搜档网
当前位置:搜档网 › 水轮发电机振动原因分析完稿

水轮发电机振动原因分析完稿

水轮发电机振动原因分析完稿
水轮发电机振动原因分析完稿

水轮发电机振动原因分析完稿

水轮发电机振动原因分析

黑河塘运行维护项目部马波

摘要:以黑河塘电站2F机组为例~浅析了水轮发电机振动的原因、危害以及黑河塘水电站2F机组振动变大原因分析及整改建议。关键字:水轮发电机振动黑河塘电站2F机组

1 水轮发电机振动概述

水轮发电机组的振动是以水轮机为原动力,水的能量是激发或维持机组振动的最根本能源。它既可直接激发并维持机组的振动,也可间接激发或维持机组振动。从振动的发生的情况看,有的是水轮机本身的水力特性所决定的,有的是由一些偶然因素作用产生的。发电机是将水轮机的机械能转换为电能的装置,在转换过程中,由于某些方面如设计、加工、安装或参数配合不当也会引起发电机的磁振动。从结构上讲,水轮发电机组可以分成两大部分:转动部分和固定、支持部分。它们中任何一个部件存在机械缺陷时都可能引起机组的振动,而这些缺陷可能是由设计、加工、安装等任何一个环节所引起。因此,一般来说水轮发电机组有四大振动部件:上机架、下机架、顶盖、转动部分;异常情况下还有其它振动部件,如定子铁心等。

2 水轮发电机振动的类别

2.1 水力因素

振动的水力因素系指振动中的干扰力来自水轮机水力部分的动水压力。其特征是带有随机性,且当机组处在非设计工况或过渡工况运行时,因水流状况恶化,机组各部件的振动亦明显增大。产生振动的水力因素主要有:水力不平衡、尾水管低频水压脉动、空腔汽蚀、卡门涡列、间隙射流等。

2.1.1 水力不平衡

具有位能和动能的水流通过蜗壳的作用形成环流,再通过分布均匀的固定和活动导叶均匀作用于转轮激发转轮旋转。由于加工和安装误差,使导水叶叶片、流道的形状与尺寸差别较大时,作用于转轮的水流失去轴对称时就产生一个不平衡横向力,引起转轮振动,在空载或低负荷运行时振动强烈。

2.1.2 尾水管低频水压脉动

水轮机在非设计工况下运行时,由于转轮出口处的旋转水流及脱流旋涡和汽蚀等影响,在尾水管内常引起水压脉动。压力脉动就会激起尾水管壁、转轮、导水机构、蜗壳、压力管道的振动。

2.1.3 空腔汽蚀

水流通过水轮机时,其流向、流速随流道改变,在流速增高或脱流部位压力降低到汽化压力时水流中产生汽泡,汽泡进入高压区溃灭时便会出现汽蚀。汽蚀发生时,在汽蚀部位会发生特殊的噪声和撞击声。空腔汽蚀是流道中因漩涡带引起脱流、负压而造成的压力交变产生的振动。由空腔汽蚀引起机组的顶盖和推力轴承出现剧烈的垂直振动,它比横向振动的危害更大。

2.1.4卡门涡列

恒定流束绕过物体时,在出口边的两侧出现漩涡,形成旋转方向相反、有规则交错排列的线涡,进而互相干扰、互相吸引,形成非线型的涡列、俗称卡门涡列如,当卡门涡列的冲击频率接近于转动体叶片的固有频率时,将产生共振,并拌有较强的且频率比较单一的噪声和金属共鸣声。

2.1.5 间隙射流

在轴流式水轮机中,叶片和转轮室间隙处由于正背面压差的存在,会形成一股射流,其速度很高。由于转轮的旋转,对转轮室某一部位来说,交替的出现瞬时压力升

高和降低,形成周期性的压力脉动。这种压力脉动会引起转轮室振动, 2.2 机械因素

振动的机械因素系指振动中的干扰力来自机械部分的惯性力、摩擦力及其它力。其特征是振动频率等于机组的转动频率或整倍数的机组转动频率。引起振动的机械因素主要有:转子质量不平衡;机组轴线不正;导轴承缺陷等。 2.2.1 机组轴线不正

由于轴承中心线偏斜或偏移、转子的弯曲、转子与轴承的内隙以及承载后转子与轴承的变形等原因都将引起轴线不对中。其影响是:产生不平衡离心力;增大转子弓状回旋半径;引起迷宫中较强的压力脉动,有时还会引起机组的自激振动。有的电厂运行检修经验表明,有些不对中的情况还会产生两倍频的附加径向力和摆度,还会有一个转频的附加轴向力作用在推力轴承上。 2.2.2 轴瓦间隙大

其它条件不变时,轴瓦间隙的大小直接决定转子弓状回旋半径,(基本规律是:间隙有多大,摆度幅值就有多大);降低转动部件的临界转速。 2.2.3 轴承缺陷当导轴松动,或间隙过大润滑又不良,或轴承与固定止漏环不同心等都会发生干摩擦,引起机组的横向振动。

