搜档网
当前位置:搜档网 › 最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X

最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X

最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X
最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X

优化问题的数学模型及基本要素

第1章 优化设计 Chapter 1 Optimization Design 1-1 优化设计 1-1-1 最优化 (optimize, optimization ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。(Optimization deals with how to do things in the best possible manner) 结论的唯一性是最优化的特点,即公认最好。(It is the best of all possibilities) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 (Arithmetic ) 要从所有可能的方案中找出最优的一个,用“试”(try )的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分(differential and variation)。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。(Linear programming or Nonlinear programming, Integer, Dynamic, Quadratic ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。(Optimization theory plus computer program) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为5cm 3的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗 材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图

数学建模进行投资最优化

. . 资产最优组合 摘要 本文在充分分析数据的基础上,运用了模糊评价评估产品近期表现的优劣性,利用线性规划模型对多种金融产品进行组合,得到最优解,最后对模型进行评价。 问题一:基于模糊评价模型。本文使用累计收益率、本月平均涨幅、β系数(风险指标)3个指标,建立评估模型,来评估金融产品近期的优劣性表现。首先用层次分析法给出各项评估指标的权重并进行对指标一致性检验,再用熵权法对权重值进行修正;然后建立评估模型,利用模糊评价法得出景顺长城需增长、中邮战略新兴产业、华夏现金增利货币、工银货币、华能国际(稳健型)、万向钱潮(波动型)、*ST 中华A (ST 型)、国债⑺、万业债的模糊评估指标分别为 [] 0.00971 0.00484 0.00072 0.00090 0.34040 0.45785 0.17205 0.00332 0.01022通过以上数据比较可知,股票的表现明显优于债券和基金。 问题二:首先构建线性规划模型,通过收益最大目标函数和约束条件,求解出最优产品组合。其次求解收益对应的β系数,绘出收益和风险的折线图。根据图示,找到风险变化一单位得到最大收益处的值,得到最优解:选择华能国际(稳健型)、万向钱潮(波动型)、国债⑺、万业债、中邮战略新兴产业、华夏现金增利货币的投资量为:3716.556、3752.874、3819.063、52.10025、109.8907、541.8917、41.32636 问题三:本文在对选取的指标运用层次分析法赋予权重后,用熵权法对权值进行修正,使权值更为准确。同时,利用综合评价得出产品的近期优劣性表现。但是,本文β系数求解考虑较为单一,β系数的计算公式可以根据产品公司进行修改。 本文运用EXCEL 统计了大量数据,利用SPSS 软件进行数据分析,使用MATLAB 进行模型求解,使得模型更具合理性,可行性和科学性。 关键词:层次分析,一致性检验,熵值取权,模糊评价, 线性规划

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

优化问题的数学模型

一. 管理科学的定义 管理科学是对与定量因素有关的管理问题通过应用科学的方法进行辅助管理决策制定的一门学科. (1) 定量因素(2) 科学的方法(3) 辅助决策制定 二.用管理科学的方法解决问题的基本步骤. (1) 提出问题,并根据需要收录有关数据信息。管理科学工作者向管理者咨询、鉴别所 要考虑的问题以确定合理的目标,然后根据要求收集一些关键数据,并对数据作相应的分析。 (2) 建立模型,引入决策变量,确定目标函数(约束条件)。建模过程是一项创造性的 工作,在处理实际问题时,一般没有一个唯一正确的模型,而是有多种不同的方案。建模是一个演进过程,从一个初始模型往往需要不断的完善渐渐演化成一个完整的数学模型。 (3) 从模型中形成一个对问题求解的算法。要在计算机上运行数学程序对模型进行求 解,一般情况下能找到对模型求解的标准软件。例如,对线性规划问题已有Excel 、Cplex 、Lingo 等标准软件求解。有时要自己编写程序。 (4) 测试模型并在必要时修正。在模型求解后,需要对模型进行检验,以保证该模型能 准确反映实际问题,需要检验模型提供的解是否合理,所有主要相关因素是否已考虑,当有些条件变化时,解如何变化等。 (5) 应用模型分析问题以及提出管理建议。对模型求解并分析后,将相应的最优方案提 交给管理者,由管理者做出决策。管理科学工作者并不作管理决策,其研究只是对涉及的问题进行分析并向管理者提出建议。管理者还要考虑管理科学以外的众多因素才能做出决策。 (6) 帮助实施管理决策。建议被管理者采纳以后,一旦做出管理决策一般要求帮助监督 决策方案的实施。 新问题, 新模型, 新算法, 新应用. 三.优化问题的数学模型 1212max(min)(,, ,) (,,)0..1,2,n j n Z f x x x g x x x s t j m =≤?? =? 由于,j f g 是非线性函数时,此问题是非线性优化问题, 求解较复杂。我们主要讨论线性优化问题,常见的形式:混合整数规划 (1) max 0 0 Z CX hY AX GY b X Y =++≤≥≥取整数 其中111,,,,m n m p m n p A G b C h ?????,不失一般性,我们假定,,,,C h A G b 都是整数矩阵。 当0p =时,(1)为纯整数规划,当0n =时,(1)为线性规划。

