搜档网
当前位置:搜档网 › 平面向量及其应用高考重点题型及易错点提醒doc

平面向量及其应用高考重点题型及易错点提醒doc

平面向量及其应用高考重点题型及易错点提醒doc
平面向量及其应用高考重点题型及易错点提醒doc

一、多选题

1.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3

π

,a =7,则以下判断正确的是( )

A .△ABC 的外接圆面积是493

π

; B .b cos C +c cos B =7;

C .b +c 可能等于16;

D .作A 关于BC 的对称点A ′,则|AA ′|的最大

值是73 .

2.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B > D .

sin sin sin +=+a b c

A B C

3.下列结论正确的是( )

A .在ABC 中,若A

B >,则sin sin A B >

B .在锐角三角形AB

C 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形

D .在ABC 中,若3b =,60A =?,三角形面积33S =,则三角形外接圆半径为3 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°

D .()

//2a a b +

5.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )

A .10,45,70b A C ==?=?

B .45,48,60b c B ===?

C .14,16,45a b A ===?

D .7,5,80a b A ===?

6.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )

A .2

AB AB AC B .2

BC CB AC C .2AC

AB BD

D .2

BD

BA BD

BC BD

7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )

A .

B .

C .8

D .

8.ABC 中,4a =,5b =,面积S =c =( )

A B C D .9.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )

A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .等边三角形

10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是

( )

A .若a b >,则sin sin A

B >

B .若sin 2sin 2A B =,则AB

C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形

D .若2220a b c +->,则ABC 是锐角三角形

11.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .11

22AD AB AC =+ B .0MA MB MC ++= C .2133

BM BA BD =

+ D .12

33

CM CA CD =

+

12.对于菱形ABCD ,给出下列各式,其中结论正确的为( )

A .A

B B

C =

B .AB B

C =

C .AB C

D AD BC -=+

D .AD CD CD CB +=-

13.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()

m a b ma mb -=- B .()m n a ma na -=-

C .若ma mb =,则a b =

D .若()0ma na a =≠,则m n =

14.对于ABC ?,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ?为等腰三角形 B .若A B >,则sin sin A B >

C .若8a =,10c =,60B ?=,则符合条件的ABC ?有两个

D .若222sin sin sin A B C +<,则ABC ?是钝角三角形

15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量

B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个

C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得

()11122122e e e e λμλλμ+=+

D .若存在实数,λμ使得120e e λμ+=,则0λμ==

二、平面向量及其应用选择题

16.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且

2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )

A .

34

B .

58

C .38

D .23

17.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若

lg lg lg sin 2a c B -==-,且0,2B π??

∈ ???

,则ABC 的形状是( )

A .等边三角形

B .锐角三角形

C .等腰直角三角形

D .钝角三角形

18.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ??+= ? ???

,且1

||||2AB AC AB AC =,则ABC ?的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形

D .等边三角形

19.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ?=?=?,那么点P 是三角形ABC 的( ) A .重心

B .垂心

C .外心

D .内心

20.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为

S ,且222()S a b c =+-,则tan C =( )

A .4

3

-

B .34

-

C .

34

D .

43

21.在ABC ?中,D 为BC 中点,且1

2

AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1

B .23

-

C .13

- D .34

-

22.在ABC ?中,设2

2

2AC AB AM BC -=?,则动点M 的轨迹必通过ABC ?的( ) A .垂心

B .内心

C .重心

D . 外心

23.在ABC 中,若()()

0CA CB CA CB +?-=,则ABC 为( ) A .正三角形

B .直角三角形

C .等腰三角形

D .无法确定

24.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则

::PAB PAC PBC S S S =△△△( )

A .1∶2∶3

B .1∶2∶1

C .2∶1∶1

D .1∶1∶2

25.在ABC ?中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4

B .3

C .-4

D .5

26.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,

30B ∠=?,ABC 的面积为3

2

,那么b 等于( )

A .

13

2

+ B .13+

C .

22

3

+ D .23+

27.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得

45BDC ∠=?,则塔AB 的高是(单位:m )( )

A .102

B .106

C .103

D .10

28.如图,在ABC 中,点D 在线段BC 上,且满足1

2

BD DC =

,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )

A .m n +是定值,定值为2

B .2m n +是定值,定值为3

C .

