搜档网
当前位置:搜档网 › 机载预警雷达发展趋势分析

机载预警雷达发展趋势分析

机载预警雷达发展趋势分析
机载预警雷达发展趋势分析

工程设计作业

—机载预警雷达发展趋势分析

班级:020831

学号:02083052

姓名:王得帅

摘要经过几十年的发展, 机载预警雷达技术取得了很大进步文中介绍了国外典型机载预

警雷达的发展现状,并针对新的作战环境下机载预警雷达面临的技术问题,分析了机载预警雷达的发展趋势,最后对机载预警雷达的发展提出了一些建议。

关键词机载预警雷达; 杂波抑制; 反隐身; 抗干扰; 相控阵

0引言

预警机将雷达装上飞机, 利用飞机平台的飞行高度克服地球曲率对观测视距的限制, 消除雷达盲区,扩大低空和超低空探测距离,发现更远的敌机和导弹,为防空系统提供更多的预警间其雷达称为机载预警雷达预警机不仅具有全空域的远距离探测能力, 还具有机动性好,生存能力强, 布防灵活等特点, 因此成为现代高技术信息化战争不可缺少的战略装备由于机载预警雷达架设在高空飞行的飞机上, 因而其优越性是地基雷达所无法比拟的然而, 雷达升空后, 下视工作加平台运动带来了地杂波频谱扩展问题,雷达安装在飞机上对雷达系统也出了许多限制(如对雷达体积重量和功耗的限制), 技术难度很大,能够自主研制高性能机载预警雷达的国家屈指可数美国经过几十年的发展, 形成了E 2 E 3 2个系列的预警机,并在多次战争中发挥重要作用根据在使用中出现的问题,美国还在不断对这两种型号的雷达进行改进以提高性能此外,随着现代电子技术和飞行器隐身技术的迅速发展,机载预警雷达未来的主要作战对象将是隐身性能和飞行性能俱佳的第4代战机, 以及低空高速飞行的低雷达散射截面(RCS)巡航导弹,而实际电子战环境中还存在着多种形式的干扰等, 对下一代机载预警雷达技术的发展提出了更高的要求

1国外典型机载预警雷达

美国海军是最早使用预警机的军种, 由于在194年珍珠港事件中蒙受重大损失,美国海军认识到地面舰载雷达的局限性, 决定把当时较先进的AN /APS 2雷达安装在复仇者鱼雷轰炸机上, 这就是著名的Cadillac计划, AN /APS 20也就成为了现代机载预警雷达的雏形,它基本相当于把普通的地面脉冲雷达搬到飞机平台上雷达升空可以解决视线受地球曲率遮挡,而在高速飞行的条件下,随之带来的就是地杂波频谱扩展问题,采用动目标显示(MTI)技术的普通脉冲雷达的探测性能受到极大的限制,而多普勒( PD)技术可用来解决机载雷达强杂波背景下检测空中运动目标,它通常发射一组较高重复频率( PRF)的相参脉冲信号,每个距离门设置一组滤波器,对接收到的回波信号进行多普勒滤波,从而对地杂波进行有效的抑制,以提高目标的检测能力。

然而随着预警观测区域的不断扩大和地形环境的复杂程度加剧,机载预警雷达面临的杂波问题更加严重和多样化,为了检测远距离的弱小目标,必须提高机载预警雷达的杂波处理能力PD技术是要在距离/多普勒的杂波清晰区和较弱的副瓣杂波区进行目标检测首先,雷达发射的信号应具有高纯频谱特性,即低相位噪声和低杂散谱线;其次在主瓣杂波信号很强的情况下,接收系统不能饱和,以保证信号不出现虚假频率信号,因此需要接收系统要有很大的动态;另外雷达天线的副瓣电平要尽可能低美国E 3 望楼预警机(如图1所示)的预警雷达AN /APY 1/2就使用了超低副瓣天线(波导裂缝阵列)及高性能天线罩,其最大副瓣电平可达-

50 dB,与副瓣杂波电平直接关联的平均副瓣电平更低,极大地降低了副瓣杂波和提高检测处于副瓣杂波区的目标的能力美国海军的E 2C舰载预警机(如图2所示)最新配置的机载预警雷达为AN /APS 145, 发射P波段电磁信号由于载机体积和重量的限制, 天线采用小型化双层八木阵列天线,副瓣电平不是很低,但主要用于海上, P波段海杂波相对较弱, 因而仍能较好地工作另外, AN /APS 145雷达还采用了机载雷达动目标检测(AMTD)技术来改善雷达的杂波抑制能力,利用了时间平均杂波相关机载雷达(TACCAR)技术来补偿径向速度和移动相位中心天线(DPCA)技术来补偿切向速度但在大海情以及陆海交界甚至陆上使用时, 就需

