搜档网
当前位置:搜档网 › 高中数学直线与椭圆-弦长公式

高中数学直线与椭圆-弦长公式

高中数学直线与椭圆-弦长公式
高中数学直线与椭圆-弦长公式

课题:《直线与椭圆——弦长》日期: 11 月 26 日(编号)

姓名班级

y

2

轴上一定点H的直线

x

2

三、弦的中点问题

高中数学公式大全(简化)

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

弦长公式(高二版椭圆)

圆锥曲线综合问题 1. 直线方程的处理:若直线方程未给出,应先假设。 (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线的斜率k ,则假设方程为y kx m ; (3)若仅仅知道是直线,则假设方程为y kx m 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t 。 【反斜截式,1 m k 】不含垂直于y 轴的情况(水平线) 2.弦长公式:若直线:l y kx m =+与椭圆22 221(0)x y a b a b +=>>相交于,P Q 两点,求弦长 ||PQ 的步骤: 设1122(,),(,)P x y Q x y ,联立方程组(将直线方程代入椭圆方程): 222222 ,, y kx m b x a y a b =+??+=?消去y 整理成关于x 的一元二次方程:2 0Ax Bx C ++=, 则12,x x 是上式的两个根,2 40B AC ?=->;由韦达定理得:12,B x x A +=- 12,C x x A = 又,P Q 两点在直线l 上,故1122,y kx m y kx m =+=+,则2121()y y k x x -=-,从而 ||PQ === =【注意:如果联立方程组消去x 整理成关于y 的一元二次方程:2 0Ay By C ,则 ||PQ ==反斜截式 22 (1) m A 】 3、其他常见问题处理 (1)等腰(使用垂直平分),平行四边形(使用向量的平行四边形法则或者对角线中点重合) (2)直径(圆周角为直角,向量垂直或斜率乘积等于1),其次考虑是否需要求圆的方程。 (3)锐角和钝角使用数量积正负求解;涉及到其它角的问题使用正切值,转化为斜率求解; (4)三角形内切圆的半径与三角形面积的关系:,()2 a b c S rp p 这里; (5)圆的弦长用垂径定理;(6)涉及到焦点要联想到定义; (7)三点共线,长度之比尽量使用相似三角形转化为坐标之比,利用韦达定理。

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

高中数学公式史上最全大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用 摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12 AB x -或 者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式: 22222cos ab AB a c θ =-,如果记住公式,可以给我们解题带来方便. 下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用. 解法一:根据弦长公式直接带入解决. 题:设椭圆方程为122 22=+b y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭 圆于1122(,),(,)A x y B x y 两点,求弦长AB . 椭圆方程12222=+b y a x 可化为02 22222=-+b a y a x b ……①, 直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得: 222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-= ∴24 1212222222 2,mcb b y y y y b m a b m a +=-=-++, ∴ 12AB y -==∴()2 222 221ab AB m b m a =++ (1)若直线l 的倾斜角为θ,且不为90o ,则1 tan m θ = ,则有: ()222 2222 222 221111tan tan ab ab AB m b m a b a θθ ??=+=+ ?+??+, 由正切化为余弦,得到最后的焦点弦长公式为2 222 2cos ab AB a c θ =-……②. (2)若=90θo ,则0m =,带入()22 222 21ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由

高三数学必背公式总结

高三数学必背公式总结 高三数学必背公式总结汇总 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=c*h(底面周长乘以高) S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h S圆柱侧=c*l S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 sin(2*k*兀+a)=sin(a)

tan(2*兀+a)=tana sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2*sina*cosa cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2 tan2a=(2*tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