2.2.4 推力头松动

推力头松动指推力头内孔和轴颈间存在间隙。当推力头松动时,机组振动、摆度的特点为:机组运行时的动态轴线姿态会发生突然变化,机组的振动、摆度忽大忽小,呈不稳定状态。而且,推力头松动也会给机组盘车带来困难。 2.3 电磁因素

振动的电磁因素系指振动中的干扰力来自发电机电气部分的电磁力。其特征是振动随励磁电流的增大而增大。引起电磁振动的主要因素有转子绕组短路、空气间隙不均匀等。

2.3.1 转子绕组短路

当一个磁极因短路而引起磁动势减小时,和它相对应的那个磁极的磁动势并没有变,因而出现一个跟转子一起旋转的辐向不平衡磁拉力,引起转子振动。这种振动的大小取决于失去作用的线圈匝数。其振动的振幅与励磁电流有关,用公式表示为,=,(,),励磁电流,增加,振幅,增大。当去掉励磁,振动立即消失。所以很容易把这种振动和其它原因产生的振动区分开来。

2.3.2 空气间隙不均匀

当发电机转子不圆或有摆度时,空气间隙就会不均匀,从而产生单边的不平衡磁拉力,随着转子的旋转而引起空气间隙周期性变化,单边不平衡磁拉力沿着圆周作周期性移动,引起机组振动。

3 水轮发电机组振动的危害

振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害: 3.1 使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏;

3.2 引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂;

3.3 尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统

的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机

组从电力系统中解列,甚至危及厂房及水工建筑物。

4 黑河塘电站2F机组振动情况

4.1 黑河塘电站2F机组开机试验情况

黑河塘电站开机时邀请四川电力试验研究所对机组进行了稳定性验收试验,试验使用德国申克公司一体化电涡流位移传感器及9200 型电涡流位移传感器18

套、WT-3型微调装置18套、FTS2000 水力机组现场综合测试仪1套、自主研发的数据采集和水力机组振动分析系统1套,试验过程中先后配重34kg,有效的消除了机组的动不平衡。机组试验时测点布置如下:

推力轴承处摆度(简称推力摆) -Y 一点取高点

上导摆度(简称上导) -Y,-X 各一点取高点

下导摆度(简称下导) -Y,-X 各一点取高点

水导摆度(简称水导) -Y,-X 各一点取高点

上机架水平振动(简称上平) -Y,-X 各一点取高点

上机架垂直振动(简称上垂) -Y 一点

定子水平振动(简称定平) -Y 一点

下机架水平振动(简称下平) -Y,-X 各一点

顶盖垂直振动(简称顶垂) -Y 一点

1 黑河塘电站2F稳定性试验数据图表

单位:μm 工况推力上导下导上平上垂定平下平顶垂配重后空转152.7 153.9 55.5 13.9 12.8 8.1 12.5 6 配重后空载 117 176.6 76.1 113.1 11.2 9.6 11 6.1 50,负荷 50 194.9 104.2 10.2 17.8 10.8 14.4 6.1 100,负荷42.9 196.5 100.7 11.8 7.4 9.8 19.4 6

250

推力200上导

下导150

上平100上垂

定平50

下平0顶垂

配重后空转配重后空载50,负荷100,负荷

4.2试验结论

4.2.1 机组轴线调整不太理想,上导存在原始摆度约150μm,通过试验处理亦无法消除。

4.2.2 在发电机转子上平面共加配重34kg 后,有效地消除了机组的动不平衡。 4.2.3 机组磁力不平衡不明显。

4.2.4 在目前运行水头下,机组无明显低频水力振动区。

4.2.5 机组上、下导轴承存在二次间隙,运行一段时间后瓦隙扩大,经振动处理并重调瓦隙后机组运行稳定,各振动、摆度均在规程要求的优秀范围内。 4.3 黑河塘电站投运后振动情况

黑河塘电站机组用北京英华达公司研制生产的EN3800大型旋转机械振动监测故障诊断专家系统,该系统是基于计算机和单片机的集散型主从分布系统,可以自动采集、记录和分析与水轮发电机组安全有关的主要状态参数,包括振动、转速、轴位移、胀差、偏心、功率等,快速准确地把握机组的运行状态。整个系统由网络集成,采用积木式模块化结构,是集实时数据采集和处理、在线数据分析和储存、完备的分析功能和故障诊断于一体。它可以及时捕获振动故障原始信息,预告故障的存在和发展。运行人员对每天机组的运行情况进行了记录,2F机组在投运前半年机组振动稳定,但在投运半年后温度有明显的增大, 4.3.1 2F机组测点布置说明如下:

具体数据如下:上导+X、上导+Y、上机架水平、上机架垂直、下导+Y、下导

+X、下机架水平、定子水平、定子垂直、水导+Y 、水导+X 、顶盖垂直,下表中每组导轴承去两点中最大值

4.3.2黑河塘电站2F机组摆度数据表及趋势图

图表 2黑河塘2F机组1,12月摆度统计

单位:μm

上导上机架下导下机架定平定垂水导顶垂时间

228 71 131 16 14 17 229 36 1月

200 56 91 18 25 23 156 21 2月

197 52 162 16 16 27 229 33 3月

208 25 149 19 16 23 253 35 4月

231 53 143 22 25 23 250 40 5月

250 52 233 29 20 14 222 27 6月

370 55 299 31 28 29 211 38 7月

414 32 336 29 21 28 218 56 8月

421 49 349 24 23 22 171 35 9月

427 58 336 27 28 30 166 35 10月

324 35 247 27 28 27 163 24 11月

340 52 276 27 20 18 144 53 12月

图表 3 黑河塘电站2F机组摆度趋势图 450

400上导350

上机架300

250下导200下机架150定平100定垂50

水导0

顶垂

一月

二月

三月4.3.3 从趋势图3可以看出,黑河塘电站2F机组在运行半年后,上导、下导摆

四月度明显增大,而从电站的负荷情况来看,进入7月以来电站来水量增大,进入汛

五月

期,长期在高负荷段运行,也是机组摆度增大的主要原因之一。六月

七月

八月

九月

十月

十一月

十二月

图表 4黑河塘2F机组7,12月不同工况摆度统计

单位:μm

上导上机架下导下机架定平定垂水导顶垂负荷

270 24 267 24 22 13 143 24 0MW

424 21 346 21 21 16 110 40 20MW

431 22 360 24 23 13 150 13 30MW

378 22 321 24 25 12 163 26 43MW

图表 4 黑河塘电站2F机组7,12月不同工况摆度趋势图 500

450上导400上机架350下机架300下导250定平200

定垂150

水导100

顶垂50

0MW20MW30MW43MW

4.3.4 从图可以看出,2F机组在进入下半年高峰负荷后,摆度在机组的不同工况下变化也较大,在振荡区(40%,70,)内摆度较大

5 振动原因分析

5.1 水力方面因素:运行水头稳定,各种水力方面情况在前半年后半年无明显变化,水力方面对机组摆度增大影响不大。

5.2 机械方面:黑河塘电站安装质量不甚理想,留下不少问题在开机试验时已给出轴线调整不太理想,上导存在原始摆度约150μm的结论,从数据可以看出,下导在运行半年后原始摆度也将比投产时有所增大。

5.3 电磁方面的因素:发电机电气部分的电磁力对机组摆度影响较大,振动随励磁电流的增大而增大的现象比较明显。

6 对消除黑河塘电站2F机组振动较大的一些建议

6.1 机组下导摆度缓慢爬升现象是因为转轴受热后刚度略有下降引起,还是下导瓦隙缓慢扩大所致,经试验分析认为后者的可能性更大一些,建议甲方根据现场监测系统积累运行数据以进一步进行分析从而找到对应处理措施。 6.2 建议机组大修时调整好轴线以减小上导摆度,同时调整上导的瓦隙。 6.3 建议机组尽量避免在振荡区运行

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

机械振动与故障诊断基本知识解析

旋转机械状态监测与故障诊断 讲义 陈国远 深圳市创为实技术发展有限公司 2005年8月

目录 第一章状态监测的基本知识 (4) 一、有关的名词和术语 (4) 1. 振动的基本参量:幅值、周期(频率)和相位 (4) 2. 通频振动、选频振动、工频振动 (6) 3. 径向振动、水平振动、垂直振动、轴向振动 (6) 4. 同步振动、异步振动 (7) 5. 谐波、次谐波、亚异步、超异步 (7) 6. 相对轴振动、绝对轴振动、轴承座振动 (7) 7. 自由振动、受迫振动、自激振动、随机振动 (7) 8. 高点和重点 (8) 9. 刚度、阻尼和临界阻尼 (8) 10. 共振、临界转速、固有频率 (9) 11. 分数谐波共振、高次谐波共振和参数激振 (9) 12. 涡动、正进动和反进动 (9) 13. 同相振动和反相振动 (10) 14. 轴振型和节点 (10) 15. 转子挠曲 (11) 16. 电气偏差、机械偏差、晃度 (11) 17. 偏心和轴心位置 (11) 18. 间隙电压、油膜压力 (11) 二、传感器的基本知识 (12) 1.振动传感器 (12) 2.电涡流振动位移传感器的工作原理 (13) 3. 电动力式振动速度传感器的工作原理 (13) ⒋压电式加速度传感器的工作原理 (14) 第二章状态监测常用图谱 (15) 1.波德图 (15) 2.极坐标图 (16) 3.频谱瀑布图 (16) 4.极联图 (17) 5.轴心位置图 (18) 6.轴心轨迹图 (18) 7.振动趋势图 (19) 8.波形频谱图 (20)

第三章旋转机械的故障诊断 (22) 1. 不平衡 (22) 2. 不对中 (23) 3. 轴弯曲和热弯曲 (26) 4. 油膜涡动和油膜振荡 (27) 5. 蒸汽激振 (30) 6. 机械松动 (33) 7. 转子断叶片与脱落 (33) 8. 摩擦 (38) 9. 轴裂纹 (40) 10. 旋转失速与喘振 (40) 11. 机械偏差和电气偏差 (43)