要进一步抑制其副瓣杂波, E 2C主要采取信号处理的方法来不断改进被称为E 2C预警机

的下一步发展计划的E 2D 高级鹰眼

预警机(如图3所示), 在雷达现代化

计划(RMP)中拟研制的下一代雷达

AN /ADS 18将采用多通道相控阵天

线和数字式接收机等新体制,利先进的

空时自适应信号处理( STAP)技术,来

改进杂波抑制能力E 2D是目前唯一

采用了这一先进技术的装备,将在

2011年交付使用。以色列发展的费尔

康预警机(如图4所示), 因其机载预

警雷达采用固态有源相控阵体制,因而

备受业界关注,其天线共有6个固定天线阵面固态有源相控阵具有以下2个优点:

( 1)分布式发射和接收, 进一步提高了系统的能量效率灵敏度和可靠性;

(2)波束扫描灵活,可以不同扇区扫描,速度可变,搜索和跟踪的要求可以通过合理地分配资源来满足但是相控阵雷达也存在一些问题例如, 天线的副瓣电平不如波导裂缝阵列做得低, 扫描过程中天线副瓣电平还会抬高,且增益随扫描角增大而降低,虽然主瓣宽度扩展了,可以通过增加目标驻留时间来弥补,但性能仍有较大的降低。

2面临的技术问题

2. 1 隐身技术

机载预警雷达必须有足够的预警时间和探测距离,一般约300 km 以机载预警雷达AN /APY 2为例,当载机高度为9 600m时,对高空轰炸机类大型目标的探测距离为667 km,对战斗机的探测距离为445 km,对巡航导弹的探测距离为324 km 可以看出, AN /APY 2对以上各类目标的探测距离基本满足设计要求然而,随着现代隐身技术的快速发展, 新一代战斗机的前视RCS越来越小,使机载预警雷达面临着严重威胁美国已确定的下一代主力战斗机F 22兼顾了隐身性能与作战效能,其前视RCS在微波波段小于0. 05 m ,通常在对预警机雷达的探测威力进行指标预计与检验时,目标机RCS是以5m 为标准,如以这些雷达对付下一代

隐身战斗机时, 因目标RCS下降约为20

dB,探测距离将下降到原指标的30%,如原

来探测距离指标为300 km,则对隐身飞机

将降到约100 km,显然不能满足对敌机的

警戒距离要求因此,提高机载预警雷达的

反隐身能力将是下一步提高预警雷达技术

需要首先考虑的问题。

2. 2杂波

由于机载预警雷达架设在很高的平台上,雷

达下工作时,地面杂波的影响十分严重,尤

其在丘陵和山地带,杂波强度相对目标信号

达60 dB~ 90 dB, 在这强杂波背景下, 加

上载机运动带来的杂波谱扩展,使雷达检测

性能下降很快, 给雷达检测目标带来很大

胁另外,随着社会发展,各国城市化建设日

益加快,载预警雷达在包含有城市块的区域

上空工作时,可能面临强弱动态范围很大的

杂波回波,这类杂波的产生一些情况下会引起雷达接收机的饱和,一般设计时雷接收机会采取自动增益控制来避免这种饱和,但这样能会降低弱小目标的检测概率,因而需进一步提高雷接收系统的动态范围,以及采用先进的杂波处理方法以便更好地检测强杂波背景下的弱小目标。

2. 3 干扰

随着电子干扰技术的飞速发展, 机载预警雷达面临的干扰也越来越复杂, 且不易抑制这类有意干扰主要包括压制性干扰和欺骗干扰其中压制式干扰是使强功率进入雷达接收机,尽可能降低信噪比,使雷达难于检测的一种干扰形式压制式干扰按照干扰信号中心频率相对于雷达接收机中心频率可分为瞄准式干扰阻塞式干扰和扫频式干扰; 按干扰信号样式可分为噪声干扰噪声调幅和调频(噪声调相)干扰等与压制性干扰不同,欺骗性干扰不是在功率上压制雷达,而是模拟雷达目标信号的特征,制造假目标信号,使雷达获得虚假信息,从而实施欺骗, 以破坏雷达的工作欺骗性干扰的特点是干扰信号与雷达目标信号具有基本相同的形式,并附加上各种假信息的调制,以达到欺骗的目的,主要包括速度和距离欺骗干扰机载预警雷达工作时,除了受到来自敌方的各种有意干扰外,还常受到工作环境中的各种无意干扰因为雷达升空, 地面很大范围的辐射都在视线范围里环境电磁辐射信号,包括各种同频通信设备和同频雷达的辐射信号对雷达性能影响很大。

