搜档网
当前位置:搜档网 › 等离子体加工技术

等离子体加工技术

等离子体加工技术
等离子体加工技术

等离子体加工技术

摘要

随着科学技术的不断发展,工业需求的不断提高,各种高新设备应运而生,然而要加工这些设备就要使用更先进的加工技术。而等离子体加工技术就是一种不断发展的新型加工技术。本文简要介绍了工业用等离子体的分类及等离子体加工技术涉及的科学工程问题。围绕材料添加与去除加工,讨论了等离子体喷涂、增强沉积、离子去除等若干典型加工工艺的技术发展和应用情况,并对一些工艺中出现的现象以及某待深入研究的潜在科学问题进行了举例说明。

关键词:等离些有子体;加工;等离子体喷涂;等离子体聚合

Abstract

With the continuous development of science and technology,increasing industrial demand,a variety of high-tech equipment came into being,however, to the processing of these devices is necessary to use more advanced processing technology.The plasma processing technology is a continuous development of new processing technology.This article briefly describes the classification of industrial plasma and plasma processing technology involved in scientific engineering problems.Adding and removing surrounding material processing,Discusses the plasma spraying, enhanced deposition, ion removal, etc. Several typical processing technology development and application,And some of the processes the phenomenon appears to be in-depth study as well as some of the potential

scientific issues illustrate.

Key words: Plasma;Machining;Plasma spraying;Plasma polymerization

引言

随着科学与工程技术的迅速发展,对新材料、新结构、新工艺的要求日益迫切。人们不仅要对材料的表面性能进行改进,而且还要了解元素(原子)的相互作用,新相的形成,亚稳态、非晶态的形成等机制;对一些结构器件的要求已达到了μm、nm 量级。在实现这些要求的过程中,作为特种加工手段之一的等离子体加工工艺的应用越来越广泛,实际上,等离子体之所以成为现代制造技术的重要手段之一,是由其能量状态决定的。物体由固体到等离子体态的转化过程中,都伴随有足够能量的输入。所以作为一种物质形态的等离子体具有最高的能量状态,为现代材料加工提供了巨大潜力。

1. 等离子体制造(加工)技术简介

等离子体的分类有多种方法,但在工业上用的等离子体通常按温度分类见表1[1],用的较多的是非平衡等离子体和热能离子体中的低温等离子体。一般情况下,低温热等离子体比非平衡的等离子体的压力高。实际上,也正是它们的工作压力不同,使它们的作用机理发生了变化。低气压时,粒子间的碰撞频率较低,主要作用是带电粒子与被处理材料之间发生的物理过程。随着压力的增加,碰撞次数增加,化学过程开始充当主要角色。当压力进一步增加达到1×105Pa 左右时,等离子体变得更象一个热源,很多场合代替了燃烧。此时,离子与电子的温度趋于大致接近,其密度比非平衡类型的等离子体要高。

2 与等离子体制造有关的现代制造技术范畴

等离子体加工与现代制造技术关系日益密切。可以说已经涉及或渗透到几乎所有现代工业制造领域。从精密的微纳加工到大功率的金属冶炼以及废物处理,等离子体的高能量特点都发挥着其固有优势,而且有些方面已经成为不可或缺的技术手段。如在MEMS 加工领域,传统加工手段几乎是无能为力的。

目前工业上对低温热等离子体的应用主要有以下几个方面:抗腐蚀、耐磨及其它性能的表面涂层;新化学制品和新材料的研制;金属的精炼高性能陶瓷;焊接、切割;有害废物的处理;磁流体发电。

非平衡等离子的应用有以下几个方面:聚合物薄膜;磁记录介质;半导体集成电路及其他电子器件的生产;刀具、模具及工业金属的硬化;精密加工。

3 等离子体加工涉及的工程技术与科学问题

等离子体加工技术涵盖了大范围的制造领域,其结果必然使该技术涉及到深入的科学问题与广泛的工程问题。从加工设备——等离子体源的产生,到过程监控——等离子体诊断,到最终的加工对象属性——等离子体与物质的相互作用等,均将涉及多个专业或它们的相互交叉。由图3 [3]可以看出这一领域牵涉的科工程问题的丰富性。

4 等离子体加工若干领域简介

4.1 等离子喷涂技术

喷涂技术是等离子体加工领域应用最早、成熟度最高的技术之一,属于増材加工范畴,在汽车、航空航天、化工等行业均有应用。由于等离子弧焰温度高(约20000K),几乎所有能够熔化而不分解的材料均能制成涂层。例如一些飞行器的零件就是用等离子喷涂(低压LPPS 或大气APS)不同材料获得各种涂层来实现抗腐蚀和耐热的功能(如航空发动机上的热障涂层、封严涂层等等)。然而,尽管等离子喷涂技术已有40多年的发展历史且取得了很大的成就,但对这一认识的过程仍很粗浅。到目前为止在所得涂层的性能、质量与可控制的喷涂参数之间还没有一个确切的函数关系。工业生产上的应用仍是主要根据经验进行喷涂工艺试验,取得优化参数。