水轮发电机运行规程

第一章设备基本参数

第四节冷却水 冷却器压力(Mpa)用水量(L/min)

第五节顶转子时间规定 第七节转速限额 第1条水轮发电机组是全厂最重要的机电设备,为确保机组的全安经济运行和人身安全,运行和有关人员必须严格遵守本规程。发现有人违反本规程,运行人员有权加以制止。 第2条机组开机、停机、蝶阀开启与关闭操作,必须经值长许可。 第3条蜗壳充水前,机组必须处于下列状态: 1、蜗壳、尾水管进人孔关闭; 2、蜗壳排水阀关闭; 3、调速系统正常、油压正常;

4、导叶全关、接力器锁锭投入。 第4条事故停机后,必须查明事故原因,消除故障,并手动复归事故停机回路,否则不允许开机,必须开机应经生产厂长批准。 第5条机组主要保护和自动装置必须投入,整定值不得任意变动,必须解除或变更定值时,须经生产厂长批准。 第6条调速器接力器排油或关闭调速器总供油阀1136的时间超过4小时,恢复前需做接力器全行程试验,试验应严格按典型操作票进行。 第7条一次。 第8条机组因故发生低转速加闸或惰性停机,开机前需顶转子在机组操作或试验过程中,如发生异常情况,应立即停 止操作或试验,并及时向值长汇报。 第9条机组转动部分或蜗壳、尾水管内有人工作,应做好防蝶阀开启及导叶动作的防转动安全措施。 第10条须向发令人汇报。 第11条操作、巡回检查、定期工作、事故处理等工作完毕后必油、水、气系统检修后,应做相应的充油、充水、充气 试验,检查油、水、气系统完好。 第12条机组发生严重冲击或全甩负荷等异常工况时,应检查发电机有无异常,并测量一次水导摆度。 第13条水轮机一般应调整到最佳工作状况运行,避免在振动区运行,以免发生严重汽蚀和振动。 第14条 全面检查。 当机组发生高转速加闸停机后,应对风闸、制动块进行第15条机组不允许在额定转速50%以下长时间运行。第 16条调速器遇下列情况之一者应切“手动控制”运行:1、 自动控制回路发生故障时; 2、测频电压互感器及回路发生故障时;

试论述引起水轮发电机组振动的原因

试论述引起水轮发电机组振动的原因、振动机理及相应振动故障的处理措施 水轮发电机组的振动与一般动力机械振动有一定差异,机组振动的现象是比较明显的,但振源往往是隐蔽的,除了机器本身转动或固定部分引起的振动外,还需考虑发电机电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。引起水轮发电机组振动的原因多种多样,往往是几种振源同时存在,通常认为使机组产生振动的干扰力源主要来自水力、机械和电气三个方面,三者相互影响、相互作用,常常交织在一起,形成耦合振动。 水轮发电机组的一般振动不会危害机组,但当机组振动超过允许值,尤其是长期振动及发生共振时,对供电质量、机组使用寿命、附属设备及仪器是性能、机组基础和周围的建筑物,甚至对整个水电站的安全经济运行等,都会带来严重的危害。 其危害性大致有以下几类: 1)引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至 断裂损坏而报废。 2)使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接 部分的振动,促使它们加速损坏。 3)加速机组转动部分相互磨损程度。如大轴剧烈摆动,可使轴与轴瓦的温度升高,使 轴瓦烧毁;发电机转子振动过大增加滑环与电刷的磨损程度,并使温度升高,使轴瓦烧毁,并使电刷火花不断增大 4)尾水管中形成的涡流脉动压力,可使过水系统发生振荡,机组出力摆动,使尾水管 壁产生裂缝,严重时可使整体尾水设施遭到破坏。 5)水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂 房遭到不同程度的损坏 1、水力方面 水力振动由水轮机水力部分的动水压力的干扰造成的振动叫水力振动。产生振动的水力因素主要有:尾水管内低频涡带、卡门涡列、叶道涡引起的水力不稳定、过度过程中

转机振动原因分析

转机振动原因分析文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

GB振动标准: 1、额定转速750r/min以下的转机,轴承振动值不超过0.12mm 2、额定转速1000r/min的转机,轴承振动值不超过0.10mm 3、额定转速1500r/min的转机,轴承振动值不超过0.085mm 4、额定转速3000r/min的转机,轴承振动值不超过0.05mm。 转机振动原因分析: 转机振动原因通常有四种:不平衡、共振、不对中和机械故障。 1.转子不平衡 它是最常见的振动原因,如转子制造不良、转子叶片上异物的堆积、电机转子平衡不良等。不平衡造成较大振动的另一原因是设备底座刚度较差或发生共振。键和键槽也是导致不平衡振动的另一原因。 转轴热弯曲是引起转子不平衡的另一种现象。一般热弯曲引起的不平衡振动随负荷变化而略有变化。但如果设备基础与其转动发生共振,则极有可能发生剧烈振动。因此,预防的关键,一是转轴的材质必须满足要求;二是转机机座必须坚实可靠。 2.共振 系统中的共振频率取决于其自由度数量;共振频率则由质量、刚度和衰减系数决定。转机支承共振频率应远离任何激振频率。对于新装置,可向制造厂咨询所需地基刚度以达到此目的。对于共振频率与转速相同的现有装置有两种选择—最大限度地减少激振力或改变共振频率。后者可通过增加系统刚度和质量来实现。处理共振问题时,最好改变共振频率。 共振也可能是由于转子与定子系统组件不对中或机械和电气故障而引起。