11

m n +是定值,定值为2 D .

21

m n

+是定值,定值为3 29.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形

D .等腰或直角三角形

30.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( )

A .0

B C .-4 D .4

31.三角形ABC 的三边分别是,,a b c ,若4c =,3

C π

∠=

,且

sin sin()2sin 2C B A A +-=,则有如下四个结论:

①2a b =

②ABC ?

③ABC ?的周长为4+

④ABC ?外接圆半径R =

这四个结论中一定成立的个数是( ) A .1个

B .2个

C .3个

D .4个

32.在ABC ?中,60A ∠=?,1b =,ABC S ?,则2sin 2sin sin a b c

A B C

++=++( )

A B C D .33.已知平面向量a ,b ,c 满足2a b ==,()()

20c a c b ?--=,则b c ?的最大值为( ) A .

5

4

B .2

C .

174

D .4

34.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点

C ,

D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )

A .10,2?? ???

B .10,3?? ???

C .1,02??

-

??? D .1

,03??- ???

35.已知20a b =≠,且关于x 的方程2

0x a x a b ++?=有实根,则a 与b 的夹角的

取值范围是( ) A .06

,π??????

B .,3ππ??

?

???

C .2,33ππ??

?

???

D .,6ππ??

?

???

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确; 对于B ,根据正弦定 解析:ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设ABC 的外接圆半径为R ,根据正弦定理

2sin a R A =,可得3

R =,所以ABC 的外接圆面积是2

49

3

S R ππ==

,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为

2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.

对于C ,22(sin sin )2[sin sin(

)]3

b c R B C R B B π

+=+=+-

114(cos )14sin()23

B B B π=+=+

14b c ∴+≤,故C 错误.

对于D ,设A 到直线BC 的距离为d ,根据面积公式可得

11

sin 22

ad bc A =,即sin bc A

d a

=

,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.

2.ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误;

对于C ,若,由正弦定理知,由于三角形中,大边对大角

解析:ACD 【分析】

根据正弦定理的性质即可判断. 【详解】

对于A ,在ABC ,由正弦定理得

2sin sin sin a b c

R A B C

===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;

对于B ,若sin 2sin 2A B =,则A B =或2

A B π

+=,所以a 和b 不一定相等,故B 错

误;

对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以

A B >,故C 正确;

对于D ,由正弦定理得

2sin sin sin a b c

R A B C

===,则2sin 2sin 2sin sin sin sin b c R B R C

R B C B C ++==++,故D 正确.

故选:ACD. 【点睛】

本题考查正弦定理的应用,属于基础题. 3.AB

【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,

解析:AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

ABC 中,A B a b >?>,由

sin sin a b A B

=得sin sin A B >,A 正确; 锐角三角形ABC 中,222

cos 02b c a A bc

+-=>,∴2220b c a +->,B 正确;

ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=?,即A B =或

90A B +=?,ABC 为等腰三角形或直角三角形,C 错;

ABC 中,若3b =,60A =?,三角形面积S =11

sin 3sin 6022

S bc A c ==??=4c =,∴2222cos 13a b c bc A =+-=,

a =,

∴2sin sin 603a R A =

==

?,3

R =,D 错. 故选:AB . 【点睛】

本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.

4.AC 【分析】

利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;

解析:AC 【分析】

利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】

由向量()1,0a =,()2,2b =,

则()()()21,022,25,4a b +=+=,故A 正确;

222b =+=,故B 错误;

2cos ,21a b a b a b

?<>=

=

=

?+,

又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540?-?=≠,故D 错误. 故选:AC 【点睛】

本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.

5.BC

【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两

解析:BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由45,70A C =?=?,所以18065B A C =--=?,即三角形的三个角是确定的值,故只有一解;

对于选项B 中:因为csin sin 115B C b =

=<,且c b >,所以角C 有两解;

对于选项C 中:因为sin sin 17

b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A

B a

=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】

本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

6.AD

【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】

对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确.

