搜档网
当前位置:搜档网 › 存储要点:全量、增量、差分备份及方法

存储要点:全量、增量、差分备份及方法

存储要点:全量、增量、差分备份及方法
存储要点:全量、增量、差分备份及方法

1.1 备份策略设计

要在建立一个好的备份系统,除了需要配备有好的软硬件产品之外,更需要有良好的备份策略和管理规划来进行保证。备份策略的选择,要统筹考虑需备份的总数据量,线路带宽、数据吞吐量、时间窗口以及对恢复时间的要求等因素。目前的备份策略主要有全量备份、增量备份和差分备份。全量备份所需时间最长,但恢复时间最短,操作最方便,当系统中数据量不大时,采用全量备份最可靠。增量备份和差分备份所需的备份介质和备份时间都较全量备份少,但是数据恢复麻烦。根据不同业务对数据备份的时间窗口和灾难恢复的要求,可以选择不同的备份方式,亦可以将这几种备份方式进行组合应用,以得到更好的备份效果。

1.1.1全量备份(Full Backup)

所谓全量备份,就是对整个系统包括系统文件和应用数据进行的完全备份。这种备份方式的优点是数据恢复所需时间短。缺点是备份数据中有大量内容是重复的,这些重复的数据浪费了大量的磁带空间,无形中增加了数据备份的成本;再者,由于需要备份的数据量相当大,因此备份所需时间相对较长。

1.1.2增量备份(Incremental Backup)

增量备份指每次备份的数据只是相当于上一次备份(全或增或差)后增加的和修改过的数据。这种备份的优点很明显:没有重复的备份数据,节省磁带空间,又缩短了备份时间。但它的缺点在于当发生灾难时,恢复数据比较麻烦,需进行多次数据恢复才能恢复至最新的数据状态。

1.1.3差分备份(Differential Backup)

差分备份就是每次备份的数据是相对于上一次全量备份之后新增加的和修改过的数据。差分备份无需每次都做系统完全备份,因此备份所需时间短,并节省磁带空间;另外,差分备份的灾难恢复也很方便,系统管理员只需两次备份数据,即全量备份的数据磁带与发生灾难前一天的备份数据磁带,就可以将系统完全恢复。

*********************

随着数据量的增加,做全备份所需要的时间将不断延长,因此需要制定一个基于未来大数据量的备份策略。备份策略包括两个部分,一、操作系统和应用程序代码的备份策略,二、业务数据的备份策略。

操作系统和应用程序代码的备份策略比较简单,一般可先对所有系统做一次全备份,然后每周对关键系统做一次全备份;此外,每台机器做过软件安装或系统升级后,应立刻做一次全量备份。当操作系统和应用程序代码出现故障时,将全量备份的数据按照相应的办法恢复即可。

业务数据的日常备份策略可按如下制订:

1.1.4方法一:

?每周在访问量比较小(如周六、周日)的时候做一次全备份;

?每天对业务数据做一次差分备份或增量备份;

?每次业务数据做大调整后应立即做一次全备份。

?每天对备份服务器的Catalog日志备份;

1.1.5方法二:

周日---周一---周二---周三---周四---周五---周六---周日----

X------------I--------I---------C--------I---------C--------I--------X------

说明:

在上述示意的备份策略循环周期中

?X:表示全备份

?I:表示增量备份

?C:表示差分备份

各备份包含的备份内容:

?周日的全备份备份全部的数据

?周一的增量备份备周日到周一其间变更过或新增的数据

?周二的增量备份备周一到周二其间变更过或新增的数据

?周三的差分备份备周日到周三其间变更过或新增的数据(其中包括了周一和周二的增量备份)

?周四的增量备份备周三到周四其间变更过或新增的数据

?周五的差分备份备周日到周五其间变更过或新增的数据(其中包括周三的差分<内含周一和周二的增量>和周四的增量备份)

?周六的增量备份备周五到周六其间变更过或新增的数据达到的效果:

?若在周日的备份以后与周一的备份之前发生数据丢失,只需要用周日的全备份恢复即可。

?若在周一的备份以后与周二的备份之前发生数据丢失,只需要用周日的全备份+周一的增量备份恢复即可。

?若在周二的备份以后与周三的备份之前发生数据丢失,只需要用周日的全备份+周一、周二的增量备份恢复即可。

?若在周三的备份以后与周四的备份之前发生数据丢失,只需要用周日的全备份+周三的差分备份恢复即可。

?若在周四的备份以后与周五的备份之前发生数据丢失,只需要用周日的全备份+周三的差分备份+周四的增量备份恢复即可。

?若在周五的备份以后与周六的备份之前发生数据丢失,只需要用周日的全备份+周五的差分备份恢复即可。

?若在周六的备份以后与下周日的备份之前发生数据丢失,只需要用上周日的全备份+周五的差分备份+周六的增量备份恢复即可。

该备份策略的评述:

充分运用了全备份、增量备份、差分备份的特点,尽可能减少每次备份的数据量以提高备份速度。而且在任意时间点发生数据灾难后,为恢复数据所需的备份IMAGE不超过三个,保证了恢复的高效性。

1.1.6方法三:

有三种通常使用的备份计划:

(1). 只有全备份

两个全备份之间的时间段发生故障,数据会丢失,只能恢复到上一个全备份的数据.

(2). 全备份+日志备份

在全备份之间加入日志备份,可以把备份时间点缩小到更小的粒度.可以在每天做一个全备份,每一个小时或者半个小时做一次日志备份.这样子的话,如果在23:59分发生故障,需要restore一个full backup+23个transaction log backup,操作恢复的时间会比较久.

(3). 全备份+差异备份+日志备份

在全备份之间加入差异备份(differential backup),差异备份之间有日志备份.

至于选择哪一种备份策略,要根据实际的情况(RTO, RPO, Server loading等)灵活运用.

完整版有限差分方法概述.doc

有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较 早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分 为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上 述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后 差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。 1.基本思想 有限差分算法的基本思想是把连续的定解区域用有限个离散点 构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即 所谓的有限差分法。 2.技术要点 如何根据问题的特点将定解区域作网格剖分;如何把原微分

三轮DES差分分析实验报告-刘杰

DES 差分分析实验报告 四大队四队五班 刘杰 一、实验目的 差分密码分析是一种选择明文攻击,是现代分组密码分析的重要方法之一,也是理论分析密码算法和算法抗攻击测试的重要依据之一。本实验通过3轮DES 简化算法的差分分析来达到加深学员对差分分析方法原理的理解和利用该原理分析实际问题的操作能力。 二、实验内容 (1)3轮DES 简化算法的差分分析; (2)通过三组明密文对(每组两个相关明文和相应密文),利用差分原理提取密钥。 明 文 密 文 748502CD38451097 03C70306D8A09F10 3874756438451097 78560A0960E6D4CB 486911026ACDFF31 45FA285BE5ADC730 375BD31F6ACDFF31 134F7915AC253457 357418DA013FEC86 D8A31B2F28BBC5CF 12549847013FEC86 0F317AC2B23CB944 三、实验原理 设DES 两个明密文对:=00m L R ***=00m L R =33c L R *** =33c L R 计算过程: (,)(,)(,)(,)=⊕=⊕=⊕⊕322312300123R L f R k R f R k L f R k f R k

