搜档网
当前位置:搜档网 › 浙大材料物理性能-光学性能第一节

浙大材料物理性能-光学性能第一节

第四章材料光学性能

当光通过固体材料时,会发生透射、折射、反射、吸收、散射等现象,不同的材料具有不同的光学性能

同时,在电、声、磁、热、压力等外场作用下,材料的光学性能会发生变化,或者在光的作用下其结构和性能会发生变化,如发光材料、激光材料、光导材料、磁光材料、非线性光学材料等

1

人们对光学性能以及在材料中发生的光学现象的研究和应用,已经有很长的历史了。人类很早就认识到用光可以传递信息,2000多年前我国就有了用光传递远距离信息烽火台

的设施—

2

等传递信息的方法

后来出现了用灯光闪烁、旗语

3

以发明电话而著称的发明家贝尔(A. G. Bell,1847~1922)也在光通信方面作过贡献,1880年,他利用太阳光作光源,用硒晶体作为光接收器件,成功地进行了光电

米。

话的实验,通话距离最远达到了213

4

用大气作为传输介质,损耗很大,而且无法避免自然气象条件的影响和各种外界的干扰,最多只能传几百米远。人们不得不寻求可以在封闭状态下传送光信号的办法

低损耗石英光纤的出现,实现了大容量、高速、长距离、低成本的光信息传输

现在不少发达国家又把光缆铺设到住宅前,实现了光纤到办公室、光纤到家庭

5

6

城市的绚丽灯光

7

地球夜景的卫星照片

激光光束

8

9

短波发光与激光材料在许多领域有着广泛而重要的应用价值,例如高密度的数据存储、海底通信、大屏幕显示(需要蓝绿光构造全色显示)、检测及激光医疗等蓝色LED 和LD 的出现大大促进了高密度光学存储以及高分辨显示器、图象扫描仪、彩色打印机、生物医学诊断仪、遥感探测仪等的发展。下图所示为蓝色发光二极管在紧凑、便携式发光显示器件中的应用

10

安装在美国时代广场的GaN 蓝光LED

显示屏

玻璃制品可以显示出各种各样的颜色

11

13

第一节基本概论第二节折射和色散第三节反射和散射第四节吸收与颜色

第五节

其它光学现象、光学材料及其应用

本章主要内容

讨论与电磁辐射及其与固态材料相互作用相关的一些基本概念与原理 从光折射、反射、吸收、透射、辐射等性质来探讨金属和非金属材料的光学性能,并从导体、半导体和绝缘体的电子能带结构出发,揭示它们在光的作用下表现出不同光学特性的本质

对固体的发光、激光、非线性光学、光电转换等各种光学材料及其应用作一简要介绍

第一节基本概念

一、电磁辐射

光的本质是什么?

历史上有过很多争论。现在,我们知道光具有波粒二象性,牛顿(I. Newton,1642~1727)的微粒理论和惠更斯(C. Huygens,1629~1695)的波动理论二者同时有效,前者有光电效应为其证明,后者有光的干涉现象作为例证

垂直并都垂直于波的传播方向

14

17

入射到固体表面的光辐射能流率为?0,透射、吸收和反射光的辐射能流率分别为

?T 、?A 和?R ,则:

上式的另一种表达式为:

二、光和固体的相互作用

0T A R

????=++光辐射能流率(单位为W/m 2):表示单位时间内通过单位面积的能量

1

R τχ++=τ为透射率(?T /?0);χ为吸收率(?A /?0);R 为反射率(?R /?0)

三、光和原子、电子的相互作用

固体材料中出现的光学现象是电磁辐射与固体材料中原子、离子或电子之间相互作用的结果。其中最重要的两种作用是

1. 电子极化

电子极化:在可见光频率范围,电场分量

子云都会发生相互作用,引起极化,即

原子核的电荷中心发生相对位移

电子极化的结果:光线通过介质

时,一部分光子能量被吸收,同时

光波速度减小。后者导致光的折射

19

电磁波的吸收和发射包含电子从一种能态跃迁到另一种能态的过程

原子吸收了光子的能量之后,可能将E 2能级上的电子激发到能量较高的E 4空能级上去,电子发生的能量变化ΔE 与被吸收光子的频率有关:

2. 电子跃迁

4242

E E E h νΔ=?=式中ν42为光子振动频率。能量的吸收是量子化的,即只有能量为ΔE 的光子才能被该原子通过电子跃迁而吸收

受激电子不可能无限长时间地保持在激发状态,经过一个短时期后,它又会衰变回基态或低激发能级,同时发射出电磁波

20

金属对可见光是不透明的:在金属的电子能带结构中,费米能级以上存在许多准连续的空能级。因而各种不同频率的可见光,即具有各种不同能量(ΔE )的光子都能被吸收

四、材料光学性能概述

大部分被金属材料吸收的光又会从表面上以同样波长的光被发射出来,表现为反射光。大多数金属的反射率为0.9~0.95。肉眼看到的金属颜色不是由吸收光的波长决定的,而是由反射光的波长决定的

非金属材料对于可见光可能是透明的,也可能不透明。因此,除反射和吸收以外,还应考虑折射和透射

【2018-2019】浙江大学物理光学实验报告-精选word文档 (19页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 浙江大学物理光学实验报告 本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 201X年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: I?I0( 装 式中

? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。I0为衍射场中心点 (??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,I有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: N? sin?2 )2 I?I0()( ? 2 (4) sin

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

浙江大学光学工程研究生面试题

浙江大学光学工程研究生面试题目,。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 浙江大学光电系: 激光的全称 望远镜的物镜直径选择 几何光学的7种误差. 全息技术.成像原理.用处. 傅立叶变换的频谱和光波频谱有什么区别 傅立叶频谱和光学波长的频率 光线 WDM MTF:调制传递函数MTF Modulation Transfer Function目前分析镜头的解像力跟反差再现能力使用比较科学的方法.以景物调制度为自变量,相应影像的调制度为因变量的函数。 摸电.数电.D/A.A/D CCD 激光的应用领域 空间相干.时间相干. 1 光谱中的频率和傅立叶光学中的频率是一回事吗?不是的话分别代表什么、 2 望远镜的物镜孔径是不是越大越好?瑞利判据是啥 3 什么是4f系统,什么是频谱面?激光通过狭缝后在频谱面上的现象?如果狭缝变窄,频谱 如何变化 4 什么是粒子数反转,解释一下 5 如果能级宽度变大,那么跃迁后发出的光向红光还是蓝光方向移动 6 如果接受器和光源相对运动方向是互相接近的,那么接受器的光谱向哪个方向频移 先写下来,免得以后有人问起来时候忘了 色散/.频率和色散的关系. 放大镜...显微镜(目前最大的放大率是3000)....光阑..;. 1.老师会请你用英文进行自我介绍.主要包括:在大学四年中你 学了哪些课程;你的兴趣爱好;你希望在后续的学习中从事哪方 面的研究等.(注:你的兴趣爱好将在第三部分再次被提问) 2.就是与专业相关的一些问题,一般每人问三题.(见后附题目) 3.你的兴趣爱好可能会关系到将来选择的导师及研究方向,故 老师会在这个方面问的比较深,要做好充分的准备,比如喜欢光 通讯的就应该将<光纤通讯技术>这本书多看看. https://www.sodocs.net/doc/5e7994048.html,D(电荷耦合器件)是什么的缩写?(charge-coupled device) 请用英文简述它的工作原理以及它的应用领域 ps.这道题几乎是每个人都要问到的,需要引起重视. 2.MTF和OTF是什么的缩写?含义是什么? otf:调制传递函数和相位传递函数的总称. 通常,评价光学系统成像质量的方法有:瑞利判断、中心点亮度判断、分辨率、点列图和光学传递函数。前面几种都是基于把物体看做是发光点的集合,并以一点成像时的能量几种程度来表征光学系统的成像质量

材料物理性能.

※ 材料的导电性能 1、 霍尔效应 电子电导的特征是具有霍尔效应。 置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两 个面之间产生电动势差,这种现象称霍尔效应。 形成的电场E H ,称为霍尔场。表征霍尔场的物理参数称为霍尔系数,定义为: 霍尔系数R H 有如下表达式:e n R i H 1 ± = 表示霍尔效应的强弱。霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制 只有在费密面附近能级的电子才能对导电做出贡献。 利用能带理论严格导出电导率表达式: 式中: nef 表示单位体积内实际参加传导过程的电子数; m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。 此式不仅适用于金属,也适用于非金属。能完整地反映晶体导电的物理本质。 量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时 电阻为零。只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。 马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们 之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρ?组成,这就是马西森定律( Matthissen Rule ),用下式表示: ρ?是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。 4、 电阻率与温度的关系 金属的温度愈高,电阻也愈大。 若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数: 5、 电阻率与压力的关系 在流体静压压缩时,大多数金属的电阻率降低。 在流体静压下金属的电阻率可用下式计算 式中:ρ0表示在真空条件下的电阻率;p 表示压力;φ是压力系数(负值10-5~10-6 )。 正常金属(铁、钴、镍、钯、铂等),压力增大,金属电阻率下降;反常金属(碱土金属和稀土金属的大部分) 6、 缺陷对电阻率的影响:不同类型的缺陷对电阻率的影响程度不同,空位和间隙原子对剩余电阻率的影响和金属 杂质原子的影响相似。点缺陷所引起的剩余电阻率变化远比线缺陷的影响大。