故选:AD. 【点睛】 本题考查三角形

解析:AD 【分析】

根据向量的数量积关系判断各个选项的正误. 【详解】

对于A ,2

cos AB AB AC AB AC A AB AC

AB AC

,故A 正确;

对于B ,

2

cos cos CB CB AC CB AC C CB AC C CB AC

CB AC

故B 错误; 对于C ,

2

cos cos BD AB BD AB BD ABD AB BD ABD AB BD

BD

AB

,故C 错误; 对于D ,2

cos BD BA BD

BA BD ABD BA BD BD BA

,

2

cos BD BC BD

BC BD CBD BC BD

BD BC

,故D 正确.

故选:AD. 【点睛】

本题考查三角形中的向量的数量积问题,属于基础题.

7.AC 【分析】

利用余弦定理:即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基

解析:AC 【分析】

利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,

即216310a a -+=,解得8a =

故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.

8.AB 【分析】

在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】

中,因为,,面积, 所以, 所以,解得或,

当时,由余弦定理得:, 解得,

当时,由余弦定理得:, 解得 所以或

解析:AB 【分析】

在ABC 中,根据4a =,5b =,由1

sin 2

ABC

S

ab C =

=60C =或120C =,然后分两种情况利用余弦定理求解.

【详解】

ABC 中,因为4a =,5b =,面积ABC

S

=

所以1

sin 2

ABC

S

ab C =

=

所以sin C =

60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,

解得c =

当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,

解得c =

所以c =c =故选:AB 【点睛】

本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.

9.ABCD 【分析】

应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角

形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或

解析:ABCD 【分析】

应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2

A B π

+=,进而有

△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】

根据正弦定理

sin sin a b A B

= cos cos a A b B =

sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,

22A B =或22A B π+=. 即A B =或2

A B π

+=

,

△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】

本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°

10.AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判

解析:AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错

误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】

对选项A ,2sin 2sin sin sin a b r A r B A B >?>?>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =?= 所以A B =或2

A B π

+=

,则ABC 是等腰三角形或直角三角形.故B 错误;

对选项C ,因为cos cos a B b A c -=,

所以()sin cos sin cos sin sin A B B A C A C -==+,

sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,

因为sin 0B ≠,所以cos 0A =,2

A π

=,ABC 是直角三角形,故③正确;

对D ,因为2

2

2

0a b c +->,所以222

cos 02a b c A ab

+-=>,A 为锐角.

但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误. 故选:AC 【点睛】

本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.

11.ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得为三等分点靠近点的点.

对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三

解析:ABD 【分析】

根据向量的加减法运算法则依次讨论即可的答案. 【详解】

解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得11

22

AD AB AC =

+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,

2MA MD =-,所以0MA MB MC ++=,故正确;

对于C 选项,()

2212

=3333

BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()

2212

3333

CM CA AD CA CD CA CA CD =+

=+-=+,故D 正确.

故选:ABD

【点睛】

本题考查向量加法与减法的运算法则,是基础题.

12.BCD 【分析】

由向量的加法减法法则及菱形的几何性质即可求解. 【详解】

菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为,,且, 所以,即C 结论正确; 因为,

解析:BCD 【分析】

由向量的加法减法法则及菱形的几何性质即可求解. 【详解】

菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;

因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,

||||CD CB CD BC BD -=+=,所以D 结论正确.

故选:BCD 【点睛】

本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.

13.ABD 【分析】

根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】

根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,

解析:ABD 【分析】

根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】

根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】

本小题主要考查向量数乘运算,属于基础题.

14.BD 【分析】

对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在中,

对于A ,若,则或, 当A =

解析:BD 【分析】

对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可. 【详解】 在ABC ?中,

对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=, 当A =B 时,△ABC 为等腰三角形; 当2

A B π

+=

时,△ABC 为直角三角形,故A 不正确,

对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B

=,即sin sin A B >成立.故B 正确;

对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,

∴222

cos 02a b c C ab

+-=<,∴C 为钝角,∴ABC ?是钝角三角形,故D 正确;

综上,正确的判断为选项B 和D . 故选:BD . 【点睛】

本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.

15.AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的. 对于B,由平面向量基本

解析:AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为

0时,λ有无数个,故不正确.