椭圆的焦点弦长公式

椭圆的焦点弦长公式 θ 2 2 2 2 21cos 2c a ab F F -= 及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、 短半轴长和焦半距,则有θ 2 2 2 2 21cos 2c a ab F F -= 。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦 点弦长公式θ 2 2 2 2 21cos 2c a ab F F -= 及题设可得: 24c o s 816)22(422 2 =-??α ,解得 αc o s ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴, 直线l 通过点F ,且倾斜角为3 π ,又直线l 被椭圆E 截得的线段的长度为5 16,求椭圆E 的 方程。 分析:由题意可设椭圆E 的方程为 1)1() 3(2 2 2 2 =-+ --b y a c x ,又椭圆E 相应于F 的准线 为Y 轴,故有 32 +=c c a (1), 又由焦点弦长公式有 3 cos 22 2 2 2 πc a ab -= 5 16 (2) 又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32 =b ,1=c , 从而所求椭圆E 的方程为 13 ) 1(4) 4(2 2 =-+ -y x 。 例3、已知椭圆C : 12 22 2=+ b y a x (0>>b a ),直线1l : 1=- b y a x 被椭圆C 截得的

高中数学史上最全椭圆二级结论大全

最全椭圆二级结论大全 1.122PF PF a += 2.标准方程22 221x y a b += 3.11 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时 A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是 00221x x y y a b +=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111 (||,||)r OP r OQ r r a b +=+==.

高中数学必背公式

高中数学必背公式、常用结论 一.二次函数和一元二次方程、一元二次不等式 1. 二次函数 y ax 2 bx c 的图象的对称轴方程是 x b b 4a c b 2 ,顶点坐标是 2a , 。 2a 4a 2. 实系数一元二次方程 ax 2 bx c 0的解: ①若 b 2 4ac 0, 则 x 1,2 b b 2 4a c ; 2a ②若 b 2 4ac 0, 则 x 1 x 2 b ; 2a ③ 若 b 2 4a c 0,它在实数集 R 内没有实数根;在复数集 C 内有且仅有两个共轭复数根 x b(b 2 4ac)i (b 2 4ac 0) . 2a 3. 一元二次不等式 ax 2 bx c 0(a 0) 解的讨论 : 二次函数 y ax 2 bx c ( a 0 )的图象 一元二次方程 有两相异实根 有两相等实根 ax 2 bx c 0 x 1, x 2 ( x 1 x 2 ) x 1 x 2 b 无实根 a 0 的根 2a ax 2 bx c 0 x x 1 x 2 x x b (a 的解集 x 或x 2a R 0) ax 2 bx c 0 x x 1 x x 2 (a 0)的解集 二、指数、对数函数 1.运算公式 m n m m 1 ⑴分数指数幂: a n ; a n (以上 a 0, m,n N ,且 n 1 ) . a m a n ⑵ . 指数计算公式: a m a n a m n ; (a m )n a mn ;( a b)m a m b m ⑶对数公式:① a b N log a N b ; ② log a MN log a M log a N ; ③ log a M log a M log a N ; ④ log a m b n n log a b . N m

高一数学公式大全

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan=2tanA/(1-tan) ctg=(ctg-1)/2ctga cos=cos-sin=2cos-1=1-2sin 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) co s(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高中数学必修2公式