4.1.1 轴向送粉技术以及层流等离子体喷涂是该领域近几年出现的新趋势。

轴向送粉是对传统旁侧送粉方式的改进。传统的等离子喷涂粉末是从弧焰旁侧送入的,只有那些粒度合适的颗粒才能被很好地加热和加速。这一现象无疑对喷涂是不利的。而轴向送粉通过对喷枪结构的巧妙设计,使粉末直接送入弧焰中心,其加速和熔化程度得到了彻底的改善,喷涂速度和沉积效率大大提高,且避免了易氧化粉末的氧化(在弧焰中心被工作气体包围,基本不与空气接触),是送粉技术的一大进步。目前世界上从事轴向送粉技术研究的有加拿大、日本等国

的相关企业与机构,北京航空制造工程研究所也对该技术进行着探索性研究。

4.2 等离子体源离子注入与增强沉积

离子注入表面改性已有约30多年的历史,最早以束线注入为主。但很多场合,对具有一定厚度的涂层或薄膜的需求更为迫切。由于离子轰击可有效改善沉积薄膜与基体的结合状况,因此注入与沉积两种技术自然而然地被人们有机地结合在一起,出现了增强沉积技术。尤其是等离子体浸没离子注入在20 世纪80 年代提出来以后,很快出现了等离子体源离子注入与沉积技术的出现既弥补了单纯注入改性层太薄的不足,又改进了普通沉积工艺结合不良的缺点。目前该技术已进入实用阶段。随着工件偏压方式的改进,工艺灵活性大大增强。图6 显示了高压脉冲与直流偏压及其复合后的工艺示意图。北京航空制造工程研究所高能束流实验室最早开发研制了此种复合偏压技术,目前已在典型精密零件上进行了小规模应用试验,取得了较为理想的效果。该技术是把工件直接放入已形成的等离子体中,并对其加上负高压脉冲与直流的复合偏压。按偏压的不同作用形式,可以在同一个真空周期内分别进行注入、沉积或同时进行注入与沉积,对增加工艺灵活性十分有利。

4.3 等离子体材料去除

材料去除是“加工”概念的主要内涵之一。集成电路制造工艺中,离子刻蚀一直是重要的加工工序。随着制造技术的不断发展,非传统材料去除工艺的应用越来越广泛。电子束、激光束及等离子体等不同的能量方式给人们提供了丰富的加工手段。由于各种能量形式与材料的作用方式不同,加工机理、设备、对象、成本等问题均有很大区别。如激光束加工、电火花、电子束加工等离子体束加工等工艺,表面温度很高,可达10000-30000K 范围。而离子束刻蚀以及聚焦离子束加工,则很少超过400K。表2 [4]列出了几种加工技术的加工机理与典型的功率密度。

近几年发展较快的是聚焦离子束,尤其是在精密加工刀具的加工方面显出了较强优势。因其能量集中,所以对窄、尖区域的加工具有得天独厚的优点。如前面所述,离子束加工需要耗费大的能量,因此完全用聚焦离子束加工出一个刀具是难以实现的。如与激光加工结合起来,则可为工业服务。

5 等离子体聚合简介

等离子聚合工艺与PACVD 很相似,但它们区别在于:等离子聚合更侧重于有机从材料的沉积,而且这种有机材料在性质上是可聚合的。这种方法形成的聚合物常是高度交叉连接的,且可形成用其他方法不能得到的高质量薄膜。其基本过程包括初始激发、表面吸附、非均匀生长、最后聚合等阶段。初始气体被激励活化后,生成有机物单体和气相自由基,这些衍生相吸附在固体表面时,形成表面自由基,亦即在基体表面生成了聚合反应所必须的“核”。接着以这些核为基础,衍生单体与气相自由基在等离子气氛中在基体表面上不断聚合生长,最后生成大分子量的聚合薄膜。等离子聚合过程对能量、压力、初始气体及相对含量的要求比较严格,其装置与其他沉积过程的反应器往往有较大差别。利用等离子体聚合技术可在工件表面制备光刻胶聚合物薄膜,代替传统的湿法涂胶工艺。还可制备特殊电学和光学特性的有机薄膜和金属有机薄膜,是一项有广阔应用前景的领域。

6.待研究问题

尽管等离子体加工技术日益广泛,但人们对其涉及的一些科学问题及现象的认识仍然很肤浅。如快速流动的等离子流在固壁附近的反射行为;一定角度的荷

能粒子流与材料表面附着行为等,与最终工艺质量、效率均有着密切的联系。在技术的初期阶段,这些问题可以被笼统地归入“过程黑盒子”里,而首先只注重最终结果。而当人们追求高质量的过程监控时,则必须打开“黑盒子”而进行深入细致的研究。

