搜档网
当前位置:搜档网 › 2019年中考数学总复习--二次函数经典题型汇总(附答案)

2019年中考数学总复习--二次函数经典题型汇总(附答案)

2019年中考数学总复习--二次函数经典题型汇总(附答案)
2019年中考数学总复习--二次函数经典题型汇总(附答案)

1、如图,抛物线 y=ax2+bx ﹣与 x 轴交于 A(1,0)、B(6,0)两点,

D 是 y 轴上一点,连接 DA,延长 DA 交抛物线于点 E.

(1)求此抛物线的解析式;

(2)若 E 点在第一象限,过点 E 作 EF⊥x 轴于点 F,△ADO 与△AEF 的面积比为

=,求出点 E 的坐标;

(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M、N 两点,是否存在点 D,使 DA2=DM?DN?若存在,请求出点 D 的坐标;若不存在,请说明理由.

2、抛

物线

经过点

A和点B(0,3),且这个抛物线的对称轴为直线l,顶点

为C.

(1)求抛物线的解析式;

(2)连接AB、AC、BC,求△ABC的面积

.

3、如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.

(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;

(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.

4、在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0).

(1)求抛物线的解析式;

(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.

①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;

②当△PDC与△COA相似时,求点P的坐标.

5、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

6、如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x

,0)、B(x2,0)(x1

1

<x2)两点,与y轴交于C点,且+=﹣.

(1)求抛物线的解析式;

(2)抛物线顶点为D,直线BD交y轴于E点;

①设点P为线段BD上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;

②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.

7、如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).

(1)求抛物线的解析式;

(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;

(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.

8、如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.

(1)请直接写出抛物线的解析式及顶点D的坐标;

(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.

①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.

②过点F作FH⊥BC于点H,求△PFH周长的最大值.

9、如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.

(1)求该抛物线的解析式;

(2)将△ABO绕点O旋转,点B的对应点为点F.

①当点F落在直线AE上时,求点F的坐标和△ABF的面积;

②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.

10、如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x 轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为(用含m的代数式表示);

(2)求△ABC的面积(用含a的代数式表示);

(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

11、如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.

(1)求线段AD的长;

(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.

12、如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求抛物线的解析式和直线AC的解析式;

(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;

(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

13、已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.

(1)求抛物线的解析式;

(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;

(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.

14、如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

15、如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C (0,4).

(1)求抛物线的解析式;

(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;

(3)点D为抛物线对称轴上一点.

①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;

②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.

16、如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.

(1)求该抛物线所表示的二次函数的表达式;

(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD 相似?若存在,求出点Q的坐标;若不存在,请说明理由.

17、如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与

y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD 的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.

(1)求抛物线的解析式;

(2)设点P的横坐标为m,当FH=HP时,求m的值;

(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的

一个动点,求AQ+EQ的最小值.

18、如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P 不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

19、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).

(1)求这个二次函数的表达式;

(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.

①求线段PM的最大值;

②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.

20、如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.

(1)求抛物线y的函数表达式及点C的坐标;

(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;

(3)在抛物线上是否存在点E,使∠ABE=∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.

参考答案

1、解:(1)将 A(1,0),B(6,0)代入函数解析式,得

解得,

抛物线的解析式为 y=﹣x2+x﹣;

(2)∵EF⊥x 轴于点 F,

∴∠AFE=90°.

∵∠AOD=∠AFE=90°,∠OAD=∠FAE,

∴△AOD∽△AFE.

∵==

∵AO=1,

∴AF=3,OF=3+1=4,

当 x=4 时,y=﹣×42+×4﹣=,

∴E 点坐标是(4,),

(3)存在点 D,使 DA2=DM?DN,理由如下:

设 D 点坐标为(0,n),

AD 2=1+n 2

当 y=n 时,﹣x 2

+

x ﹣=n

化简,得

﹣3x 2

+21x ﹣18﹣4n=0, 设方程的两根为 x 1,x 2, x 1?x 2=

DM=x 1,DN=x 2,

DA 2=DM?DN ,即 1+n 2

=,

化简,得

3n 2

﹣4n ﹣15=0, 解得 n 1=

,n 2=3,

∴D 点坐标为(0,﹣)或(0,3).

2、解:

设线段AB 所在直线为:y=kx+b 解得AB 解析式为:

∴CD=CE-DE=2

3、

解:(1)由题意得,,解得,

∴抛物线的解析式为y=x2﹣2x,

令y=0,得x2﹣2x=0,解得x=0或2,

结合图象知,A的坐标为(2,0),

根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;

(2)设直线AB的解析式为y=mx+n,

则,解得,

∴y=3x﹣6,

设直线AP的解析式为y=kx+c,

∵PA⊥BA,∴k=,

则有,解得c=,

∴,解得或,

∴点P的坐标为(),

∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣

1|×|0﹣(﹣3)|=.