转速下谐波的共振频率也易造成故障。它们也可能由于不对中或机械和电气故障而诱发。然而与相同频率下的问题相比,这些共振造成的问题并不常见。 3.不对中 它可能在转速和两倍转速下造成径向和轴向的激振力。但是绝不能因为没有上述现象中的一种或两种而断定不存在对中问题。同时应考虑机组的热膨胀,一副联轴节之间要留有1.5-3mm间隙。 4.机械故障 质量低劣的联轴器、轴承和润滑不良以及支座不坚固,都是产生不同频率和幅值激振力的原因。 (1)质量低劣的联轴器主要表现在铸造质量差、连接螺孔偏斜、毛刺,橡皮垫圈很快损坏,使联轴器由软连接变为硬连接,产生振动、磨损。 (2)径向轴承的更换,一般是简单更换。为了避振换新轴承时,应对轴承外环作接触涂色检查,必要时处理轴承座。 (3)轴向波动是造成转机,包括联轴器、轴承在内的另一振动问题的起因。一般转机的轴向推力靠止推轴承约束。但是,如果轴向对中不良,且转子轴向发生磨蹭,则可能会产生剧烈的轴向振动。 (4)支座软弱即四个支脚不在同一平面上。转机用螺栓紧固在这四点时,如果各轴承不对中,必然造成剧烈振动。因此转机安装时,应该先用适当力矩对称拧紧几个紧固点。然后每次松开一个紧固点,并用千分表测量该点垂直变形量。如果垂直变形量大 于.05mm,应在此支脚下加垫片,其厚度等于变形量。重复以上过程,直至松开时每个点垂直变形量小于0.05mm为止。

(完整版)水轮发电机组振动标准的探讨

水轮发电机组振动标准的探讨 一、概述 水轮发电机组的振动由于其所具有机组在制造厂不能进行运行试验、各机组构造和支承条件各异的特点,设计单位和制造厂所编制的振动预测往往和机组的振动状态有着较大程度的差异。多年来国际电工委员会(IEC)和国际标准化组织(ISO)也曾组织制定过相关规程,有关国家先后提出过若干提案,但至今都未形成正式的国际标准。 1. 目前,在国内外广泛使用于水轮发电机组的振动判断标准如表1。 表1

二、国际电工委员会(IEC)和国际标准化组织(ISO)汇集各国、各知名标准化协会提案提炼的相关标准铸就了水轮发电机组振动测量、评判标准系列的基石 1.ISO 10816-5(2000)《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》是目前最具权威性的轴承座振动评定标准之一(目前,ISO 10816已替代了ISO 2372 和ISO 3945)。 GB/T 6075.5-2002《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》实际上相当于ISO 10816-5(2000)的中译本,因此,完全可以GB/T 6075.5-2002替代国际标准化组织的相关标准ISO 10816-5(2000)。 相关的主要内容是: 1)对轴承座绝对振动的测量,通常用惯性传感器测量振动速度V rms,单位为mm/s(对于300~1800r/min的中高速机组而言,低于300r/min机组建议测量振动位移S P-P,单位为μm)。在支架振动响应可以忽略的情况下,也可将位移传感器固定在刚性支架上,直接测量振动位移S P-P。 2)上下导轴承座均支撑于基础上的立式机组,水轮机工况的推荐值参见表3、图1。 表3 的推荐值参见表4、图2。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