在一些瞬时特征突出工艺中,瞬间等离子体的行为也很值得关注。如激光冲级强化过程产生并直接发挥作用激光诱导等离子体,其等离子体密度、温度、输运方向等问题还有待进一步系统诊断、研究。连续激光焊、脉冲激光焊等工艺中也有类似问题。

7 结束语

随着现代制造技术的不断发展,等离子体加工技术的应用日益普遍,其地位也日益显著。因为此类过程的复杂性及学科交叉性,要求从事该领域的研究人员具有扎实的物理、化学、数学基础和相应的工程技术知识。另外,要使这些技术真正成功应用,首先,工艺必须是成熟的;其次,必须准确地进行经济效益分析。

参考文献

[1]刘晋春白基成郭永丰.特种加工[M].北京:机械工业出版社,2008.

[2]赵万生.特种加工技术. [M].北京:高等教育出版社, 2001.

[3]李指俊冯同建. 等离子加工技术及其发展趋势[J] .机械制造,1996.

[4]雷玉勇万霞 .《精密制造与自动化》 2003 第B09期 - 维普资讯网

[5]李荣钟雷玉勇易北华. 《中国测试技术》 2007 第4期 - 万方数据

[6]颜永年等. 快速制造技术的最新发展及其发展趋势. 第11 届全国特种加工学术会议专辑 ,2005 :40245.

[7]中国机械工程学会.机械制造技术的发展及其高技术化[J].中国机电工业2004.

[8]孙元成,邵竹锋,宋学富,王宏杰. 热等离子体在材料加工中的应用 [J]. 中国建材科技,2009, 4:68-71

[9]程昌明,唐德礼. 热等离子体炬技术及其应用现状[J]. 核工业西南物理研究院年报,2005.

[10] Dublanche D;Coudert J F;Fauchais P DC Plasma Jet Heating of a Rotating Cylinder:Modeling and Measuring 1995

[11]会议论文层流与湍流等离子体冲击射流特性比较 2006中国工程热物理学会传热传质学学术会议 - 2006

玉米种子贮藏方法及技术

种子的储存是指种子收获后到播种前的全过程,在这个过程中,种子会继续进行新陈代谢作用,并经历不可逆转的劣变过程。若在此期间收获、加工和贮藏条件不当,就会严重影响种子的生活力、发芽率、幼苗生长以及植株生产性能,并且加速劣变的形成。而玉米种子在贮藏过程中极易发生热、霉变和低温冻害,所以做好玉米种子的选用与储备,保障种子供应,是确保粮食安全及农业生产安全不可或缺的重要的工作环节之一。本文对玉米种子的储存方法以及入库后管理技术要点等方面进行了探讨。 1 穗藏法 穗藏法是指对摘下的果穗不进行脱粒而经过简单处理后就贮藏的方法,相对湿度较低的山区和我国北方地区常采用此法。穗藏法分为挂穗和堆穗两种。种子量少时可采用挂穗法。挂穗有多种方式,可采用立桩搭挂、木架吊挂、棚内吊挂等方式进行。堆穗是指将去掉苞叶的果穗堆积在通风避雨处储存,次年脱粒入仓,一般在种子量大时采用此法。 1.1 穗藏法特点 1.1.1 吸湿性小 玉米果穗子粒之间和粒行之间排列紧密无缝隙,尤其在潮湿或者露天果穗种皮的吸湿膨胀会使之更加紧密,使水气或水珠难以进入种胚部。此外,穗轴中心充满密网状的维管束,构成髓质,其结构松软,成海绵状,能接纳较多的水分。当空气湿度较低时,穗轴不断吸收子粒的水分,通过穗两端散失,使子粒的含水量降到最低;当空气湿度较高时,果穗子粒吸湿较慢,穗轴吸水快,使子粒含水量增加也很少。这一点是果穗露天贮藏的一个重要基础。 玉米种子贮藏方法及技术 刘啸风 (新疆巴州种子管理站,841000) 及品质的影响,肥料选用化肥(普通缓释肥)和有机肥(腐熟鸡粪)。由试验可知,采用有机无机肥混合施用比单施有机肥或化肥,其产量和品质得到提高和改善。 4 中耕机械化技术 谷子生产上一般采用30 33cm的等行距种植模式,难以适应市场上销售的中耕机械,因此考虑现有小型中耕机的外型及耕幅宽度,设计了50cm宽行与16.6cm窄行的种植模式。与传统种植模式相比,既不减少密度,又能进行机械中耕,减少了劳动力投入,节省了资金。 5 收获脱粒分体机械化技术 山西省多丘陵山地,实现收割脱粒一体化有困难,故考虑谷子收获分体机械化,以减轻谷农的劳动强度,提高生产效率。因为谷子的穗极易缠绕在一起,收割时有的谷秆还存在倒伏情况,经改造后的收割机效果不好,虽然效率提高了3 4倍,但易造成极大的浪费;经改造后的脱粒机非常成功,可以使脱粒和清选一次完成,不用再扬场,大大地提高了工作效率,每hm2从脱粒到入库原来需要15个工日,现在3个工日就可完成。 综上所述,谷子轻简化栽培技术的实施,将优质品种、不同的栽培技术及改进的小型机械化作业结合在一起推广,不仅谷子产量可增产10%以上,品质可达小米产业化开发的要求,同时大大减轻了谷农的田间劳动强度,提高了谷农种谷的积极性。经过几年的试验示范,襄垣、沁县、武乡、高平、榆社等地的种谷面积有了大辐度的增加,谷子价格也一路攀升,从2003年的几角钱到现在的3元多。针对目前存在的收获机械不理想的情况,现正在和有关企业合作,争取能研制成功收割脱粒一体机,这对于有效提高谷子的生产应用能力和市场竞争能力,促进谷子产业化的发展有一定的推动作用。 参考文献 [1]山西省农业科学院.中国谷子栽培学.北京:农业出版社,1987 [2]邱风仓.我国谷子杂优利用回顾、现状与发展方向.中国种业,2013 (3):11-12 [3]刁现民.谷子产业化发展的现状与未来.农产品加工,2008(3):10-11 [4]刘国强,郭二虎,李瑜辉.山西省谷子产业发展现状及应对策略.辽宁 农业科学,2011(4):61-63 [5]郝晓芬,王节之,王根全,等.谷子新品种长生08的选育及高产栽培.山 西农业科学,2013,43(4):317-320 [6]郝晓芬,王根全,王潞英,等.化控间苗谷种的栽培技术.山西农业科学,2006,36(4):45-48 (收稿日期:2013-12-05 )