3技术发展趋势

3. 1 反隐身

隐身目标的RCS一般较常规目标要小很多,为了补偿由于目标RCS下降带来雷达探测距离缩短的影响,最直观的方法就是提高雷达的威力,也就提高功率孔径积,即提高发射机的功率和加大天线孔径来实现对于机载雷达,由于平台物理空间和供电能力的限制,提高功率孔径积有限在给定的功率孔径积的情况下, 尝试利用先进的信号处理算法,如检测前跟踪(TBD),是提高机载预警雷达检测隐身目标一个较好的途径利用TBD技术能够在较低信噪比条件下进行目标检测跟踪从能量利用的观点出发,检测后跟踪采用脉冲串相参积累和非相参积累,都只是解决单次扫描脉冲串之间的能量积累检测前跟踪不但利用单次扫描脉冲串进行积累,而且进行扫描间能量的积累,从而提高了雷达的探测能力利用TBD技术进行雷达数据处理, 有望提高现有条件下机载预警雷达对隐身目标的探测距离其次,还可以从隐身目标的隐身机理出发,从探测原理上和雷达体制上来探讨机载预警雷达的反隐身途径有研究表明,在米波附近隐身目标的电磁谐振最强,其RCS变大,因而为了反隐身, 选用低频段电磁波信号作为发射信号然而在低频段下, 为了获得符合要求的分辨率和精度,天线直径需要做得很大,这样的设计受到飞机平台的限制, 因而频段的选择要结合实际情况,综合考虑还可以从隐身飞机的外形上来进行反隐身目前,隐身飞机所采取的赋形设计主要集中在正前方仰角30 方位45 范围内的后向散射,而其双站RCS减小不多,甚至还可能增大图5给出了某隐身飞机缩比模型的双站RCS曲线值(该结果仅供参考),电磁信号从鼻锥方向迎头入射, 发射频率为1. 5 GHz 由图中曲线可以看到,当双站角增加时,隐身飞机的双站RCS明显变大因此,利用双站或多站机载平台进行目标探测,就可以提高机载预警雷达探测隐身目标的能力至于双站或多站机载平台的形式,可以采用台预警雷达发射另外1部预警雷达接收,也可以利用1部预警雷达发射1部或多部战斗机雷达接收, 还可以采用1部预警雷达发射1部或多部无人机平台接收等多接收站的信号还可以传到其中1个平台上进行融合处理,特别是多接收站信号相参处理,可以显著提高探测能力要实现多平台接收信号的相参处理,首先解决各平台之间的3同步(空间时间相位)问题。

3. 2 杂波抑制

为了能够在强杂波地区工作, 必须提高雷达处理杂波的能力除了增加接收系统的动态和降低雷达天线的副瓣电平外,要发展更为先进的处理方法和支持这些先进方法的雷达硬件系统空时二维自适应处理( STAP)技术正是在这种情况下应运而生的, 它可以有效提高机载相控阵雷达的地杂波抑制能力机载预警雷达AN /ADS 18已采用STAP技术来提高抑制杂波的能力由于机载雷达地杂波的空时耦合性,杂波在空时二维平面内成斜线分布(如图6所示) PD技术是一种空时级联处理技术,先在空域实现滤波,即形成天线的方向图,然后进行频域滤波,即PD处理为了进一步消除杂波的影响,天线阵列的方向图先不合成,而是分成多个通道进行模/数(A /D)采样, 输入到计算机里进行空时联合处理, 形成与杂波匹配的斜凹口(如图7所示),

有效地抑制地杂波并大大改善系统的检测性能STAP的原理可以更加直观地解释如下:根据机载雷达杂波谱分析可知,运动目标所对抗的杂波必然在其他方向上,因此可以对每个距离多普勒检测单元估计出杂波方向,而使天线的方向图在该方向置零点,消除杂波的影响这就要求对每个距离多普勒检测单元进行实时自适应的方向图综合由于非均匀性地形引起的非平稳性将导致杂波协方差矩阵估计误差, 进而导致杂波抑制性能下降因而在非均匀杂波环境

下均匀性样本是一个非常重要的研究课

题最近, 美国空[2]军的KASSPER计划

所倡导的知识辅助STAP (如图8所示)