(,)(,)****=⊕⊕300123R L f R k f R k 令:*'=⊕000L L L (,)(,)(,)(* **''=⊕=⊕⊕⊕⊕333001012323R R R L f R k f R k f R k f R k 观察得:在本次实验原始数据中,明文对*=00R R ,即* '=⊕=00000000000R R R 则(,)(,)** ''=⊕=⊕⊕33302323R R R L f R k f R k 同时有:=00m L R ***=00m L R =23R L ** =23R L 则可计算出:*'=⊕000L L L *'=⊕333R R R (,)(,)* ''⊕=⊕232330f R k f R k R L 则可得出: S 盒输入差:(())(())()()* *⊕⊕⊕=⊕232333E R k E R k E L E L S 盒输出差:()*-''⊕=⊕13 0D D P R L 分析过程: 令:()()*⊕=3312345678E L E L B B B B B B B B ()-''⊕=13 012345678P R L C C C C C C C C ()=312345678E L A A A A A A A A =312345678 k J J J J J J J J ()⊕=3312345678E L k X X X X X X X X *()⊕=3312345678E L k Y Y Y Y Y Y Y Y 基本思路:(分别计算12345678J J J J J J J J ) {|,()()∈=⊕⊕=⊕=i i i i i i i J T e s t x A x y B S x S y C ,,,,,,,=12345678i 对于本次实验的3个具有明文差(*,0)的明密文对,则可构造上面的3个 Test 集合,显然 ()()( )∈12 i i i i J Test Test Test t ,,,,,,,=12345678i 一种确定Ji 的直接方法: 1.建立26=64长度的数组J[64]={0}; 2.对Testi(r),r = 1,2,…,t ,若a ∈Testi(r),则 J[a] = J[a] + 1。 3.若J[b] =3,则6比特串b 就是可能的密钥比特 Ji 。 四、实验环境 Microsoft visual c++ 五、实验步骤 (1)计算简化算法第3轮S 盒输入差

中心差分法的基本理论与程序设计

中心差分法的基本理论与程序设计 1程序设计的目的与意义 该程序通过用C语言(部分C++语言)编写了有限元中用于求解动力学问题的中心差分法,巩固和掌握了中心差分法的基本概念,提高了实际动手能力,并通过实际编程实现了中心差分法在求解某些动力学问题中的运用,加深了对该方法的理解和掌握。 2程序功能及特点 该程序采用C语言(部分C++语言)实现了用于求解动力学问题的中心差分法,可以求解得到运动方程的解答,包括位移,速度和加速度。计算简便且在算法稳定的条件下,精度较高。 3中心差分法的基本理论 在动力学问题中,系统的有限元求解方程(运动方程)如下所示: ()()()() Ma t Ca t Ka t Q t ++= 式中,() a t分别是系统的结点加速度向 a t是系统结点位移向量,() a t和() 量和结点速度向量,,, M C K和() Q t分别是系统的质量矩阵、阻尼矩阵、刚度矩阵和结点载荷向量,并分别由各自的单元矩阵和向量集成。 与静力学分析相比,在动力分析中,由于惯性力和阻尼力出现在平衡方程中,因此引入了质量矩阵和阻尼矩阵,最后得到的求解方程不是代数方程组,而是常微分方程组。常微分方程的求解方法可以分为两类,即直接积分法和振型叠加法。 中心差分法属于直接积分法,其对运动方程不进行方程形式的变换而直接进行逐步数值积分。通常的直接积分是基于两个概念,一是将在求解域0t T内的任何时刻t都应满足运动方程的要求,代之仅在一定条件下近似地满足运动方程,例如可以仅在相隔t?的离散的时间点满足运动方程;二是在一定数目的t?区域内,假设位移a、速度a、加速度a的函数形式。 中心差分法的基本思路是用有限差分代替位移对时间的求导,将运动方程中的速度和加速度用位移的某种组合表示,然后将常微分方程组的求解问题转换为