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

加工工艺要求(转子英文)

转子技术要求 1、锻件不得有夹渣、疏松、折叠、裂痕等缺陷。 2、锻件需经正火处理,以改善组织,消除应力。 3、未注形位公差的尺寸,机加工均按GB/T1184-k级;未注长度尺寸均按GB/T1804-m级。 4、未注圆角半径R3;未注倒角均为0.5×45°. 5、动叶与转子,经压装和焊接合格后方可对其端面及其外圆进行精加工。 6、转子二端轴颈及其环形平面可精磨或精车后再抛光,去除毛刺飞边。 7、各流道钻孔定位正确、孔道间沟通良好、不得有铁屑与垃圾存在。 Technical Requirements of rotor 1、The forging must be indefecable from slag indusion、porosity 、crease and split. 2、The forging must be normalized for structure improving and stress reliening. 3、The demensions without tolerences of form and position should be machined according to the precision class k of GB/T1184. The demensions without length tolerance should be machined according to the precision class m of GB/T1804 4、The demensions without rounding semidiameter is R3. The demensions without chamfering is 0.5×45° 5、After the rotor and thd blades have been pres-fitted in and welded ,when inspected all on,the fine machining work can be then carried out on their circumference and end surface. 6、Both ends and two annular surface of the rotor may be grinded or polished after finish mathined ,then deburring. 7、Before the inner flow-passages should have be drilled ,the drilling position must be precision , The connectedness of thde inner flow-passages must be very well. It must be no any nills and dirty in the inner flow passages.

超精密加工技术的发展现状是怎么样的

超精密加工技术的发展现状是怎么样的 自从中国将“装备制造业”列为国家发展战略后,中国的装备制造业取得了突飞猛进的发展,很多大型装备的制造能力都已经跃居世界先进水平,甚至成为世界的顶级水平,但中国制造业总体还是落后的,其落后就在于精密制造的落后。 超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。 现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。世界发达国家均予以高度重视。 超精密加工的发展阶段 目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。 超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。一直以来,国内外学者围绕这些内容展开了系统的研究。超精密加工的发展经历了如下三个阶段。1)20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。2)20世纪80年代至90年代,进入民间工业的应用初期。美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。