水轮发电机振动原因分析及处理

水轮发电机振动原因分析及处理 响洪甸水电站装有4台HL-211-LJ-200水轮发电机,每台机的容量为10 MW,于1958—1961年分批投入生产。 3号水轮发电机组于1960年7月投产,1987年底进行定、转子绝缘的更新改造,更换了定子铁芯,并对定位筋位置进行了修正。 1 振动概况 1991-05-16,运行人员发现3号机下导机架靠4号机方向的一条腿松动。检查后,用现场加焊补强的方法作了暂时处理。在经历了前所未有的高水头运行后,运行及检修人员发现该机振动加剧,再次检查发现,下机架的4条腿与基础之间均存在相互蠕动现象。 1991-10-25,用不同手段在不同工况下对3号机振动情况进行了测量。测量结果表明,3号机的水平振动和垂直振动在大部分工况下都已达到甚至超过规程规定的允许范围(水平0.07 mm,垂直0.03 mm),特别是转轮压水调相工况时,水平振动达到0.085 mm,垂直振动达0.065 mm。 1991-11-05,对电机气隙进行了测量。通过对28个磁极气隙测量,发现靠下游侧至2号机侧的半圆气隙普遍偏大,一般在12 mm左右,而另半圆的气隙则在8 mm左右,这个趋势和励磁机的气隙变化基本一致,说明3号发电机的某一部分由于某种原因发生了位移,位移幅度可能在2 mm左右。 2 振动原因分析 1992年9月下旬,对3号机组进行了较全面的振动和摆度测试,并做了频谱分析,得到了幅值和频率等实测数据。通过研究分析,得出机组振动的原因如下。 (1) 从上机架的垂直振动测量分析出机组在各种测试工况下都存在着明显的8倍转频的振动。这表明镜板与推力头之间的环氧玻璃垫板有气蚀磨损、镜板与推力头结合面有不平缺陷。由于镜板与推力头的连接螺栓是8个,故使镜板在运转中呈现8个波浪式变形。由于推力瓦块数是8块,因此镜板旋转时会受到8倍转频的轴向振动力,并且镜板联接螺栓与推力瓦块数相等,使得每块瓦对镜板产生的轴向振动力是同步的,从而加剧了振动力。久而久之,造成垫板严重气蚀磨损,并使联接螺栓产生疲劳,严重时发生断裂。 镜板与推力头结合面的不平缺陷,加剧了垫板的气蚀磨损,垫板的磨损使机组的振动变大,这是3号机振动增大的主要原因(在机组大修时检查证明了垫板确实严重气蚀)。 (2) 水导摆度在各种工况下都较大,达到0.45~0.51 mm,超出了允许值,表明橡胶水导瓦间隙变大,需更换或调整。 (3) 上导摆度在2.5 MW负荷工况下达到0.48 mm,超出了允许值;在7.5 MW 大负荷工况下仅为0.14 mm。 (4) 变速试验中,上机架径向振动的转频幅值几乎相同,小于0.04 mm,表明转子机械平衡性能良好,无需再做平衡试验。