有限差分法实验报告

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

有限差分方法计算欧式期权价格

假设当前股票价格为50美元,股票价格波动率sigma=0.3;以该股票为标的资产的欧式看跌期权的执行价格为50美元,期权有效期为5个月;市场上的无风险利率为10%。利用显示差分格式为该期权进行定价。 %%% 显示法求解欧式看跌期权%%% s0=50; %股价 k=50; %执行价 r=0.1; %无风险利率 T=5/12; %存续期 sigma=0.3; %股票波动率 Smax=100; %确定股票价格最大价格 ds=2; %确定股价离散步长 dt=5/1200; %确定时间离散步长 M=round(Smax/ds); %计算股价离散步数,对Smax/ds取整运算 ds=Smax/M; %计算股价离散实际步长 N=round(T/dt); %计算时间离散步数 dt=T/N; %计算时间离散实际步长 matval=zeros(M+1,N+1); vets=linspace(0,Smax,M+1); %将区间[0,Smax]分成M段 veti=0:N; vetj=0:M; %建立偏微分方程边界条件 matval(:,N+1)=max(k-vets,0); matval(1,:)=k*exp(-r*dt*(N-veti)); matval(M+1,:)=0; %确定叠代矩阵系数 a=0.5*dt*(sigma^2*vetj-r).*vetj; b=1-dt*(sigma^2*vetj.^2+r); c=0.5*dt*(sigma^2*vetj+r).*vetj; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% L=zeros(M-1,M+1); for i=2:M %%建立递推关系 L(i-1,i-1)=a(i); L(i-1,i)=b(i); L(i-1,i+1)=c(i); end for i=N:-1:1 matval(2:M,i)=L*matval(:,i+1); end matval %寻找期权价格进行插值。 Jdown=floor(s0/ds);

差分编译码实验报告

实验十三差分编译码实验 一、实验目的 掌握差分编码/译码原理 二、实验内容 1、学习差分编译码原理 2、用示波器观察差分编码结果和译码结果 三、基本原理 差分码是一种把符号‘0’和‘1’反映在相邻码元的相对变化上的波形。比如,若以相邻码元的电位改变表示符号‘1’,而以电位不改变表示符号‘0’,如图13-1所示。当然,上述规定也可以反过来。由图可见,这种码波形在形式上与单极性或双极性码波形相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分波形也称相对码波形,而相应地称单极性或双极性波形为绝对码波形。差分码波形常在相位调制系统的码变换器中使用。 图13-1差分码波形 组成模块如下图所示: cclk d_out 端口说明: CCLK:编码时钟输入端 DIN:编码数据输入端 Diff-OUT:差分编码结果输出端 DCLK:译码时钟输入端

Diff-IN:差分译码数据输入端 DOUT:译码结果输出端 四、实验步骤 1、实验所用模块:数字编解码模块、数字时钟信号源模块。 实验连线: CCLK:从数字时钟信号源模块引入一高频时钟,如512K。 DIN:从数字时钟信号源模块引入一低频时钟,如16K。 DIFF-OUT与DIFF-IN短接。 DCLK与CCLK短接。 2、用示波器两探头同时观测DIN与DIFF-OUT端,分析差分编码规则。 3、用示波器两探头同时观测DIN与DOUT端,分析差分译码结果。 五、实验报告要求 设信息代码为1001101,码速率为128K,差分码的编码时钟为码速率的四倍,根据实验观察得到的规律,画出差分码波形。

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

差分方法实验报告

实验报告 课程名称:计算方法 院系:数学科学系 专业班级:数应1001 学号:1031110139 学生姓名:姚海保 指导教师:沈林 开课时间:2012至2013学年第一学期

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

差分方法

一、差分方法 1.1 导数的差分公式 在x 附近对()f x 展开,由泰勒展开公式 ()()()f x h f x f x h '+≈+ 得到前差公式为 ()() ()f x h f x f x h +-'= 同理也可以得到后差公式 ()() ()f x f x h f x h --'= 由后差分公式可以得到二阶导数的差分公式为 2 ()()()2()() ()f x h f x f x h f x f x h f x h h ''+-+-+-''= = 叫中心差分公式。 利用这些公式可以将微分方程写成差分方程。 1.2 热传导方程的差分公式 热传导方程是 2t xx u a u = 可以写成差分形式 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t u x t u x x t a t x +?-+?-+-?≈?? 即 []2 2 (,)(,)(,)2(,)(,)()t u x t t u x t a u x x t u x t u x x t x ?+?≈+ +?-+-?? 令 ,,0,1,2,...,1x i x t i t i n =?=?=- 上式可以写为(显示格式) []2 2 (,1)(,)(1,)2(,)(1,)()t u i j u i j a u i j u i j u i j x ?+=+ +-+-? 可以证明,上式的稳定条件为 2 2 ()2x t a ??≤,即 221()2t a x ?≤? 稳定且非振荡的条件为