4、解:(1)把A(﹣2,0),B(8,0)代入抛物线y=﹣x2+bx+c,

得:,解得:,

∴抛物线的解析式为:y=﹣x2+x+4;(3分)

(2)由(1)知C(0,4),∵B(8,0),

易得直线BC的解析式为:y=﹣x+4,

①如图1,过P作PG⊥x轴于G,PG交BC于E,

Rt△BOC中,OC=4,OB=8,

∴BC==4,

在Rt△PDE中,PD=PE?sin∠PED=PE?sin∠OCB=PE,

∴当线段PE最长时,PD的长最大,

设P(t,),则E(t,),

∴PG=﹣,EG=﹣t+4,

∴PE=PG﹣EG=(﹣)﹣(﹣t+4)=﹣t2+2t=﹣(t﹣4)2+4,(0<t<8),当t=4时,PE有最大值是4,此时P(4,6),

∴PD==,

即当P(4,6)时,PD的长度最大,最大值是;(7分)

②∵A(﹣2,0),B(8,0),C(0,4),

∴OA=2,OB=8,OC=4,

∴AC2=22+42=20,AB2=(2+8)2=100,BC2=42+82=80,

∴AC2+BC2=AB2,

∴∠ACB=90°,

∴△COA∽△BOC,

当△PDC与△COA相似时,就有△PDC与△BOC相似,

∵相似三角形的对应角相等,

∴∠PCD=∠CBO或∠PCD=∠BCO,

(I)若∠PCD=∠CBO时,即Rt△PDC∽Rt△COB,

此时CP∥OB,

∵C(0,4),

∴y P=4,

∴)=4,

解得:x1=6,x2=0(舍),

即Rt△PDC∽Rt△COB时,P(6,4);

(II)若∠PCD=∠BCO时,即Rt△PDC∽Rt△BOC,

如图2,过P作x轴的垂线PG,交直线BC于F,

∴PF∥OC,

∴∠PFC=∠BCO,

∴∠PCD=∠PFC,

∴PC=PF,

设P(n,+n+4),则PF=﹣+2n,

过P作PN⊥y轴于N,

Rt△PNC中,PC2=PN2+CN2=PF2,

∴n2+(+n+4﹣4)2=(﹣+2n)2,

解得:n=3,

即Rt△PDC∽Rt△BOC时,P(3,);

综上所述,当△PDC与△COA相似时,点P的坐标为(6,4)或(3,).(12分)

5、解:(1)∵抛物线过点B(6,0)、C(﹣2,0),

∴设抛物线解析式为y=a(x﹣6)(x+2),

将点A(0,6)代入,得:﹣12a=6,

解得:a=﹣,

所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;

(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

设直线AB解析式为y=kx+b,

将点A(0,6)、B(6,0)代入,得:

解得:,

则直线AB解析式为y=﹣x+6,

设P(t,﹣t2+2t+6)其中0<t<6,

则N(t,﹣t+6),

∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN

=PN?AG+PN?BM

=PN?(AG+BM)

=PN?O B

=×(﹣t2+3t)×6

=﹣t2+9t

=﹣(t﹣3)2+,

∴当t=3时,△PAB的面积有最大值;

(3)如图2,

∵PH⊥OB于H,

∴∠DHB=∠AOB=90°,

∴DH∥AO,

∵OA=OB=6,

∴∠BDH=∠BAO=45°,

∵PE∥x轴、PD⊥x轴,

∴∠DPE=90°,

若△PDE为等腰直角三角形,

则∠EDP=45°,

∴∠EDP与∠BDH互为对顶角,即点E与点A重合,

则当y=6时,﹣x2+2x+6=6,

解得:x=0(舍)或x=4,

即点P(4,6).

6、解:(1)∵抛物线对称轴为直线x=1

∴﹣

∴b=2

由一元二次方程根与系数关系:

x1+x2=﹣,x1x2=

∴+==﹣

∴﹣

则c=﹣3

∴抛物线解析式为:y=x2﹣2x﹣3

(2)由(1)点D坐标为(1,﹣4)

当y=0时,x2﹣2x﹣3=0

解得x1=﹣1,x2=3

∴点B坐标为(3,0)

①设点F坐标为(a,b)

∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4 整理的S=2a﹣b﹣6

∵b=a2﹣2a﹣3

∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3

∵a=﹣1<0

∴当a=2时,S最大=﹣4+8﹣3=1

②存在

由已知点D坐标为(1,﹣4),点B坐标为(3,0)

∴直线BD解析式为:y=2x﹣6

则点E坐标为(0,﹣6)

连BC、CD,则由勾股定理

二次函数知识点总结及中考题型总结

二次函数知识点总结及中考题型,易错题总结 (一)二次函数知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数, 叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质: 左加右减。 4. ()2y a x h k =-+的性质:

三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式 ()2y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位, c bx ax y ++=2变成

m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与 2y ax bx c =++的比较 从解析式上看,()2y a x h k =-+与 2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即 22424b ac b y a x a a -??=++ ???,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为 2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当 2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ???,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时, y 有最大值2 44ac b a -.

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

中考数学二次函数压轴题题型归纳

1 中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立)

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

人教版初三数学二次函数知识点总结及经典习题含答案

二次函数 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

三、二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下 : 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小; 当2b x a >- 时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -.

初三数学二次函数知识点总结及经典习题含答案77699

人教版九年级下册数学 二次函数知识点总结教案 主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数知识点总结和题型总结

二次函数知识点总结和题型总结 一、二次函数概念: 1.二次函数的概念:一般地,形如 2 y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。 这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 2. 二次函数 2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题: 例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。 练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: (技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式 y=ax 2+bx+c 则最值为4ac-b 2 4a ) 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

(完整)初三数学二次函数经典习题

初三数学二次函数综合练习 卷 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 2 2 3x y -=

11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x =- + D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点.

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x 2-3/2>3/2-x 1 >0,比较y 1 与y 2 的大小 解:抛物线的对称轴为x=3/2,且3/2-x 1>0,x 2 -3/2>0,所以x 1 在对称轴的左侧,x 2 在对称 轴的右侧, 由已知条件x 2-3/2>3/2-x 1 >0,得:x2到对称轴的距离大于x 1 到对称轴的距离,所以y 2 > y 1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为: x 1=-1-3=-4,x 2 =-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3) B.(3,2) C.(3,3) D.(4,3)

相关主题