具有解决这一问题的潜力他们认为, 传

统的SATP方法基本上没有利用可以预

计到的地面杂波的回波结构,也没有利用

地貌数据库和数字地形高程数据中的地

面环境信息等先验知识, 处理器只是使

用了工作频率脉冲重复间隔和每个相位

中心的位置,对给定的目标多普勒频率和

空间频率计算理想的空时指向矢量利用

这些先验知识可以提高STAP算法在非

均匀环境下的检测性能。接收机的不饱和是PD雷达进行杂波抑制处理的前提而为了不让接收机饱和, 提高其动态范围是关键要能够在强杂波背景下依然具有远的目标探测能力,要求雷达的接收机具有更大的动态范围,以尽可能保留被观测区域所有回波的原始信息, 使各种信号都能被不饱和采样将雷达天线划分成若干个子阵, 每个子阵接一个

接收通道, A /D采样后进行数字波

束形成(DBF)的方法,可以增加系统

的动态适当增加雷达的信号带宽,

即减小距离门的宽度,也就是减小

了一个距离检测单元对应的杂波面

积也可以降低杂波强度。

3. 3 抗干扰

现在的机载预警雷达一般都采用脉

冲压缩加PD体制, 它可以在一定

程度上抑制噪声干扰研究表明,对于1部典型PD雷达, 其相干处理间隔为5 ms~20 ms,脉

冲重复频率为10 kHz~ 100 kHz, 可以计算出PD雷达的相干处理增益为17 dB~ 43 dB, 也就是说PD雷达对于噪声干扰有17 dB~ 43 dB的处理增益而机载预警雷达发射脉冲压缩波形, 通过匹配滤波也可以增加信噪比,减小噪声干扰的影响前面提到的超低副瓣天线也可以一定程度上抗副瓣干扰如果采用子阵多通道设计, 可以采用DBF技术, 在干扰方向形成凹口,利用STAP技术可以同时实现抗干扰和杂波抑制设计雷达系统时,可以增加一个宽带接收通道,对接收的信号进行干扰信号的频谱分布分析,选择干扰最小的频段进行工作(如图9所示) 同时也可以对干扰信号的时频特性进行分析, 设计与干扰信号正交性最好的雷达信号, 有利于接收处理这种技术被称为环境敏感的智能化雷达技术另外,双/多平台的雷达系统设计,也是一个行之有效的对付干扰的方法。

4结束语

机载预警雷达作为重要的战略性装备得到了极大的重视,技术发展迅速从国际上最先进的几型预警机发展的情况来看, 是一个在使用中不断改进完善的过程其主要改进的方向是提高雷达杂波抑制能力抗干扰能力和检测小目标的能力特别是随着第4代隐身战斗机的发展, 使机载预警雷达面临极其严峻的挑战,必须在雷达技术上进行创新,才能有本质突破分布式/网络化协同探测有源探测无源相结合双/多站探测多通道有源阵列系统环境实时感知智能系统先验知识利用以及先进的信号处理等新技术,将是下一代机载预警雷达的发展方向。

参考文献

南京电子技术研究所. 机载预警雷达文集[ C]. 南京:南京电子技术研究所, 2003.精品文档,欢迎下载使用!

机载预警雷达发展趋势分析

工程设计作业—机载预警雷达发展趋势分析

班级:020831 学号:02083052 姓名:王得帅 摘要经过几十年的发展, 机载预警雷达技术取得了很大进

步文中介绍了国外典型机载预警雷达的发展现状,并针对新的作战环境下机载预警雷达面临的技术问题,分析了机载预警雷达的发展趋势,最后对机载预警雷达的发展提出了一些建议。 关键词机载预警雷达; 杂波抑制; 反隐身; 抗干扰; 相控阵 0引言 预警机将雷达装上飞机, 利用飞机平台的飞行高度克服地球曲率对观测视距的限制, 消除雷达盲区,扩大低空和超低空探测距离,发现更远的敌机和导弹,为防空系统提供更多的预警间其雷达称为机载预警雷达预警机不仅具有全空域的远距离探测能力, 还具有机动性好,生存能力强, 布防灵活等特点, 因此成为现代高技术信息化战争不可缺少的战略装备由于机载预警雷达架设在高空飞行的飞机上, 因而其优越性是地基雷达所无法比拟的然而, 雷达升空后, 下视工作加平台运动带来了地杂波频谱扩展问题,雷达安装在飞机上对雷达系统也出了许多限制(如对雷达体积重量和功耗的限制 ), 技术难度很大,能够自主研制高性能机载预警雷达的国家屈指可数美国经过几十年的发展, 形成了 E 2 E 3 2个系列的预警机,并在多次战争中发挥重要作用根据在使用中出现的问题,美国还在不断对这两种型