普通高校中实力最强专业一览

2011中国大学“红黄绿牌”专业[1] 2011-06-05 13:01:56 作者:佚名来源:新浪网浏览次数:1113 文字大小:【大】【中】 【小】 ?红牌专业:失业量较大,就业率较低,且薪资较低的专业中的前10个专业,为高失业风险型专业。黄牌专业:除红牌专业外,失业量较大,就业率较低,且薪资较低的专业。绿牌专业:薪资、就业率持续走 ... 红牌专业:失业量较大,就业率较低,且薪资较低的专业中的前10个专业,为高失业风险型专业。 黄牌专业:除红牌专业外,失业量较大,就业率较低,且薪资较低的专业。 绿牌专业:薪资、就业率持续走高,且失业量较低的专业,为需求增长型专业。 2011年中国大学毕业生“红黄绿牌”本科专业 2011年中国大学毕业生“红黄绿牌”高职高专专业

普通高校中实力最强专业一览 每年的高考来临时,如何选择一个好学校和一个好专业成为许多考生和家长关心的最大的问题。当大家都把目标锁定在北大、清华或者一批超一流的高校时,你是否注意到,一些一般院校(基本上属于重点批次中中档偏下层次,分布在一批A类或B类高校中,甚至属于二批院校)的某些特色专业,其实力与北大、清华相比并不占劣势,甚至有些专业和学科都超过了北京大学和清华大学。所以在填报志愿时,避免唯名校是从,不妨树立一种普通观念:“宁为鸡首,不为牛后”。在学校选择上退而求其次,反倒会加强在专业选择上的竞争力。 大气科学——南京信息工程大学 这所学校的前身是南京空军气象学院,它培训了全国各地地级以上城市中绝大部分的气象业务骨干,几乎全国每一个气象部门都有这所学校的毕业生,甚至全球94各国家和地区的中高级气象科技人员都是该校的毕业生,它所颁发的文凭已经得到国际上的广泛认可。 在2008年全国高校重点学科评估中,与北京大学齐名,同列为全国重点学科。目前,北京大学、南京大学和南京信息工程大学三所学校的大气科学专业在全国高校中形成了特色,三者互为补充。南京信息工程大学大气科学专业建立了“世界气象组织区域气象培训中心”,为世界80多个国家培训了480多名高级气象人才。大气科学类专业对数学、物理、化学水平要求较高,另外不招收色盲和色弱的学生。这个专业需求量大,就业形势好。 地质学——西北大学 西北大学的地质学、地址资源与地质工程等专业在全国排名第三,是一个与北大和中国地质大学三足鼎立的学科。虽然北大地质学历史辉煌,其他很多高校包括中国地质大学的地质领域都是靠北大起步的,但处于西北地区的西北大学近年来风头正劲,先后摘得国家自然科学一等奖、国家级教学成果一等奖。其构造地质学、古生物学和地层学为国家重点学科,地质学专业是国家理科基础科学研究和教学人才培养基地,强大的地质学科研究室为全国乃至世界瞩目。在全国14个大油田中,曾经一度有13个油田的局长或总地质师为西北大