优化问题与规划模型

§3.6 优化问题与规划模型 与最大、最小、最长、最短等等有关的问题都是优化问题。 解决优化问题形成管理科学的数学方法:运筹学。运筹学主要分支:(非)线性规划、动态规划、图与网络分析、存贮学、排队伦、对策论、决策论。 6.1 线性规划 1939年苏联数学家康托洛维奇发表《生产组织与计划中的数学问题》 1947年美国数学家乔治.丹契克、冯.诺伊曼提出线性规划的一般模型及理论. 1. 问题 例1 作物种植安排 一个农场有50亩土地, 20个劳动力, 计划种蔬菜,棉花和水稻. 种植这三种农作物每亩地分别需要劳动力 1/2 1/3 1/4, 预计每亩产值分别为 110元, 75元, 60元. 如何规划经营使经济效益最大. 分析:以取得最高的产值的方式达到收益最大的目标. 1. 求什么?分别安排多少亩地种蔬菜、棉花、水稻? x 1亩、 x 2 亩、 x 3 亩 2. 优化什么?产值最大 max f=10x 1+75x 2 +60x 3 3. 限制条件?田地总量 x 1+x 2 +x 3 ≤ 50 劳力总数 1/2x 1 +1/3x 2 +1/4x 3 ≤ 20 模型 I : 设决策变量:种植蔬菜 x 1亩, 棉花 x 2 亩, 水稻 x 3 亩, 求目标函数 f=110x 1+75x 2 +60x 3 在约束条件x 1+x 2 +x 3 ≤ 50 1/2x 1 +1/3x 2 +1/4x 3 ≤20 下的最大值 规划问题:求目标函数在约束条件下的最值, 规划问题包含3个组成要素: 决策变量、目标函数、约束条件。 当目标函数和约束条件都是决策变量的线性函数时,称为线性规划问题, 否则称为非线性规划问题。 2. 线性规划问题求解方法 称满足约束条件的向量为可行解,称可行解的集合为可行域, 称使目标函数达最值的可行解为最优解. 命题 1 线性规划问题的可行解集是凸集. 因为可行解集由线性不等式组的解构成。两个变量的线性规划问题的可行解集是平面上的凸多边形。 命题2 线性规划问题的最优解一定在可行解集的某个极点上达到. 图解法:解两个变量的线性规划问题,在平面上画出可行域,计算目标函数在各极点处的值,经比较后,取最值点为最优解。 命题3 当两个变量的线性规划问题的目标函数取不同的目标值时,构成一族平行直线,目标值的大小描述了直线离原点的远近。 于是穿过可行域的目标直线组中最远离(或接近)原点的直线所穿过的凸多边形的顶点即为取的极值的极点—最优解。 单纯形法 : 通过确定约束方程组的基本解, 并计算相应目标函数值, 在可行解

