搜档网
当前位置:搜档网 › 制流电路与分压电路中电流与电压变化特点的研究

制流电路与分压电路中电流与电压变化特点的研究

实验五

制流电路与分压电路

实验目的

1、掌握制流电路与分压电路的连接方法,性能和特点。

2 、学习控制电路中变阻器选择的方法。

测量电路一般由电源、控制电路和测量电路三部分组成,其中控制电路是控制负载的电流和电压,使其数值和范围达到预定的要求。常用的控制电路是制流与分压电路,其控制的元件主要是变阻器和电阻箱。

一、制流电路

1. 调节电压电流范围

如图a 所示为制流电路图,R 为负载,R 0为滑动变阻器。改变触点C 的位置,即可改变整个回路的电阻,从而改变回路的电流I 和电压U (R 两端电压)。在不考虑电源内阻及毫伏表内阻时,则

……………①

(R 0为滑动变阻器的最大阻值)

x

k R R E I R E

AC

+=

+=

R

C A B E

K

R 0

mA

R 20

R 10

mA

E

K R

图a

图b

两端电压……②

式中

而,所以通过R 的电流和两端电压的调节范围为

显然,电流和电压的调节范围决定于K 值的大

小,K 越小,调节范围越大。

x

k kE R R ER U AC

+=

+=

R R k =

R R x AC =

10≤≤x ???

???

?++E k KE U k k I R E

R E ~~1~~10

0::()???

???

?

+=??+=?E k U R E k k I 11110

2、调节细调程度

对于控制电路,要求电压(或电流)值满足一定的调节范围,还要求比较容易地调到准确的指定值,即要求达到一定的细调程度。

负载上的电流和电压是靠滑动变阻器触点的移动来改变的,最小位移是一圈,因此,一圈的电阻△R0的大小就决定了电压和电流的最小改变量。分别对①②两式微分得:

()()???

?

?????-=??+-=????=???-=??+-=????=?AC

AC AC AC AC AC

AC AC AC AC R ER U R R R RE R R U U R E I

R R R E R R I I 2

2

2

2

???

?

?

??

?

=?=??=?=?N R ER U R ER U U N R E I

R E I

I AC 02

2min 0

2

02min ………③

(线圈的匝数N=R 0/△R 0)

由③式可知,当电路的所有元件都确定后

(E 、R 、△R 0都一定),△I 与I 2

成正比,△U 与U 2

成正比,故电流(电压)越大,则细调就越困难。如果负载的电流在最大时能满足细调要求,在小电流时也满足要求,必须使变小。而R 0不能太小,否则会影响调节范围,所以只能靠增大线圈匝数N 来减小,N 也不能太大,否则会使变阻器的体积变大。因此,一般采用二级制流电路来解决这一矛盾。

如图b 所示,其中R 10阻值大,作粗调用,R 20

阻值较小作细调用,R 20一般取。二级制流中,由于,阻值较大,使之具有较大的调节范围,另外R 20较小,从而较小,具有较好

的细调程度。

min I ?min I ?10

101

R 20

100R R R +=min I ?

3、调节的线性度

控制电路还应该具有较好的调节线性度,即要求在整个调节范围内尽可能是均匀的,对①式两边微分得:

或时,上式可变为:

…………. ④

即电流的变化与X 的变化成正比,而与X 值(即C 的位置)无关。

()

x

x k I R E

?+-

=?2

1

>>k x k >>x

R k E

I ?-=?0

2

x ?

二、分压电路

1、调节电压的范围

如图C 所示,滑动变阻器触点C 改变时,负载R 上的电压随之改变,则负载R 两端电压为(电源内阻不计)

R V

A

C B

R 0(图c)

(图d)

R V

C 1C 2

R 10

R 20

……….…….⑤

上式中令,因,故电压调节范围为。

()()

()x

x k kxE R R R R R R

E R R R R

R R R R R R RR E

RR RR R R RR E

RR R R RR R R R RR E U AC AC AC AC

AC AC AC AC BC

AC BC AC AC AC

AC BC

AC

AC -+=

???? ?

?-+?=

-+-+=

++=

+?