风机振动原因分析

1 轴承座振动 1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

3.1需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。

起重机械金属结构振动与故障诊断分析

起重机械金属结构振动与故障诊断分析 发表时间:2018-12-20T14:09:56.087Z 来源:《防护工程》2018年第27期作者:胡伟忠[导读] 随着我国基础建设的快速发展,使用起重机械工程项目日益增多,工作环境越来越复杂。浙江省特种设备检验研究院浙江杭州 310000 摘要:起重机械属于工业机械范畴内涉及人身、财产安全的大型特种设备,强化其金属结构安全以及维护保养,尤其是长期应用存在金属结构疲劳的起重机械诊断维修至关重要。随着现阶段振动信号测量与分析在检测起重机金属结构振动过程中都得到了有效的应用,检测和分析水平也提升到了一定的提高。但是在对起重机金属结构振动与故障分析的过程中,依旧存在很多的问题,这就需要在发展的过程中不断对其进行研究和分析,从而制定更加完善的解决方案。 关键字:起重机械;金属结构振动;故障诊断 引言: 随着我国基础建设的快速发展,使用起重机械工程项目日益增多,工作环境越来越复杂,在各种不同环境下的频繁高强度作业,起重机械的疲劳问题日益突出。大型起重机械的金属结构正常使用寿命在20年左右,对于起重机械服役后期金属结构出现振动和故障诊断分析一直困扰着技术人员。因此,对于起重机械金属结构的安全监测以及故障问题分析成为解决问题的关键。通过分析不难发现,疲劳与振动之间的关系是密不可分的,因此疲劳和振动都会导致设备在使用寿命期间内发生安全事故,不仅会造成巨大的经济损失,而且会造成人员伤亡。 1起重机械金属结构振动和故障诊断存在的问题 起重机金属结构振动与故障诊断分析的过程中,依旧存在很多的问题,这些问题主要表现在: 1.1振动失效和故障机理研究不够 在当前研究当中,对于因为振动引起的起重机金属构造失效和故障机理探索重视不够充分,由非动态疲劳方面进行分析,构造疲劳破坏问题重点是思考构造设计方面应力和应变布置,由构造疲劳失效和构造振动反映中间内部特点去看,振动疲劳属于导致疲劳失效的因素之一。而导致中机械的核心金属构造和重点零部件在服役阶段。因为腐蚀锈蚀和裂纹以及磨损等一系列的因素,导致金属构造受力情况发生变化。构造内应力分布,原有频率变化,这就导致构造疲劳失效,这和构造振动反映有着紧密的联系。非静态在和激励时常又发模态和荷载振动产生耦合作用,遭受损坏的地方通常是部分振动过程中应变大,并且存在缺陷或者是应力汇聚的地方,破坏的起因是部分振动和应力汇聚这两个因素的一起作用。因为振动疲劳破坏十分复杂,单纯的使用非动态疲劳方式无法满足提升评价成果可靠和稳定方面的要求,在起重机械安全评价过程中,应该使用金属构造振动相关探索。 1.2振动故障诊断方式单一 其中机械金属构造服役安全评价第一点必须要分析设施使用过程中获得的多种信号,之后将信号当中多种有价值的信息提取出来,在当中获得和故障有关的特征,最后通过特征诊断故障,最近几年,运用十分广泛的短时傅立叶变换等均是由内积原理当作基础的特征波形基函数信号分解,主要目的是巧妙的使用和特征波形适合的基函数,对于信号进行良好的处理,提出故障征兆,进而完成故障诊断。对于系统前提的故障和轻微以及符合还有系统这些故障的诊断方式还不是十分完善,合理的诊断方式还不是很多,金属构造在服役时无法避免出现损伤和前期故障,其拥有可能性以及动态响应的微弱性。而符合和系统这两种故障因为多种因素耦合以及传播渠道繁琐,通常造成单一信号处理方式无法真正了解故障的形成因素。 2振动故障诊断分析 2.1专业技术诊断 通过专业系统完成对故障状态的分析与观察,对故障的所在进行推断,并且给出相应的排除故障的有效方法。专业诊断法需要汇集大量的专家知识,可以实现对随机出现的故障的合理诊断。但是,在知识的获取上会面临一定困难,知识库的更新速度相对比较缓慢,不同领域专家的知识存在一定矛盾点,目前在表达能力和处理能力上都存在一定局限性。 2.2模糊诊断法 在模糊诊断法中应适当的引入模糊逻辑,主要作用是克服出现的不精准性、不确定以及因为噪声而带来的影响,因而在对复杂系统进行处理时,会在时变、时滞等方面表现出一定优势。模糊诊断在具体应用过程中的缺点是在诊断复杂系统过程中,需要构建隶属函数和模糊规则,而从实际情况来看,这个过程难度较大,并且会消耗大量的时间。 2.3神经网络诊断 通过神经网络完成对故障的诊断,该诊断的基本思路如下:将故障特征信号作为神经网络的输入点,而神经网络的输出就是最终的诊断结果。第一,对已知的故障征兆和诊断结果进行应用,实现对神经网络的离线训练,通过这种方式使神经网路通过权值记忆故障征兆与诊断结果之间形成对应关系。第二,在神经网络的输入端将获得的故障征兆加入,并获取最终的诊断结果。各个故障的类型需要与输出神经元相对比,否则系统将无法显示新出现的故障类型,对故障的诊断将会造成不良影响。 3起重机金属结构诊断的具体应用 3.1起重机械金属结构振动测试 对于起重机械的整体结构来说,振动研究就包括了测试系统相关动态特性数据,例如固定频率检测和阻尼比检测以及振型检测等各个方面。其中解析、分析的放散和实验分析方案逐渐有效结合的模态分析技术,都融入了模态测试的改善技术和理论与结构强度测试应用案例和经验,需要最先创造结构有限元的模型,之后计算出结构有关有限元的模态数据,依据结构的有限元模态数据达到结构模态实验相关工作的改善工作,以此在一定程度上增强模态试验获取的结构模态参数安全性能和可依靠性以及其精确度,其中包括了完善的结构模态实验的有关悬挂位置和激励方位以及测量方位等相关的工作。依据实验分析的方案,于现场实地勘测获取的模态和解析方案模态实现进行对比,从而更好完成金属结构损伤问题的研究,研究出金属结构中存在的问题,以此依据对比分析可以增强设施问题检测的有效性和完善性,并且获取更为有效的金属振动结果和模态数据信息。

