0.18W P = 【解析】(1)由题意,电压表的示数为R

U BLv R r

=

?+

5s 末电压表的示数0.2V U = , 所以代入数据可得 2.5m/s v = (2)由R

U BLv R r

=

?+及U -t 图像可知,U 随时间均匀变化,导体棒在力F 作用下匀加速运动 ()1R r v U a t R BL t

+??=

=???? 代入数据可得20.5m/s a = 在4s 末,金属杆的切割速度为()1

2m/s R r v U R

BL

?'='+=

?

此时拉力F 为22B L v F ma R r

-

=+'

所以4s 末拉力F 的功率为0.18W P Fv =='

【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F 的功率.

10.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:

(1)磁感应强度B 的大小;

(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】

(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=

导体棒切割磁感线产生的电动势为: E BLv =

由闭合电路欧姆定律知:

E

I R r

=

+ 3.66/0.6

x v m s t =

== 联立解得:0.4B T = (2)6()()()

E BsL

q It t t C R r t R r R r R r ?Φ?Φ==

====+?+++ (3)由功能关系得:2

1sin 2

mgx mv Q θ=

+ 5.4R Q

Q R J R r

=

=+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J

点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.

11.如图所示,平等光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L ,A 、C 两点间连接有阻值为R 的电阻,一根质量为m 、电阻也为R 的直导体棒EF 跨在导轨上,两端与导轨接触良好。在边界ab 和cd 之间(ab 与cd 与导轨垂直)存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B ,现将导体棒EF 从图示位置由静止释放,EF 进入磁场就开始匀速运动,棒穿过磁场过程中棒中产生的热量为Q 。整个运动的过程中,导体棒EF 与导轨始终垂直且接触良好,其余电阻不计,取重力加速度为g 。

(1)棒释放位置与ab 间的距离x ; (2)求磁场区域的宽度s ;

(3)导体棒穿过磁场区域过程中流过导体横截面的电量。 【答案】(1)

(2)

(3)

【解析】(1)导体棒EF 从图示位置由静止释放,根据牛顿第二定律

EF 进入磁场就开始匀速运动,由受力平衡:

由闭合电路欧姆定律:

导体棒切割磁感线产生电动势:E =BLv 匀加速阶段由运动学公式v 2=2ax

联立以上各式可解得棒释放位置与ab 间的距离为:

(2)EF 进入磁场就开始匀速运动,由能量守恒定律:

A ,C 两点间电阻R 与EF 串联,电阻大小相等,则

连立以上两式可解得磁场区域的宽度为:

(3) EF 在磁场匀速运动:s =vt

由电流定义流过导体棒横截面的电量q =It 联立解得:

【点睛】此题综合程度较高,由运动分析受力,根据受力情况列方程,两个运动过程要结合分析;在匀速阶段要明确能量转化关系,电量计算往往从电流定义分析求解.

12.如图所示,两根足够长的直金属MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.

(1)在加速下滑过程中,当ab 杆的速度大小为v 时,ab 杆中的电流及其加速度的大小; (2)求在下滑过程中ab 杆可达到的最大速度.

(3)从开始下滑到达到最大速度的过程中,棒沿导轨下滑了距离s ,求整个装置生热多少. 【答案】

(1)Blv I R =,22sin B l v

mg R a m

θ-

=(2)22

sin m mgR v B l θ=(3)322244

sin 2m g R Q mgh B l θ=- 【解析】

(1)在加速下滑过程中,当 ab 杆的速度大小为 v 时,感应电动势E =BLv

此时 ab 杆中的电流Blv

I R

=

金属杆受到的安培力:

22

B L v F BIL

R

==

由牛顿第二定律得:

22

sin

B l v

mg

R

a

m

θ-

=

(2)金属杆匀速下滑时速度达到最大,由平衡条件得:

22

sin m

B L v

mg

R

θ=

则速度的最大值

22

sin

m

mgR

v

B l

θ

=

(3)若达到最大速度时,导体棒下落高度为h,由能量守恒定律得:

2

1

sin

2m

mgs mv Q

θ

?=+

则焦耳热

3222

44

sin

2

m g R

Q mgh

B l

θ

=-

【点睛】当杆匀速运动时杆的速度最大,分析清楚杆的运动过程是解题的前提;分析清楚杆的运动过程后,应用E=BLv、欧姆定律、安培力公式、牛顿第二定律、平衡条件与能量守恒定律即可解题;求解热量时从能量角度分析可以简化解题过程.