++=

110

00

000BC

AC R R R +=00

R R k

=

R R x

AC =

1

0≤≤

x E ~0

2、调节的细调程度对⑤式微分得:

分三种情况讨论

①,(即)时,略去⑥式中的K 高阶则

(

)

()[]

x x x k x

k kE U ?-++=

?2

2

1…………⑥

1<

x

R E

RR x x

x kEx

U BC

?=

?-≈

?202

2

21

又将②式代入

上式与③式一样,说明当时,分压

电路与制流电路的细调程度一样,值越小,

电压调节越不均匀。

②时(即)时,略去⑥式

中X 则有0

0R R x ?=

?N

R RE

U

R R

RE U

BC

02

02min

?

=

?≈?k 1>>k

0R R >>N

E R R E x E U

=

?=

?≈?00

min

1<

AC R R R +=0

上式表明,当变阻器选定后,E 、R 0、N 均为定值,故当K>>1时为一常数,它表示在整个调节范围内的精细程度处处一样。从调节的均匀度来考虑,K 值越大越好。

③R 与R 0有相同的数量级。

根据⑥可知,只要K>>2,其结果和K>>1时相差不大,可粗略的归于K>>1这一类,而当

K<10-1

时,粗略可看着是K<<1,即基本与制流

电路一样,当10-1

min I

三、选择控制电路应遵循的原则

1、当负载电阻较大,调节范围较宽时选分压电

路,反之,当负载较小,允许功耗较大,调

节范围不太大时应选用制流电路。

2、如一级电路达不到要求,则采用二级制流电

路或二级分压电路的方法,以满足细调要求。

四、实验内容

1、制流电路特性研究

2、分压电路特性研究

3、二级控制电路特性研究

4、电路的故障检查

实验指导

一、实验操作时的注意事项

1、要注意电流表与电压表的连接方法,不能超

过电表的量程

2、要注意滑动变阻器连入电路中的接线方法。

3、为保护电源及电表,在制流电路中,首先要

把滑动变阻器要打到最大阻值的位置。在分

压电路中,首先要把滑动变阻器打到电压最

小的位置

4、在选择制流电路或分压电路时,要从调节范

围细调的均匀度,细调程度等方面进行考虑,

但还要注意电路的功率损耗问题,要从节约

能源角度来考虑。

布置作业

一、分析与思考

1、如何从制流与分压特性曲线求出电流值(或电

压值)呈线性变化时滑动变阻器的阻值?

2、有人说,制流电路的接法是用来控制电路的电

流,分压电路是用来控制电路的电压,这种说

法对吗?

二、创新设计

试设计一个测电阻的电路,要求电流值(或电压值)必须从零开始读数。

三、课后任务

1、预习下一个实验并撰写预习报告

2、完成本实验的实验报告

电压电流转换电路

模拟电路课程设计报告设计课题:电流电压转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

电流电压转换电路 一、设计任务与要求 ①将4mA~20mA的电流信号转换成±10V的电压信号,以便送入计算机进行处理。 这种转换电路以4mA为满量程的0%对应-10V,12mA为50%对应0V,20mA为 100%对应+10V。 ②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 在工业控制中各类传感器常输出标准电流信号4~20mA为此,常要先将其转换成+10v 或—10v的电压信号,以便送给各类设备进行处理。这里转换电路以4mA为满量程的0%对 应-10V,12mA为50%对应0V,20mA为100%对应+10V。 方案一 、。

方案二 方案二所示的是由单个运放构成的电流/电压转换电路。由于运放本身的输入偏置电流不为零,因此会产生转换误差。 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流 电源(±12V)。 其流程图为: 直流电源电路图如下:

原理分析: (1)电源变压器。 其电路图如下: 由于要产生±12V的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V的变压器。 (2)整流电路。 其电路图如下:

①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。 整流输出电压的平均值(即负载电阻上的直流电压VL)VL定义为整流输出电压vL 在一个周期内的平均值,即 设变压器副边线圈的输出电压为,整流二极管是理想的。则根据桥式整流电路的工作波形,在vi 的正半周,vL = v2 ,且vL的重复周期为p ,所以

几种常见的电压电流转换电路

由运放组成的V-I、I-V转换电路 1、0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器,A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压V1,V1控制运放A2的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA 的V/I转换,如果所选用器件的性能参数比较稳定,故运放A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN 端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