水轮机发电机振动的原因与处理对策探究

水轮机发电机振动的原因与处理对策探究 发表时间:2018-10-17T09:25:53.530Z 来源:《基层建设》2018年第27期作者:孙安伟1 陈书敏2 [导读] 摘要:随着我国水电建设事业不断的突破和发展,对于水轮机发电机组的需求不断增大。 重庆水轮机厂有限责任公司重庆 402260 摘要:随着我国水电建设事业不断的突破和发展,对于水轮机发电机组的需求不断增大。但是在这个过程中虽然说使用设备的数量较以前有很大程度的增加,可是设备的质量却依旧原地踏步甚至还有退步的趋势。所以为了避免这种情况的出现,保证水轮发电机的正常使用,本文深入讨论了水轮机发电机出现振动的原因与相应的解决对策,意在提高机械设备的使用效率及使用寿命,以期借鉴。 关键词:水轮发电机;振动原因;相应对策 1引言 水轮机发电机出现振动的原因,一般是由不规范的安装操作流程或者设备本身存在设计缺陷造成的,所以在进行探究时就要以这两个方面为抓手进行深入的探究。 2水轮机发电机出现振动原因的探究 2.1水力振动 由于水轮发电机在运行的过程会与水之间产生一定的干扰力,这种干扰力主要是由以下几种原因造成的: (1)由于脱流引起的干扰力。机组在紧急停机时,会引起相应的活动导叶进行快速的关闭,这个时候水轮机的尾部水管就会积蓄大量的液体压力,而在这时再把水管之中的压力再次进行降低,直至比水在饱和真空气压还低的状态时,这时尾部水管中的水就会产生大量气泡,水产生了分离现象。而在水进行重新结合的过程中还会产生相应力的作用,这就使设备产生振动的现象。 (2)水力不平衡引起的干扰力。在尾水管的中间部分会形成旋转流水,这时在出水口的部分就非常容易形成空穴,空穴在高压区被压破并产生冲击压力,这时就会使设备产生振动,如果设备长时间处于这种状态还会逐渐的破坏金属表面的保护层,缩短设备的使用年限。 2.2电磁振动 电磁振动,顾名思义就是由设备内部所产生的电磁力引起的震动,这种引起设备振动的原因容易让相关管理人员忽视。造成这种现象的原因一般是没有对设备内部的构件进行合理的安装,在一些构件的尺寸上没有科学的进行选用,比如说转子的尺寸选用如果存在问题,那么就有可能引起设备产生电磁振动。 2.3机械振动 由于在水轮机发电机在运行过程中各个部分会引起不同程度的摩擦力,所以这就引起了设备的机械振动。具体来说有以下几点原因:(1)设备中的转子在运转的过程中出现问题。一般来说可以归根到转子的质量问题,由于转子在生产时存在一定的缺陷,导致转子的质量分配不均匀,那么转子在转动中就可能倾斜,这就会使水轮机发电机受力不均,最终导致比较强的设备振动。 (2)设备轴线位置存在误差。如果设备在运行时轴线位置不准确,那么就会使转轮产生较大的离心力,这就会使轴承在运行的过程中产生较大的晃动,最终会导致设备的大幅度振动。 (3)导轴承存在质量上的问题。导轴承的质量问题一般有松动、强度不足等,如果设备在运行的过程中存在这些情况,设备虽有可能正常的运行,可是在运行的过程中也会出现一定的振动。另外轴承之间存在的缝隙不符合相应标准,或者没有定期的对其进行更新与维护,也会造成水轮机发电机出现振动的情况。 3解决水轮机发电机振动的相应措施 通过以上的分析我们可以深刻的了解到造成水轮机发电机振动的原因涉及到多个方面,所以在解决这些问题也要对其进行系统的分类进行处理,进而才能有效的避免水轮机发电机出现振动的情况,进而延长设备的使用寿命,提高经济效益。 3.1由于水力引起振动的解决办法 由于水力引起振动的原因主要有两种,所以在解决时也要进行分类。比如说为了避免脱流现象的发生,就要避免导叶快速的关闭这种情况的发生,相关的操作人员就可以安装相应的“分管”构件,在关闭油路时采取分段关闭的措施,这时导叶的转速降低就具备了一定的缓冲条件,有效的降低了水在分离和结合时的能量释放,进而减轻了设备振动的现象。另外为了解决气蚀情况的发生,延长设备的使用寿命,相关的管理人员要在采购设备时,要向商家了解到设备的气蚀振动区域,进而在寻求相应的办法进行解决。最后还要定期的对水中的杂物进行清理,设置好栏污栅,避免在水轮机发电机运行时一些杂物卷入设备内部。 3.2由于电磁引起振动的解决办法 结合实际工作来看,工作人员在发现设备振动之后会习惯性的从机械振动及水力振动来两个个方面去寻去相应的解决办法,而忽视了对于电磁引起设备振动的原因,所以在对设备进行维修时就会多走很多弯路,浪费了很多时间。所以说为了避免这种情况的发生,管理人员要通过使用恰当的方法对其进行解决,比如说利用图像的方法就可以取得良好的效果。具体来说,管理人员要对设备在不同的情况下做开机实验,进而检测造成设备电磁振动的原因,把在不同情况运行所得到的综合特性曲线利用相应的技术手段输入到调速器之中,然后再进行开机实验。总的来说,利用这种方式对设备的电磁振动进行检验(在相应的技术要求之下,允许水轮机发电机运行时存在一定的电磁振动),能够比较及时准确地找到影响因素并进行解决。 3.3由于机械引起振动的解决办法 由于机械引起的振动一般都是因为转子质量不合格所以起的,所以这时相关的管理人员就要重点对转子进行检查,具体来说可以通过检查转子的平衡力来实现,如果转子在质量上存在问题那么就要及时的进行更换,在更换的过程中要特别注意保证转子的中心与轴线之间要处于重合状态,这时水轮机发电机在运转的过程中就不会因为轴承产生较大晃动而产生振动。另外管理人员也要特别注意由导轴承所引起的问题,要定期的对其进行检查,进而保证导轴承能正常的发挥功能。 4结语 总而言之,为了避免水轮机发电机出现振动的情况,就必须要对水力振动、电磁振动、机械振动等多个方面进行严格的掌握与控制,所以这就要求管理人员在工作中要不断的积累解决问题的方法与经验,进而不断的提高自身能力。

相关主题