13.如图所示,导线全部为裸导线,半径为r的圆内有垂直于平面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上自左向右匀速滑动,电路的固定电阻为R,其余电阻忽略不计.试求MN从圆环的左端到右端的过程中电阻R上的电流强度的平均值及通过的电荷量.

【答案】

2

Brv

R

π2

B r

R

π

【解析】

试题分析:由于ΔΦ=B·ΔS=B·πr2,完成这一变化所用的时间

2

t=

r

v

?

2

Brv

E

t

π

==

?

所以电阻R上的电流强度平均值为

2

E Brv

I

R R

π

==

通过R的电荷量为

2

·

B r

q I t

R

π

?

==

考点:法拉第电磁感应定律;电量

14.如图甲所示,平行金属导轨MN、PQ放置于同一水平面内,导轨电阻不计,两导轨间距d=10cm,导体棒ab、cd放在导轨上,并与导轨垂直,每根棒在导轨间的部分电阻均为

R=1.0Ω.用长为l=20cm的绝缘丝线将两棒系住,整个装置处在匀强磁场中.t=0时刻,磁场方向竖直向下,丝线刚好处于未被拉伸的自然状态,此后磁感应强度B随时间t的变化规律如图乙所示.不计感应电流磁场的影响,整个过程,丝线未被拉断.求:

(1)0~2.0s时间内电路中感应电流的大小与方向;

(2)t=1.0s时刻丝线的拉力大小.

甲乙

【答案】(1)A a→c→d→b→a (2)N

【解析】

【分析】

(1) 根据法拉第电磁感应定律求出感应电动势,从而求出感应电流;

(2)对导体棒进行受力分析,在水平方向上受拉力和安培力,根据F=BIL求出安培力的大小,从而求出拉力的大小。

【详解】

(1) 从图象可知,

故电路中感应电流的大小为0.001A,根据楞次定律可知,方向是acdba;

(2) 导体棒在水平方向上受拉力和安培力平衡

T=F A=BIL=0.1×0.001×0.1N=1×10-5N.

故t=1.0s的时刻丝线的拉力大小1×10-5N。

【点睛】

解决本题的关键掌握法拉第电磁感应定律以及安培力的大小公式F=BIL。

15.如图甲所示,两竖直放置的平行金属导轨,导轨间距L=0.50m,导轨下端接一电阻

R=5Ω的小灯泡,导轨间存在一宽h=0.40m的匀强磁场区域,磁感应强度B按图乙所示规律变化,t=0时刻一金属杆自磁场区域上方以某一初速度沿导轨下落,t1时刻金属杆恰好进入磁场,直至穿越磁场区域,整改过程中小灯泡的亮度始终保持不变.已知金属杆的质量m=0.10kg,金属杆下落过程中始终保持水平且与导轨良好接触,不计金属杆及导轨的电

阻,g 取10m/s 2.求:

(1)金属杆进入磁场时的速度v ; (2)图乙中t 1的数值;

(3)整个过程中小灯泡产生的总焦耳热Q .

【答案】(1)5m/s (2)0.04s (3)0.6J 【解析】

解:(1)金属杆进入磁场时受力平衡mg BIL =

E I R

=

E BLv =

整理得22

5m /s mgR

v B L =

= (2)根据法拉第电磁感应定律1

B

E Lh t ?=

? 0

1

B B BLv Lh t -=

? ()0100.04s

B B h t B v

-=

=

(3)整个过程中小灯泡产生的总焦耳热()2

12E Q t t R =+

20.08s h

t v

=

= 解得:0.6J Q =

相关主题