【详解】

由平面向量基本定理可知,A ?D 是正确的.

对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】

本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.

二、平面向量及其应用选择题

16.A 【分析】

设出()()()

11AP mAB m AF mAB m AD DF =+-=+-+,求得

()21

13

m AP AB m AD +=

+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,

所以()()()

11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以11

33

DF DC AB ==, 所以()21

13

m AP AB m AD +=

+-. 因为E 是BC 的中点,

所以11

22

AE AB BC AB AD =+

=+. 因为AP AE λ=, 所以

()211132m AB m AD AB AD λ+??+-=+ ???

, 则213

112m m λλ

+?=????-=??

解得3

4

λ=. 故选:A 【点睛】

本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 17.C 【分析】

化简条件可得sin a B c ==

,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】

lg lg lg sin a c B -==-,

sin 2

a B c ∴

==

.0,2B π??∈ ???, 4

B

π

∴=

. 由正弦定理,得

sin sin 2

a A c C ==

3

sin 4C A C C C π???

∴==-=+? ?????

, 化简得cos 0C =.

()0,C π∈, 2

C π

∴=

, 则4

A B C π

π=--=

∴ABC 是等腰直角三角形. 故选:C. 【点睛】

本题主要考查了正弦定理,三角恒等变换,属于中档题. 18.D 【分析】

先根据0||||AB AC BC AB AC ??

+= ? ???

,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状. 【详解】

解:0||||AB AC BC AB AC ??+= ? ???

,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直, AB AC ∴=,

1

cos ||||2

AB AC A AB AC =

=,

3

A π

∴∠=

3

B C A π

∴∠=∠=∠=

∴三角形为等边三角形.

故选:D . 【点睛】

本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题. 19.B 【分析】

先化简得0,0,0PA CB PB CA PC AB ?=?=?=,即得点P 为三角形ABC 的垂心. 【详解】

由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ?=?=?, 则()()()

0,0,0PA PB PC PB PA PC PC PB PA ?-=?-=?-= 即有0,0,0PA CB PB CA PC AB ?=?=?=, 即有,,PA CB PB CA PC AB ⊥⊥⊥, 则点P 为三角形ABC 的垂心. 故选:B. 【点睛】

本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 20.A 【分析】

由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan

2

C

,从而求得tan C . 【详解】

∵222222()2S a b c a b ab c =+-=++-,即2221

2sin 22

ab C a b ab c ??=++-, ∴222sin 2ab C ab a b c ?-=+-,

又222sin 2sin cos 1222

a b c ab C ab C

C ab ab +-?-===-,∴sin cos 12C C +=

, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan

2242tan 1231tan 2

C

C C ?===---, 故选:A . 【点睛】

本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 21.B 【分析】

选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】

13BE AE AB AD AB =-=

-,1

()2

AD AB AC =+ , 51

66

BE AB AC AB AC λμ∴=-+=+,

56λ∴=-,1

6μ=,23

λμ∴+=-.

故选:B.

【点睛】

本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 22.D 【分析】

根据已知条件可得()

2

2

2AC AB AC AB BC AM BC -=+?=?,整理可得

()

0BC MC MB ?+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线

上,可得轨迹必过三角形外心. 【详解】

()()()

2

2

2AC AB AC AB AC AB AC AB BC AM BC -=+?-=+?=?

()

20BC AC AB AM ∴?+-=

()()

0BC AC AM AB AM BC MC MB ??-+-=?+=

设E 为BC 中点,则2MC MB ME +=

20BC ME ∴?= BC ME ?⊥

ME ?为BC 的垂直平分线 M ∴轨迹必过ABC ?的外心 本题正确选项:D 【点睛】

本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论. 23.C 【分析】

利用平面向量的数量积的运算性质可得(CA CB + 2

2

22)()0CA CB CA CB b a -=-=-=,从而可得答案. 【详解】 解:

在ABC 中,(CA CB + 2

2

22)()0CA CB CA CB b a -=-=-=,

a b ∴=,

ABC ∴为等腰三角形, 故选:C . 【点睛】

本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题. 24.B 【分析】

延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。 【详解】

相关主题