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

多目标函数的优化设计方法

第9章 多目标函数的优化设计方法 Chapter 9 Multi-object Optimal Design 在实际的机械设计中,往往期望在某些限制条件下,多项设计指标同时达到最优,这类问题称为多目标优化设计问题。与前面单目标优化设计不同的是,多目标优化设计有着多种提法和模式,即数学模型。因此,解决起来要比单目标问题复杂的多。 9.1 多目标最优化模型 9.1.1 问题举例 例9-1 生产计划问题 某工厂生产n (2≥n )种产品:1号品、2号品、...、n 号品。 已知:该厂生产)...,,2,1(n i i =号品的生产能力是i a 吨/小时; 生产一吨)...,,2,1(n i i =号品可获利润i α元; 根据市场预测,下月i 号品的最大销售量为)...,,2(n i b i =吨; 工厂下月的开工能力为T 小时; 下月市场需要尽可能多的1号品。 问题:应如何安排下月的生产计划,在避免开工不足的条件下,使 工人加班时间尽可能的地少; 工厂获得最大利润; 满足市场对1号品尽可能多地要求。 为制定下月的生产计划,设该厂下月生产i 号品的时间为)...,,1(n i x i =小时。 9.1.2 基本概念 如图9.1所示,两个目标函数f 1,f 2中的若干个设计中,3,4称为非劣解,若 )(min{)(*x f x f j j ≤ S.t .0)(≤x g u u=1,2,………….m 成立,则称* x 为非劣解。若不存在一个方向,同时满足: 0)(*≤*?s x f (目标函数值下降0)(*≤*?s x g (不破坏约束) 图9.1 则称* x 为约束多目标优化设计问题的K-T 非劣解。这样,多目标优化设计问题的求解过程为:先求出满足K-T 条件的非劣解,再从众多的非劣解确定一个选好解。 多目标优化的数学模型: T r x f x f x f X F V )](),........(),([)(m in 21=--

最优化问题的数学模型及其分类

最优化问题的数学模型及其分类 例1.1.1 产品组合问题 某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。请问如何生产可以让公司每周利润最大? 表1-1 设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件: ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 故上述问题的数学模型为

2153max x x z += . .t s ?????? ?≥≤+≤≤0, 18231224212121 x x x x x x 其中max 是最大化(maximize )的英文简称,??t s 是受约束于(subject to )的简写。 例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为: ??? ??=? ?+=ππππ3 422min 22 h r t s r rh S 其中min 是最小化(minimize )的简写。 通过以上二例,可以看出最优化问题的数学模型具有如下结构: (1) 决策变量(decision variable ):即所考虑问题 可归结为优选若干个被称为参数或变量的量 n x x x ,,,21 ,它们都取实数值,它们的一组值构 成了一个方案。 (2) 约束条件(constraint condition ):即对决策

变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1, 0,,,,,2,1, 0,,,2121l j x x x h m i x x x g n j n i ===≥ (3) 目标函数(objective function )和目标:如使 利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21 因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。 注意到极大化目标函数()n x x x f ,,21相当于极小化 ()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可 表示为: () ()()()?? ? ??===≥??l j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121 若记()T n x x x x ,,21=,则(1.1.1)又可写成:

多目标最优化模型

第六章 最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题 第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

数学建模-面试最优化问题

C题面试时间问题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于 n 位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 (1)

(一)问题的提出 根据题意,本文应解决的问题有: 1、这4名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析 问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行 )。 对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3.参加面试的求职者事先没有约定他们面试的先后顺序; 4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5.面试者及各考官都能在8:00准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间甲乙丙丁分别对应序号i=1,2,3,4 2. xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻) (2)

多目标最优化模型

第六章最优化数学模型 §1最优化问题 1.1最优化问题概念 1.2最优化问题分类 1.3最优化问题数学模型 §2经典最优化方法 2.1无约束条件极值 2.2等式约束条件极值 2.3不等式约束条件极值 §3线性规划 3.1线性规划 3.2整数规划 §4最优化问题数值算法 4.1直接搜索法 4.2梯度法 4.3罚函数法 §5多目标优化问题 5.1多目标优化问题 5.2单目标化解法 5.3多重优化解法 5.4目标关联函数解法 5.5投资收益风险问题 第六章最优化问题数学模 §1最优化问题 1.1最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值; ②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。 一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。 3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

数学建模_投资最优问题

数学建模一周论文课程设计题目:最优投资方案 1:吴深深学号:201420181013 2:许家幸学号:201420180422 3:王鑫学号:201420181220 专业软件工程 班级1421801Z