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

高中数学学业水平必背公式定理知识点默写

高中数学学业水平测试必背公式定理知识点 1、空集定义:_____________________________________; 空集是任何集合的______________。 N ____________ Z __________ Q ___________ R ___________(常用集合字母表示) 2、含n 个元素的集合其子集个数为_____________________。 3、函数定义:对定义域内任意x ,都有___________y 值与之对应,称y 是x 的函数。 4、求函数定义域三种基本形式: ①分式要求:__________________; ②根式,开偶次方根,则_______________________; ③对数式则要求__________________________。 5、①指数函数定义:__________________________________________; 其定义域为_____________;值域为_________________; 当_______________时函数单调递增;当_______________函数单调递减。 其图像恒过定点______________。 ②对数函数定义:__________________________________。 其定义域为_____________;值域为_________________; 当_______________时函数单调递增;当_______________函数单调递减。 其图像恒过定点______________。 ③幂函数定义:_______________________________________。 当0>α时,图像恒过______________和_______________;在第一象限内单调_________; 当0<α时,图像恒过______________;在第一象限内单调_________; 6、如果函数是奇偶函数,其定义域一定关于_______________对称; 如果对定义域内任意x ,当________________时,函数为奇函数; 如果对定义域内任意x ,当________________时,函数为偶函数; 7、函数单调性定义:在区间D 内任取两个值1x 、2x ,设21x x <, 如果______________,则函数在此区间内单调递增; 如果______________,则函数在此区间内单调递减。 8、空间两直线位置关系:_____________、________________、_________________; 空间两平面位置关系:________________、______________; 空间直线与平面位置关系_____________、_____________、___________________; 9、空间两直线所成角的范围:____________________; 直线与平面所成角的范围:____________________; 两异面直线所成角的范围:_____________________; 10、线面平行判定定理:_________________________________________________________; 线面平行性质定理:_________________________________________________________; 线面垂直判定定理:_________________________________________________________; 线面垂直性质定理:_________________________________________________________; 面面平行判定定理:_________________________________________________________; 面面平行性质定理:_________________________________________________________; 面面垂直判定定理:_________________________________________________________;

直线与椭圆的位置关系之弦长公式

直线与椭圆的位置关系之弦长公式 一、知识点 1) 弦长公式的推导、几何解释、作用 2) 弦长公式的应用 二、教学过程 1 弦长公式 引例:经过椭圆2 212 x y +=的左焦点F 作倾斜角为60 的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长. 分析:左焦点(1,0)F - ,则直线:1)l y x =+代入椭圆方程2 212x y +=,得到 271240x x ++=,则=32? 设1122(,),(,)A x y B x y ,则 ||AB == 122||2 || x x a - ==7 一般: 若直线l 上两点111222(,),(,)P x y P x y ,则121212||||PP x x y y =-=-,上述公式称为弦长公式,有推导过程知,其实质是直线上两点距离公式的简化式; 说明: 1) 计算12||x x -,可以通过12||x x -= 但通常利用12||x x -= 算,其中a 为对应x 的方程的二次项系数,?为判别式;12||y y -也同理计算,弦长公式体现了“设而不求”的思想 2 ) 如图,因为2112||:||:|||P M P M P P k = ,又1 12||||PM x x =-,212||||P M y y =-,则可 知 ,12 1212||||PP x x y y =-=- 这里体现了“化斜为直”的思想 2 例题

例1 经过椭圆2 212 x y +=的左焦点F 作直线l ,直线l 与椭圆相交于,A B 两点,若||7 AB = l 的方程. 解:设:(1)l y k x =+,代入椭圆方程:2 2 220x y +-=,得到 2222(12)4220k x k x k +++-=,所以28(1)k ?=+ 则 ||7 AB === 所以k = 又当k 不存在时,||AB = 所以,直线l 的方程1)y x =+ 配套练习:上述例题中,也可以将直线l 设为1x y λ=-,请你计算 解:将1x y λ=-代入椭圆方程22220x y +-=,得到: 22(2)210y y λλ+--=,则2=8 +1λ?(), 则||AB == 所以,λ= 当λ不存在,即 0y =时,||AB = 所以直线l 的方程为1x y = - 例2 经过椭圆2 212 x y +=的左焦点F 作直线l ,直线l 与椭圆相交于,A B 两点,求OAB ?面积的最大值. 解:设直线1x y λ=-,代入椭圆方程2 2 220x y +-=,得到:

高中数学_椭圆,知识题型总结

陈氏优学 教学课题 椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点 、 的距离之和等于常数( ),这个动 点 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若 ,则动点 的轨迹无图形. 讲练结合一.椭圆的定义 1.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ;当焦点在 轴上时,椭圆的焦点坐标为 , 。 讲练结合二.利用标准方程确定参数

1.椭圆22 14x y m + =的焦距为2,则m = 。 2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方 程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的 中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。

(3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长 和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而 越小,因 此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当 a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。 椭圆的图像中线段的几何特征(如下图):

(新)高中三角函数公式大全-必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

相关主题