机械制造技术基础课程教案

“机械制造技术基础”课程教案 第1章绪论 1.1 制造与制造技术 1.1.1 生产(制造)的三种类型 1.1.2 广义制造与狭义制造 1.1.3 制造技术与机械制造技术 1.制造技术概念 2.制造技术发展的三个阶段 3.机械制造技术 1.2 机械制造业的发展及在国民经济中的地位 1.2.1 机械制造业的发展 1.2.2 机械制造业在国民经济中的地位 1.2.3 我国的机械制造业 1.3 课程内容体系与特点 1.3.1 课程内容体系 1.3.2 课程特点 第2章机械制造过程的基础知识 2.1 机械制造过程的基本概念 2.1.1 机械制造的工艺方法 1. 材料成形法 2. 材料去除法 3. 材料累加法 2.1.2 生产纲领与生产类型 1. 生产纲领 2. 生产类型 2.1.3 机械加工工艺过程 1. 概念 2. 组成(1). 工序(2). 安装(3). 工位(4). 工步(5). 走刀 2.1.4 基准 1. 设计基准 2. 工艺基准(1).工序基准(2).定位基准(3).测量基准(4).装配基准 2.1.5 装配工艺过程 2.2 机械加工的最基本方法—切削加工方法 2.2.1 工件表面形状及其成形方法 1. 工件表面形状(1).旋转表面(2).纵向表面(3).特征表面 2. 表面的成形方法(1). 轨迹法(2). 成形法(3). 相切法(4). 展成法 2.2.2 成形运动与切削用量 1. 成形运动(1). 主运动(2). 进给运动(3). 合成运动(4). 其他辅助运动 2. 工件上的表面 3. 切削用量(1). 车削用量(2). 钻削用量(3).铣削用量 2.2.3各种加工方法的工件表面与切削运动分析—车、铣、钻、刨、磨削 2.2.4典型表面的加工方法 1. 外圆表面加工

玉米的贮藏技术

玉米的贮藏技术 (发布日期:2008-8-25 10:37:16)浏览人数:758 玉米是我国的主要粮食作物之一,玉米贮藏中又极易发生发热霉变与低温冻害等质量劣变现象,因此安全、有效地贮藏玉米具有重要意义。 一、玉米的贮藏特性。 1、种胚大,易发热。玉米在禾谷类作物中,属大胚种子,种胚的体积几乎占整个子粒的1/3左右,重量占全粒的10%~12%,从它的营养成分来看,其中脂肪占全粒的77%~89%,蛋白质占30%以上,并含有大量的可溶性糖。由于胚中含有较多的亲水基,比胚乳更容易吸湿。在种子含水量较高的情况下,胚的水分含量比胚乳高,而干燥种子的胚,水分却低于胚乳。因此吸水性较强,且呼吸量比其他谷类种子大得多,在贮藏期间稳定性差,容易引起种子堆发热,导致发热霉变。 2、易受虫霉为害。胚部水分高,可溶性物质多,营养丰富。为害玉米的害虫主要是玉米象、谷盗、粉斑螟和谷蠹,为害玉米的霉菌多半是青霉和曲霉。当玉米水分适宜于霉菌生长繁殖时,胚部长出许多菌丝体和不同颜色的孢子,被称为“点翠”。因此,完整粒的玉米霉变,常常是从胚部开始的。这是玉米较难贮藏的原因之一。 3、易酸败。 玉米种子脂肪含量绝大部分(77%~89%)集中在种胚中,这种分布特点加上种胚吸湿性又较强,因此,玉米种胚非常容易酸败,导致种子生活力降低。特别是在高温、高湿条件下贮藏,种胚的酸败比其他部位更明显。 4、易遭受低温冻害 越冬贮藏时,玉米水分高于17%时易受冻害,发芽率迅速下降。 5、玉米穗轴特性 果穗在贮藏期间,种子和穗轴水分变化与空气相对湿度有密切关系,都是随着相对湿度的升降而增减。玉米穗轴在乳熟及蜡熟阶段柔软多汁。成熟时轴的表面细胞木质化变得坚硬,轴心(髓部)组织却非常松软,通透性较好,具有较强的吸湿性。种子着生在穗轴上,其水分的大小在一定程度上决定于穗轴。潮湿的穗轴水分含量大于子粒,而干燥的穗轴水分则比子粒少。因此,相对湿度低于80%的地区以穗藏为宜,超过80%的地区,则以粒藏为宜。 二、贮藏技术要点 穗贮与粒贮并用是玉米贮藏的一个突出特点,可根据各地气候条件、仓房条件和种子品质而选择采用。常年相对湿度较低的丘陵山区和我国北方,常采用穗藏法。常年相对湿度较高或仓房条件较好的地区却采用粒藏法。一般新收获的玉米多采用穗贮以利通风降水,而隔年贮藏或具有较好干燥设施的常采取脱粒贮藏。 玉米的安全贮藏,关键在于其含水量,安全水分内(北方玉米种子水分在13%以下,种温不高于25℃,南方玉米种子水分在12%以下,种温不超过30℃,)可以长期贮藏而不影响生活力。 (一)果穗贮藏: 1、优点:(1)新收获的玉米果穗,穗轴内的营养物质因穗藏可以继续运送到子粒内,使玉米完成后熟。 (2)穗藏孔隙度大:便于空气流通,堆内湿气较易散发。高水分玉米有时干燥不及时,经过一个冬季自然通风,可将水分降至安全标准以内,至第2年春即可脱粒,再行密闭贮藏。 (3)子粒在穗轴上着粒紧密,外有坚韧果皮,能起一定的保护作用,除果穗两端的少量子粒可能感染霉菌和被虫蛀蚀外,一般能起防虫、防霉作用,中间部分种子生活力不受影响,商品性好。 2、水分:果穗贮藏同样要注意控制水分,以防发热和受冻害。果穗水分高于20%,在温度-5℃的条件下便受冻害而失