22 1 ()4 t a x ?≤? 截断误差为 2((),)O x t ?? 另一种格式为 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t t u x t t u x x t t a t x +?-+?+?-+?+-?+?≈?? 即 22 22()()(,1,1)2(,1)(1,1)(,)x x u i j u i j u i j u i j a t a t ????-++--++++=-????? ? 该式称为隐式格式。对任何步长都是恒稳定的。在t ?上取值的唯一限制是,要将截断误差 保持在合理的程度上从而节约计算时间。 截断误差为 2((),)O x t ??。 二、一维热传导方问题 2.1 无限长细杆的热传导 无限长细杆的热传导的定解问题是 2(,0)()t xx u a u u x x ??=? =? 利用Fourier 变换求得问题的解是 2 2()4(,)()x a t u x t d ξ?ξξ--+∞ -∞?? =???? 其中取初始温度分布如下: 1,01()0,0,1x x x x ?≤≤?=? <>? 这是在区间0—1之间高度为1的一个矩形脉冲,于是得到 2 (,)u x t ξ=? 可以用图1所示的瀑布图来表示稳定随时间与空间的变化。 从图中可以看到,在开始时,温度分布是原点附近的一个脉冲状得分布,随着时间的增加,热量向两边传播,形成一个平缓的波包,不难想象如果时间足够长,最终杆上的温度会全

一维波动方程的有限差分法

学生实验报告实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计02班 学生姓名______________ 学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年6月20日

1、三层显格式建立 由于题中h 0.1, 0.1h,x 0,1 ,t 0,2,取N 10, M 200,故令网比r 0.1,h X j j h, j 0,1,2,L 10,t k k ,k O,1L ,200 ,在内网个点处,利用二阶中心差商得到如下格式: k 1 k U J 2U J 2- k 1 U j k k U j 1 2U j h2 k U j 1 o h2 略去误差项得到: k 1 U j 其中j 1,2丄9,k 对于初始条件 2 k r U J1 1,2,L ,199,局部截断误差为 U x,0 sin U J k U j k r U j 2 o k 1 U J h2。 (3) 对于初始条件-u x,0 t x,建立差分格式为: sin x j sin Jh , J 利用中心差商,建立差分格式为: 0,1,2,L 10 (4) 对于边界条件将差分格式延拓使综上(3 )、 (4 )、 k 1 u j 其中r山o.1 1 U J 2 1 U j 0,即U1二U j1, J 0,1,2,L 10 (5) 0,t 0,2 ,建立差分格式为: U N 0,k 0,1,L ,200 k 0为内点,代入(3)得到的式子再与(5)联立消去 1 1 2 0 ’ 2 0 1 5 r U, 1 1 r U, r J 2 J J 2 (7 )得到三层显格式如下: U 0,t U 1,t k U0 (6 ) 、 2 k r U j 1 2 1 r2k 2 k U J r U J 1 k 1? U j , J U j (6) 1后整理得到: U j 1 (7) (局部截断误差为 1,2,L 9,k 1,2,L ,199 h2) 1 U j U J sin 1 2 0 2r U J 1 k U o X j k U N sin 2 0 r U j 0,k 0,1,2,L 10 Jh ,J 1 2r2u01, J 1,2,L 9 0,1L ,200 (8) 四?实验环境(所用软件、硬件等)及实验数据文件Matlab

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

相关主题