运放电压电流转换电路

运放电压电流转换电路 LELE was finally revised on the morning of December 16, 2020

运放电压电流转换电路1、 0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、 0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi- V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、 1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

几个常用的电压电流转换电路

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

电流电压转换电路模拟电路课程设计

电流电压转换电路模拟 电路课程设计 SANY GROUP system office room 【SANYUA16H-

3.20电流/电压转换电路 一. 实验目的 掌握工业控制中标准电流信号转换成电压信号的电流/电压变换器的设计与调试。 二. 实验原理 在工业控制中各类传感器常输出标准电流信号4~20mA ,为此,常要先将其转换成±10V ;的电压信号,以便送给各类设备进行处理。这种转换电路以4mA 为满量程的0%对应-10V ;12mA 为50%对应0V ;20mA 为100%对应+10V 。参考电路见图3-20-1所示。 图中A 1运放采用差动输入,其转换电压用电阻R 1两端接电流环两端,阻值用500Ω,可由二只1K Ω电阻并联实现。这样输入电流4mA 对应电压2V ,输入电流20mA 对应电压10V 。A 1设计增益为1,对应输出电压为-2V~-10V 。故要求电阻R 2,R 3,R 4和R 5+R W 阻值相等。这里选R 2=R 3=R 4=10K Ω;选R 5=9.1KΩ,R W1=2K Ω。R w1是用于调整由于电阻元件不对称造成的误差,使输出电压对应在-2V~-10V 。变化范围为-2-(-10)=8V. 而最终输出应为-10V~+10V ,变化范围10V-(-10V)=20V ,故A 2级增益为20V/8V=2.5倍,又输入电流为12mA 时,A 1输出电压为-12mA×0.5mA=-6V.此时要求A 2输出为0V 。故在A 2反相输入端加入一个+6V 的直流电压,使?A 2输出为0。A 2运放采用反相加法器,增益为2.5倍。取R 6=R 7=10KΩ,R 9=22KΩ,R W2=5KΩ,R 8=R 6//R 7//R 9=4KΩ,取标称值R 8=3.9KΩ。 反相加法器引入电压为6V ,通过稳压管经电阻分压取得。稳压管可选稳定电压介于6~8V 间的系列。这里取6V2,稳定电压为6.2V 。工作电流定在5mA 左右。电位器电流控制在1~2mA 左右。这里I RW3=6.2V/2K=3.1mA 。 则有 (12V-VZ )/R 10=I Z +I RW3 故 ΩK 71.0=1 .3+52.612=I +I V V 12=R 3RW Z Z 10 取标称值R 10=750Ω.式中12V 为电路工作电压。

运放电压电流转换电路

运放电压电流转换电路1、 0-5V/0-10mA的V/I变换电路 ? 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 ? 2、 0-10V/0-10mA的V/I变换电路 ??? 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: ? ??? 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, ??? 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf =200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 ? 3、 1-5V/4-20mA的V/I变换电路

电压电流调理电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 信号调 理TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 2.1常用电网电压同步采样电路及其特点 2.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数错误!未找到引用源。<

电流信号转电压信号方法大全

电流信号转换为电压信号的方法 由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有: 为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。 尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生 的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

电流-电压变换电路.

电流/电压转换电路 一.实验目的 掌握工业控制中标准电流信号转换成电压信号的电流/电压变换器的设计与调试。二.实验原理 在工业控制中各类传感器常输出标准电流信号4~20mA,为此,常要先将其转换成±10V ;的电压信号,以便送给各类设备进行处理。这种转换电路以4mA 为满量程的0%对应-10V ;12mA 为50%对应0V ;20mA 为100%对应+10V。参考电路见图3-20-1所示。 O 图3-20-1 电流/电压变换电路 图中A 1运放采用差动输入,其转换电压用电阻R 1两端接电流环两端,阻值用500Ω,可由二只1K Ω电阻并联实现。这样输入电流4mA 对应电压2V ,输入