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

超精密加工技术

精密加工 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。 精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。 精密及超精密加工-分类 1、传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 2、精密加工包括微细加工和超微细加工、光整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术; 超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。 光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。 3、超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指

机械加工技术教案2

授课主要内容或板书设计

课堂教学安排 教 学过程主要教学内容及步骤 讲授新课§1-1 机械制造过程 一、生产过程 生产过程是指将原材料转变为成品的全过程它包括原材料的运输、保管 与准备,产品的技术、生产准备,毛坯的制造,零件的机械加工及热 处理,部件及产品的装配、检验、调试、油漆包装,以及产品的销售 和售后服务等。 机械制造工艺过程是指在生产过程中,毛坯的制造成形(如铸造、锻压、 焊接等),零件的机械加工、热处理、表面处理,部件和产品的装配 等是直接改变毛坯的形状、尺寸、相对位置和性能的过程,简称工艺 过程。 机械加工艺过程是指用机械加工方法改变毛坯的形状、尺寸、相对位置和性质使其成为零件的全过程。从广义上来说,特种 加工(包括电加工、超声波加工、激光加工、电子束及离子束加工) 也是机械加工工艺过程的一部分,然而其实质不属于切削加工范畴。 二、机械加工工艺过程的组成 机械加工工艺过程由若干个工序组成。机械加工中的每一个工序又可依 次分为安装、工位、工步、走刀。 1、工序 指一个或一组工人,在一个工作地对同一个或同时对几个工件所连续完 成的那一部分工艺过程。

2、安装 如果在一个工序中需要对工件进行几次装夹,则每次装夹下完成的那部份工序内容称为一个安装。在一个工序中,有的工件只需装夹一次;也有需要多次装夹的。 3、工位 在工件的一次安装中,通过工作台的分度、移位可以使工件相对于机床变换加工位置,工件在每一个加工位置上所 完成的加工内容称为工位。 4、工步 在同一个工位上,要完成不同的表面加工时,其中加工表面、刀具、切削速度和进给量不变的情况下所完成的工位 内容称为一个工步。 5、走刀 刀具在加工表面上切削一次所完成的工步内容。

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

机械加工技术专业专业教学标准

机械加工技术专业 专业教学标准 制定人: 审核: 成员: 机械加工技术专业建设 项目工作组 机械加工技术专业建设项目工作组 二0一三年五月 一、专业名称(专业代码)

机械加工技术(051200) 二、入学要求 初中毕业生或具有同等学力者。 三、基本学制 3年。 四、培养目标 本专业主要面向国内大中小型企事业单位,培养在生产、服务第一线从事普通机床加工、数控机床加工、焊接加工、产品质量检测、机械加工设备维护保养等工作,具有较强实际操作能力、良好职业道德等综合职业能力的高素质劳动者和技术技能型人才。 五、职业范围 机械加工技术专业职业范围与职业岗位对应职业资格证书要求(见表5.1)。 表5.1 机械加工技术专业职业岗位对应职业资格证书

六、人才规格 本专业毕业生应具有以下职业素养(职业道德和产业文化素养)、专业知识和技能: (一)职业素养(社会能力) 1.具备良好的政治思想素质。 2.具备人文和科学素养,形成稳固的专业思想和良好的生活态度。 3.具备吃苦耐劳、积极进取、敬业爱岗的工作态度。 4.具备勤于思考、善于动手、勇于创新的精神。 5.具备良好的人际交往沟通能力、团队合作精神和服务意识。 6.能够严格遵守相关行业的安全操作规程。 7.具有正确的就业观和一定的创业意识。 (二)专业知识和技能(专业能力) 1.具备识读中等难度零件图、装配图,正确地使用绘图工具、相关绘图软件绘制简单零件图、装配图的能力。 2.具备查阅相关标准和手册的能力。 3.具有检测产品的基本技能,能分析零件(产品)加工质量。 4.具有计算机基本操作能力。 【冷加工方向】 1.具有机械加工的基本技能,能熟练操作1种及以上机械加工设备执行工艺,完成零件加工。 2.具有编制与实施中等复杂难度零件工艺的能力。 3.具备编制1种及以上数控加工设备相应的中等复杂难度零件数控加工程序的能力。 4.具有使用英文数控面板,阅读数控系统报警信息的基本英语阅读技能。