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、 2、列举三种你所知道的热分析方法: 、 、 3、磁各向异性一般包括 、 、 等。 4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。 5、产生非线性光学现象的三个条件是 、 、 。 6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。 8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。 9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( ) 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( ) 3、原子磁距不为零的必要条件是存在未排满的电子层。 ( ) 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( ) 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( ) 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( ) 7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( ) 8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( ) 9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( ) 10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( ) 1、关于材料热容的影响因素,下列说法中不正确的是 ( ) A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D 材料热容与温度的精确关系一般由实验来确定。 2、 关于热膨胀,下列说法中不正确的是 ( ) A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是 ( ) A 顺磁性 B 亚铁磁性 C 反铁磁性 D 抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是 ( ) A 温度升高使得M S 、 B R 、H C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。 C 冷塑性变形使得C H μ和均升高。 D 冷塑性变形使得C H μ和均降低。 5、下面哪种效应不属于半导体敏感效应。 ( ) A 磁敏效应 B 热敏效应 C 巴克豪森效应 D 压敏效应 6、关于影响材料导电性的因素,下列说法中正确的是 ( ) A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。 B 冷塑性变形对金属电阻率的影响没有一定规律。 C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态” D 一般情况下,固溶体的电阻率高于组元的电阻率。 7、下面哪种器件利用了压电材料的热释电功能 ( ) A 电控光闸 B 红外探测器 C 铁电显示器件 D 晶体振荡器 8、下关于铁磁性和铁电性,下面说法中不正确的是 ( ) A 都以存在畴结构为必要条件 B 都存在矫顽场 C 都以存在畴结构为充分条件 D 都存在居里点 9、下列硬度实验方法中不属于静载压入法的是 ( )

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

浙大光学工程考研经验

今年我也是2011年考研150万人洪流中的一份子,在大家的关心和帮助下,有幸考上了浙大的光电系光学工程的研究生,我在这里写这篇文章就是想向那些有志于考外校,特别是考浙大光学工程专业的同学谈谈我的一些心得和感受,毕竟考外并不是一件容易的事情,所以我希望我下面写的这些能对大家有一定的帮助。我主要从以下五个部分来说,以便大家对考研浙大光电系有一个比较全面的了解。 一、 为什么考浙大光电系: 对于浙大光电系的介绍在学院的官网(https://www.sodocs.net/doc/5e7994048.html,/)上都很详细,我这里就不一一介绍了,我就说几点吧,首先浙大光学工程在2007年教育部学位中心公布的全国学科排名中位于清华大学之上,排在第一位。然后是浙大光学工程是国家重点学科,拥有现代光学仪器国家重点实验室。对于想出国的同学,浙大那边很多老师都是鼓励出去的,比如光与电磁波中心(何赛灵老师团队)就有很多外籍老师,和国外也建立了联合实验室,加上老师推荐,出去比较容易。最后因为浙江大学是一所排名靠前的综合性大学,在那边的视野和眼界会更为开阔,会获得更多的机会。 二、 什么样的人适合考外: 这其实也是接上面一个问题的,大家其实也应该知道,考外其实是很不容易的,风险比考本校的要大很多,所以如果一旦决定了,就要定下心来认认真真准备,找工作之类的事情就完全不要去想了,不论别人找了多好的工作,工资多么高,都能心如止水^_^。之前有同学问我是不是本科成绩很好的啊,是不是本科生做的项目啊科研之类的比较厉害啊,其实都没有拉。我本科其实很普通的,成绩属于中等,做过URTP(但对考研其实完全没有贡献的),所以并没有成绩好或者有科研经历的同学适合考外这样说法。 我觉得大部分同学智力上都没有问题,那么有足够ambition的,足够积极主动的同学适合考外,因为在考外过程中信息的收集是很重要的一个环节,你必须要在各个方面全面收集信息,比如和师兄的联系,和导师的联系,考试范围之类的很多东西都需要自己去全面的准备,所以只有内心真的渴望去到浙大光电系,并且一直坚持努力积极主动的人才是有可能最后成功的。 三、 报考浙大光电系所需要了解和知道的信息:

《材料物理性能》王振廷版课后答案106页要点

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q(J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩?Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么?

Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么? 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

浙江大学物理光学实验报告

本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 2012年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: i?i0( 装 式中 sin? ? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。i0为衍射场中心点(??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,i有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: n? sin?2 )2 i?i0()( ?