电流20mA 对应电压10V 。A 1设计增益为1,对应输出电压为-2V~-10V。故要求电阻R 2,R 3,R 4和R 5+RW 阻值相等。这里选R 2=R3=R4=10KΩ;选R 5=9.1K?,R W1=2KΩ。R w1是用于调整由于电阻元件不对称造成的误差,使输出电压对应在-2V~-10V。变化范围为-2-(-10)=8V. 而最终输出应为-10V~+10V,变化范围10V-(-10V=20V,故A 2级增益为20V/8V=2.5倍,又输入电流为12mA 时,A 1输出电压为-12mA×0.5mA=-6V. 此时要求A 2输出为0V 。故在A 2反相输入端加入一个+6V的直流电压,使 A2输出为0。A 2运放采用反相加法器,增益为2.5倍。取R 6=R7=10K?,R 9=22K?,R W2=5K?,R 8=R6//R7//R9=4K?,取标称值R 8=3.9K?。 反相加法器引入电压为6V ,通过稳压管经电阻分压取得。稳压管可选稳定电压介于6~8V间的系列。这里取6V2,稳定电压为6.2V 。工作电流定在5mA 左右。电位器电流控制在1~2mA左右。这里I RW3=6.2V/2K=3.1mA。则有(12V-VZ )/R10=IZ +IRW3 故 R 10= 12V V Z 126. 2 ==0. 71K ? I Z +I RW 35+3. 1 取标称值R 10=750?. 式中12V 为电路工作电压。 R W2用于设置改变增益或变换的斜率(4mA为-10V ,20mA 为+10,通过调整R W2使变换电路输出满足设计要求。三.设计任务 1.预习要求 熟悉有关运放的各类应用电路,按设计要求写出设计过程和调试过程及步骤。2.设计要求

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

4-20mA电流环、电压电流转换芯片方案比较

4-20mA电流输出芯片比较 Precision Voltage-to-Current Converter/Transmitter NAME XTR110 XTR111 SUPPLY RANGE to 40V7V to 44V NONLINEARITY%% INPUT0V to +5V, 0V to +10V0 to 12V OUTPUT 0mA to 20mA, 5mA to 25mA Outputs Other Ranges 0mA–20mA, 4mA–20mA, 5mA–25mA AND VOLTAGE OUTPUTS Output Current Equation I O = 10 [(Vref In/16) + (VIN1/4) + (VIN2/2)] /RSPAN I O = 10 × Vvin/Rset PROBABLE PRICE 90元10元

XTR110应用电路 XTR111内部没有提供将0V输入转换成4mA输出的电路,最常用的方法是采用两个电阻网 络连接参考电压和输入信号进行分压输入 XTR111 应用电路

4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization NAME XTR105XTR112XTR114 SUPPLY RANGE to 36V PRECISION CURRENT SOURCES INPUT EXCITATION2- OR 3-WIRE RTD OPERATION Output Current Equation IO = VIN (40/RG) + 4mA, VIN in Volts, RG in Input Offset V oltage VCM = 2V PROBABLE PRICE25元50元60元 XTR105/XTR112/XTR114原理图

V-I变换电路与I-V变换电路设计报告

V-I变换电路与I-V变换 电路设计报告 组员:张迪 2009332205200004 李镇宇 2009221105200110 程剑 2009221105200041

一.设计任务及要求: 设计一个4-20ma 电流环。在工业控制系统中常常采用4-20毫安电流环作为传感器的输出信号,而我们常见的传感器输出信号是电压型的,试设计一个电路来实现如下要求: 基本要求: 1、 将0-5V 的模拟电压信号线性转变成4-20毫安的电流,即输入 0伏时输出4毫安,输入5V 时,输出20毫安。其间呈线性变化。精度达到3%。 2、 将传感器来的4-20mA 的电流,转换到0-5V 的电压信号,精度达 到3% 发挥部分: 1、 由于传感器输出的一般来说是毫伏级的电压信号,为了适应不同的传感器,请设计电路满足当输入信号在0毫伏到250毫伏变化时,输出电流在4毫安到20毫安线性变化,精度达到1% 二.设计思路和参数运算: 该系统由两部分组成:一是电压转电流;一是电流转电压。 电压转电流: 基于运算放大器的基本VI 变换电路可以保证负载电阻不影响电压电流的变换关系。在同相输入端与输出端加以电压跟随器,以实现共地输出的V/I 变换。其电路如图所示: 相应计算公式为: 由IC2为电压跟随器则: 由运算放大器“虚断”可知: 2 34 P O I P U U U U R R --= 11 2 N O U U R R =