教学技能大赛-机械加工技术教案

机械基础教案 科目:机械基础授课课时:16课时适用专业:机械加工

目录 带传动的应用(第1课时) (2) 带传动的应用(第2课时) (7) 带传动的应用(第3课时) (12) 带传动的应用(第4课时) (18) 链传动的应用(第1课时) (25) 链传动的应用(第2课时) (29) 链传动的应用(第3课时) (32) 轴的结构分析(第1课时) (37) 轴的结构分析(第2课时) (42) 滑动轴承的安装与维护(第1课时) (47) 滑动轴承的安装与维护(第2课时) (52) 滚动轴承的安装与拆卸(第1课时) (59) 滚动轴承的安装与拆卸(第2课时) (66) 滚动轴承的安装与拆卸(第3课时) (69) 平面四杆机构分析(第1课时) (76) 平面四杆机构分析(第2课时) (82)

活动安排 一、导入新课 展示动画引入问题:日常生活当中你还还见过哪些带传动?你知道它是如何工作的吗? 二、设疑激探,自主学习 提出问题让学生进行有针对性的自主学习 1.带传动的组成及工作原理? 2.带传动的优点是什么? 3.带传动的缺点是什么? 4.带传动的传动比公式是什么? 三、合作讨论、共同探究 讨论1:根据带传动的工作原理判定所展示的图片属于哪种类型的带传动?

讨论2 :根据蹄片讨论带传动的类型 平带平带的截面形状为矩形,内表面为工作面 V带V带的截面形状为梯形,两侧面为工作面 圆形带横截面为圆形 多楔带它是在平带的基体上由多根V带组成的传动带同步带纵截面为齿形 四、学生展示、教师点评 主动轮转速1440r/min、从动轮转速500r/min,带传动的传动比是多少?

精密加工技术期末复习资料

1.精密加工研究包括哪些主要内容? 精密加工机床,金刚石刀具,精密切削机理,稳定的加工环境,误差补偿,精密测量技术二.实现精密与超精密加工应具备哪些条件?试结合金刚石刀具精密切削简述切削用量对加工质量的影响及主要控制技术? ①精密加工机床-精密机床主轴轴承要求具有很高的回转精度,转动平稳,无振动,其关键在于主轴轴承 ②金刚石刀具-金刚石刀具的刀口半径只能达到0.1-0.3/um。当刃口半径小于0.01um时,必须解决测量上的难题。金刚石晶体的晶面选择。金刚石刀具刃口的锋利性 ③精密切削机理-掌握其变化规律 ④稳定的加工环境-包括恒温防振和空气净化 ⑤误差补偿-通过消除或抵消误差本身的影响,达到提高加工精度的目的 ⑥精密测量技术-精密加工要求测量精度比加工精度高一个数量级 3.试述常用几种主轴轴承的特点,并说明为什么目前大部分精密和超精密机床采用空气轴承? ①液体静压轴承-特点:转动平稳无振动,达到较高的刚度 空气轴承-特点:刚度低,承受载荷小 ②空气轴承造成的热变形小,刚度低,只能承受较小的载荷,超精密切削时切削力小,空气轴承能满足要求 4.试述在线检测和误差补偿技术在精密加工中的作用 精密和超精密加工的精度是依靠检测精度来保证的,而为了消除误差进一步提高加工精度,必须使用误差补偿技术 5.常用微量进给装置有哪些种类与作用? ①机械传动或液压传动式②弹性变形式③热变形式④流体膜变形式⑤磁致伸缩式⑥电致伸缩式作用:为了实现精密与超精密加工 6.金刚石刀具破损形式 ①裂纹:结构缺陷可产生裂纹,另外当切屑经过刀具表面时,金刚石收到循环应力的作用也可产生裂纹②碎裂:由于金刚石材料较脆,在切削过程中收到冲击和振动都会使金刚石刀刃产生细微的解理形成碎裂③解理:金刚石晶面方面选择不当,切削力容易引起金刚石的解理,刀具寿命下降 7.金刚石刀具磨损形式 ①机械磨损②破损③碳化磨损 8.微量进给机构的作用及类型 ①电致伸缩微量进给装置,作用:用于误差在线补偿②机械结构弹性变形微量进给装置,作用:用于手动操作③压电或电致伸缩微量进给装置,作用:用于实现自动微量进给 9.导轨类型 ①滚动导轨②液体静压导轨③气浮导轨和空气静压导轨 10.为什么精密切削加工会产生碾压作用? 在刃口圆弧处,不同的切削深度,刀具的实际前角是变化的,实际前角为较大的负前角,在刀具刃口圆弧处将产生很大的挤压摩擦作用,被加工表面将产生残余压应力 1.精密磨削加工按磨料加工大致分为哪几类?试述其特点及适用场合 ①磨料加工,固结磨料加工:磨削,砂轮磨削,砂带磨削研磨等 游离磨料加工:抛光,研磨:干式研磨,湿式研磨,磁式研磨。滚磨:回转式,振动式,离心式,主轴式,涡流式,衍密等②特点磨削除可以加工铸铁、碳钢。合金钢等一些一般结构材料外,还能加工一般刀具难以切削的高硬度材料如淬火钢,但不宜精加工塑性