指导教师朱琳 2016 年 6 月9 日

摘要 本文主要研究银行投资受益最优问题,根据投资证券的种类、信用等级、到期年限、到期税前收益等的具体情况,根据线性规划的方法分析出数学模型,并且运用Lingo软件进行编码求解。 根据问题一、根据此模型能够得到具体的解决方案,问题二、三都是根据问题一的模型做具体约束条件的变化,从而求出最优解。 此模型适用于一般简单的银行投资问题。这个优化问题的目标是有价证券回收的利息为最高,要做的决策是投资计划。即应购买的各种证券的数量的分配。综合考虑:特定证券购买、资金限制、平均信用等级、平均年限这些条件,按照题目所求,将决策变量、决策目标和约束条件构成的优化模型求解问题便得以解决。 但是本模型不适合解决情况过于复杂的银行投资问题。 关键字:最优投资线性规划Lingo求解 一、问题重述 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有以下限制: 政府及代办机构的证券总共至少要购进400万元,所购证券的平均信用等

级不超过1.4(数字越小,信用程度越高),所购证券的平均到期年限不超过5年。 二、模型假设 假设: 1.假设银行有能力实现5种证券仸意投资; 2.假设在投资过程中,不会出现意外情况,以至不能正常投资; 3.假设各种投资的方案是确定的; 4.假设证券种类是固定不变的,并且银行只能在这几种证券中投资; 5.假设各种证券的信用等级、到期年限、到期税前收益是固定不变的; 6.假设各种证券是一直存在的。 三、符号约定 符号含义 X i取1-5,表示从A..E中证券的投资额(百万)i

最优化问题的数学模型

第一章最优化问题的数学模型 数学模型是对实际问题的数学描述和概括,是进行最优化设计的基础。根据设计问题的具体要求和条件建立完备的数学模型是最优化设计成败的关键。这是因为最优化问题的计算求解完全是针对数学模型进行的。也就是说,最优化计算所得最优解实际上只是数学模型的解,至于是否是实际问题的解,则完全取决于数学模型与实际问题符合的程度。 工程设计问题通常是相当复杂的,欲建立便于求解的数学模型,必须对实际问题加以适当的抽象和简化。不同的简化方法得到不同的数学模型和计算结果,而且一个完善的数学模型,往往需要在计算求解过程中进行反复地修改和补充才能最后得到。由此可见,建立数学模型是一项重要而复杂的工作:一方面希望建立—个尽可能完善的数学模型,以求精确地表达实际问题,得到满意的设计结果;另一方面又要力求建立的数学模型尽可能简单,以方便计算求解。要想正确地协调这两方面的要求,就必须对实际问题及其相关设计理论和设计知识有深人的理解,并且善于将一个复杂的设计问题分解为多个子问题,抓住主要矛盾逐个加以解决。 本章通过几个简单的最优化设计简例,说明数学模型的一般形式、结构及其有关的基本概念。 1.1 设计简例 下面是3个最优化设计简例,可以看作几个复杂工程设计问题的子问题,虽然比较简单,但却具有一定的代表性。

例1—1 用一块边长3m的正方形薄板,在四角各裁去一个大小相同的方块,做成一 第3页个无盖的箱子,试确定如何裁剪可以使做成的箱子具有最大的容积。 解:设裁去的4个小方块的边长为x,则做成的箱子的容积为 f(x)=x(3—2x)^2 于是,上述问题可描述为 求变量 x 使函数 f(x)=x(3—2x)^2 极大化 这样就把该设计问题转化成为一个求函数f(x)最大值的数学问题。其中,I是待定的求解参数,称为设计变量;函数f(x)代表设计目标,称为目标函数。由于目标函数是设计变量的三次函数,并且不存在任何限制条件,故称此类问题为非线性无约束最优化问题。 根据一元函数的极值条件,令f′(x)=0,解得x=0.5,f(x)=2.0,记作x*=0.5,f(x)=2.0,称为原设计问题的最优解。 例1—2 某工厂生产甲、乙两种产品,生产每种产品所需的材料、工时、用电量和可以获得的利润,以及每天能够提供的材料、工时、用电量见表1—1,试确定该厂两种产品每天的生产计划,以使得每天获得的利润最大。

优化问题的数学模型及基本要素

第1章 优化设计 1 1-1 优化设计 1-1-1 最优化 (, ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。( ) 结论的唯一性是最优化的特点,即公认最好。( ) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 () 要从所有可能的方案中找出最优的一个,用“试”()的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分( )。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。( , , , ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。( ) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为53 的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图等环节。传统分析通常是在调查分析的基础上,参照同类产品,通过估算、验算、类比或试

相关主题