利用运算放大器的“虚短”概念可知: Un=Up 在实际运用中可R1=R2=R3=R4=R,整理上两式,分别得: 因此有: 再利用运算放大器的“虚断”概念可知:流过负载电阻RL的电流IL与流过Re 电阻的电流相等。即有: 因此只要保证Re不变,可见负载电流与输入电压Ui成正比,就能实现了共地输出的VI变换。 该电路在实际使用过程中,由于一般运算放大器的输出能力有限,很难满足毫安级别以上的电压电流变换,只适用于微安级别以及微安一下的电压到电流的变换。因此需要对运算放大器进行扩流输出。我们在实际制作过程中在运放的后面加上三极管用来放大电流。 电流转电压: 同样的,我们采用运放来隔离该电路的输入电流和输出电压。 下面是电路原理图: 经对图中电路分析,可知流过反馈电阻Rf的电流为: (Vo-VN)/Rf=VN/R1+(VN-Vf)/R5 由此,可推出输出电压Vo的表达式: Vo=(1+Rf/R1+Rf/R5)×VN-(R4/R5)×Vf 由于VN≈Vp=Ii×R4,上式中的VN即可用Ii×R4替换,若R4=200Ω,R1=18kΩ,Rf=7.14kΩ,R5=43kΩ,并调整Vf≈7.53V,输出电压Vo的表达式可写成如下的形式:

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V 的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、VI变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

-mA电流信号转成-V或-V电压信号

-mA电流信号转成-V或-V电压信号

————————————————————————————————作者:————————————————————————————————日期:

4-20mA电流信号转成0-5V或0-10V电压信号 1、电流信号转成电压信号,或电压信号转成电流信号,实质就是信号传输中的阻抗变换问题; 2、信号传输阻抗匹配,就是满足信号源输出最大信号能量的条件; 3、信号传输阻抗匹配,就是信号传输能流最大、衰减最小、畅通无阻、失真变形最小; 4、电流信号转成电压信号,就是低阻抗传输转换为高阻抗传输; 5、这种阻抗变换,一定要通过阻抗变换设备、阻抗变换电路来实现; 6、常用阻抗变换的设备有阻抗变换变压器,例如音响系统的输入输出变压器; 7、常用阻抗变换电路,如射极输出电路,在模拟电子电路中经常用作输出级、输入级、中间转换级等; 8、超高频闭路电视系统,信号分流用的三通、四通分配器,就是信号匹配阻抗转换器,通过它实现闭路电视系统的阻抗匹配,否则信号将受阻传不出去,或信号失真变形;9、4-20mA电流信号转成0-5V或0-10V电压信号,用什么样的阻抗变换电路、设备,关键看信号的性质,是高频还是低频,是交流还是直流; 10、这种在电流信号回路中串入电阻的方法,是错误的,不可取的,是不懂信号传输匹配意义的做法; 并电阻没问题的,我们经常这样转化,加250欧姆电阻转换成1-5V,加500欧姆电阻转换成2-10V,至于0-1V,0-2V这两个范围几乎不用,完全能够达到控制要求 简单化:4-20MA的信号输出并联一个315欧姆的电阻,就可以转换为1.3-6.3伏的电压信号.再串联两只二极管(降压1.3),就可以转换为0-5伏的电压信号. 推荐4个实用的4-20mA输入/0-5V输出的I/V转换电路 一、最简单的4~20mA输入/1~5V输出的I/V转换电路应用示意图

常用电流电压转换电路

由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即 会输出电压。由下面的公式获得线性关系。 其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有:

为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路 电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。

尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A 的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

运放电压电流转换电路精编版

运放电压电流转换电路 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

运放电压电流转换电路1、 0-5V/0-10mA的V/I变换电路 ? 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 ? 2、 0-10V/0-10mA的V/I变换电路 ??? 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi- V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: ? ??? 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, ??? 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf =200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 ? 3、 1-5V/4-20mA的V/I变换电路 ? 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

相关主题