玉米种子的贮藏特性

玉米种子的贮藏特性 玉米是一种高产作物,适应性强,在我国各地几乎都有种植,是我国主要粮食作物之一。玉米种子贮藏中极易发生发热霉变与低温冻害等种子劣变现象,因此安全、有效的贮藏玉米种子具有重要意义。 穗贮与粒贮并用是玉米种子贮藏的一个特点,一般新收获的种子多采用穗贮以利通风降水,而隔年贮藏或具有较好干燥设施的单位常采用脱粒贮藏。 1.种胚大,呼吸旺盛,容易发热玉米在禾谷类作物种子种属大胚种子,种胚的体积几乎占整个籽粒的1/3左右,重量占全粒的10%~12%,从种胚的营养成分来看,其中脂肪占全粒的77%~89%,蛋白质占30%以上,并含有大量的可溶性糖。由于胚中含有较多的亲水基,比胚乳更容易吸湿。在种子含水量较高的情况下,胚的水分含量比胚乳为高,而干燥种子的胚,其水分却低于胚乳(见下表),因此吸水性较强,呼吸量比其他谷类种子大得多,在贮藏期间稳定性差,容易引起种子堆发热,导致发热霉变。有资料报道,含水量14%~15%的玉米种子在温度为25℃条件下贮藏,呼吸强度为28mg O 2/kg· 24h,而相同条件下的小麦种子呼吸强度仅为0.6mgO 2 /kg·24h。 2.玉米种易遭虫霉为害其原因是胚部分水分高,可溶性物资多,营养丰富。危害玉米的主要害虫是玉米象、谷盗、粉斑螟和谷蠹(du),为害玉米的霉菌多半是青霉和曲霉。当玉米水分适宜于霉菌生长繁殖时,胚部长出许多菌丝体和不同颜色的孢子,被称为“点翠”。因此完整的玉米霉变常常是从胚部开始的,实践证明,经过一段时间贮藏后的玉米的种子,其菌量比其他禾谷类种子高得多,因此在生产上玉米经常发生“点翠”现象,这是玉米较难贮藏的原因之一。 在穗轴上的玉米种子由于开花授粉时间的不同,顶部籽粒成熟度差,加上含水量高,在脱粒加工过程中极易受损伤,据统计,一般损伤率在15%左右。损伤籽粒呼吸作用旺盛,易

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

精密与超精密加工技术

精密与超精密加工技术综述 0 前言 就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域 1 。前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。 精密和超精密加工与国防工业有密切关系。导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h ,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。由此可知,惯性仪表的制造精度十分关键。如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~ 0.06μm ,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。 航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。被送入太空的哈勃望远镜(HST),可摄取亿万千米远的星球的图像,为了加工该望远镜中直径为2.4m、重达900kg的大型反光镜,专门研制了一台形状精度为0.01μm的加工光学玻璃的六轴CNC研磨抛光机。据英国Rolls-Royce公司报道,若将飞机发动机转子叶片的加工度,由60μm提高到12μm、表面粗糙度由Ra0.5μm减少到0.2μm,发动机的加速效率将从89%提高到94%;齿轮的齿形和齿距误差若能从目前的3~6μm,降低到1μm,则其单位重量所能传递的扭距可提高近1倍。 当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术和微型机电系统(MEMS)等已形成微型机械制造。这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。 1 精密和超精密加工的技术内涵 精密加工和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。由于生产技术的不断发展,划分的界限将逐渐向前推移,过去的精密加工对今天来说已是普通加工,因此,其划分的界限是相对的,且在具体数值上至今没有固定。 1.1 精密加工和超精密加工的范畴 当前,精密加工是指加工精度为1~0.1μm、表面粗糙度为Ra0.1~0.025μm的加工技术;超精密加工是指加工精度高于0.1μm、表面粗糙度Ra小于0.025μm的加工技术,因此,超精密加工又称之为亚微米级加工。但是,目前超精密加工已进入纳米级精度阶段,故出现了纳米加工及其相应的技术 从精密加工和超精密加工的范畴来看,它应该包括微细加工、超微细加工、光整加工、精整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是

相关主题