2 (4) sin 式中 ?? sin??2???dsin? ? ?? (5) ?为单缝宽度,d为相邻单缝间的间距,n为被照明的单缝数,?为考察点相应的衍射角;i0为衍射中心点(??0处)的光强。 n? )2 (sin?2() 2称?为单缝衍射因子,为多缝干涉因子。前者决定了衍射花 sin (干涉)极大的条件是dsin??m?(m?0,?1,?2......)。 dsin??(m? m )?(m?0,?1,?2......;m?1,2,.......,n?1)n 样主极大的相对强度,后者决定了主极大的位置。 (干涉)极小的条件是 当某一考虑点的衍射角满足干涉主极大条件而同时又满足单缝衍射极小值条件,该点的光强度实际为0/,主极大并不出现,称该机主极大缺级。显然当d/??m/n为整数时,相应的m 级主极大为缺级。 不难理解,在每个相邻干涉主极大之间有n-1个干涉极小;两个相邻干涉极小之间有一个干涉次级大,而两个相邻干涉主级之间共有n-2个次级大。 三、主要仪器设备 激光器、扩束镜、准直镜、衍射屏、会聚镜、光电接收扫描器、自动平衡记录仪。 四、操作方法和实验步骤 1.调整实验系统 (1)按上图所示安排系统。 (2)开启激光器电源,调整光学元件等高同轴,光斑均匀,亮度合适。(3)选择衍射板中的任一图形,使产生衍射花样,在白屏上清晰显示。 (4)将ccd的输出视频电缆接入电脑主机视频输出端,将白屏更换为焦距为100mm的透镜。 (5)调整透镜位置,使衍射光强能完全进入ccd。 (6)开启电脑电源,点击“光强分布测定仪分析系统”便进入本软件的主界面,进入系统的主界面后,点击“视频卡”下的“连接视频卡”项,打开一个实时采集窗口,调整透镜与ccd的距离,使电脑显示屏能清晰显示衍射图样,并调整起偏/检偏器件组,使光强达到适当的强度,将采集的图像保存为bmp、jpg两种格式的图片。 2.测量单缝夫琅和费衍射的光强分布(1)选定一条单狭缝作为衍射元件(2)运用光强分布智能分析软件在屏幕上显示衍射图像,并绘制出光强分布曲线。 (3)对实验曲线进行测量,计算狭缝的宽度。 3.观察衍射图样 将衍射板上的图形一次移入光路,观察光强分布的水平、垂直坐标图或三维图形。

材料物理性能

一、填空20*1 1.控制或改造材料性能的路线是工艺→结构→性能,即工艺决定结构,结构改变性能。 2.材料在外力作用下发生形状和尺寸的变化,称为形变。 3.弹性模量影响的因素:原子结构、温度、相变。 4.材料的各种热学性能均与晶格热振动有关。 5.可见光的波长390-770nm。 6.光的频率、波长和辐射能都是由光子源决定的。 7.欧姆定律的两种表达形式:均匀导体,I=V/R,非均匀导J=óE。 8.物质的磁性是电流产生的。 9.磁性材料的磁化曲线和磁滞回线是材料在外加磁场时表现出来的宏观特性。 10.影响材料的击穿强度的因素:介质结构的不均匀性、材料中气泡的作用、材料表面状态和边缘电场。 8.智能材料的功能和生命特征:传感功能、反馈功能、学习能力和预见性功能、响应功能、自诊断能力、自修复能力、自调节能力。 二、名词解释5*3 1.塑性形变和弹性形变 塑性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 弹性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 2.声频支振动和光频支振动 声频支振动:振动着的质点中包含中包含频率甚低的格波,质点间的位相差不大,则格波类似于弹性体中的应变波,称为声频支振动。 光频支振动:可以看成是相邻原子振动方向相反,形成一个范围很小、频率很高的振动。 3.反射、折射、双折射 反射:光线入射到界面时,一部分光从界面上反射,形成反射线。 折射:光线入射到界面时,其余部分进入第二种介质,形成折射线。 双折射:由一束折射光入射后分成两束光的现象。 4.压电效应、压敏效应、光电效应、热释电效应、电热效应、西贝尔效应 压电效应:在晶体的特定方向上施加压力或拉力,晶体的一些对应的表面上分别出现正负束缚电荷,其电荷密度与外施力的大小成正比例,也即正压电效应具有对称中心的点群晶体不会具有压电性。 压敏效应:对电压变化敏感的非线性电阻效应,即在某一临界电压下,电阻值非常之高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流通过。 光电效应:某些物质受到光照后,引起物质电性发生变化,这种光致电变的现象称为光电效应。 热释电效应:由于温度的变化而引起的晶体表面荷电现象。 电热效应:热电体在绝热条件下,当外加电场引起永久极化强度改变是时,其温度将发生变化的现象。 西贝尔效应:半导体材料的两端如果有温差,那么在较高的温度区有更多的电子被激发到导带中去,但热电子趋向于扩散到较冷的区域。当这两种效应引起的化学势梯度和电场梯度相等且方向相反时,就达到稳定状态。多数载流子扩散到冷端,结果在半导体两端就产生温差电动势,这种现象被称为温差电动势效应,也被称为西贝尔效应。 5.居里点 居里点:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁电相转变成顺电相引的相变温度。

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

相关主题