号的雷达进行改进以提高性能此外,随着现代电子技术和飞行器隐身技术的迅速发展,机载预警雷达未来的主要作战对象将是隐身性能和飞行性能俱佳的第 4代战机, 以及低空高速飞行的低雷达散射截面(RCS)巡航导弹,而实际电子战环境中还存在着多种形式的干扰等, 对下一代机载预警雷达技术的发展提出了更高的要求 1国外典型机载预警雷达 美国海军是最早使用预警机的军种, 由于在 194年珍珠港事件中蒙受重大损失,美国海军认识到地面舰载雷达的局限性, 决定把当时较先进的 AN /APS 2雷达安装在复仇者鱼雷轰炸机上, 这就是著名的Cadillac计划, AN /APS 20也就成为了现代机载预警雷达的雏形,它基本相当于把普通的地面脉冲雷达搬到飞机平台上雷达升空可以解决视线受地球曲率遮挡,而在高速飞行的条件下,随之带来的就是地杂波频谱扩展问题,采用动目标显示 (MTI)技术的普通脉冲雷达的探测性能受到极大的限制,而多普勒( PD)技术可用来解决机载雷达强杂波背景下检测空中运动目标,它通常发射一组较高重复频率( PRF)的相参脉冲信号,每个距离门设置一组滤波器,对接收到的回波信号进行多普勒滤波,从而对地杂波进行有效的抑制,以

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

学科前沿讲座报告-毫米波合成多孔径雷达(SAR)的发展状况及应用前景

学科前沿讲座论文 毫米波波合成多孔径雷达(SAR) 的研究现状以及在民用领域的发展前景 姓名: 学号: 班级:07043301 时间:2010年6月7日 指导老师:李跃华

引言: SAR成像技术诞生于20世纪50年代,在50多年的发展过程中,从低分辨率、单波段、单极化、单模式、单基地、单平台、单视角,到高分辨率、多波段、多极化、多模式、多基地、多平台、多视角,再到干涉体制的出现以及动目标的显示,充分显示了其在对地观测中的卓越性能。[1] SAR成像技术通过遥感平台和传感器获得地面物体的遥感图像,从遥感图像中获得所需的各种信息。由于毫米波的诸多优势,毫米波SAR技术已经逐渐成为多孔径雷达成像技术的主流。 毫米波SAR的优势[2]:1.体积小、重点轻 2.成像算法简单、分辨率高 3.目标棱角效应明显,利于目标外形特性提取 4.要求高精度平台运动补偿和天线指向稳定 5.电子对抗性能相对较强 本文将从SAR的发展现状以及毫米波SAR的优势以及其在民用方面的发展前景等方面做出简要的阐述。 毫米波SAR的发展现状: (一)总体概况。毫米波雷达通常通过发射和接收宽带信号,经过一定的信号处理方法从目标回波信号中提取信息,并以此信息判断不同目标之间的差异性,从而识别出感兴趣的目标。在毫米波体制下最有效的目标识别方法是利用毫米波雷达的宽带高分辨特性,对目标进行成像。雷达成像有距离维(一维)成像,二维成像和三维成像三种。雷达的二维成像已经成功地应用于SAR目标识别,但由于多维成像有许多理论和技术难题需要解决,目前条件下,还难以在导引头上获得成功应用。一维高分辨成像由于不受目标到雷达到距离、目标与雷达之间的相对转角等因素的限制,且计算量小,在毫米波雷达精确制导中已经有成功的应用。一维高分辨距离成像,主要是把雷达目标上的强散射点沿视线方向投影,形成反映目标结构的时间(距离)幅度关系。实际应用中,为了提高成像的分辨特性,常采用各种超分辨谱估计方法。一维距离像作为主要的信息来源用于目标识别已经得到了成功的应用,但由于距离像敏感于目标相对雷达姿态角,为了使识别系统具备对目标进行全方位识别的能力,需要用目标的全姿态角测量数据进行建模,此时,需要很大的数据存储量,还要对所有的模板进行实时检索。因此,出现了各种改进方法。目的主要是减少匹配模板的数目和相关匹配中的运算量,以缩短模板的检索时间和提高实时性。改进的方法之一是对距离像进行各种变换提取各种变换特征,以减少存贮量和分类识别的运算量,同时最大限度地保留目标信息,由此开发了各种基于距离像的变换特征目标识别方法。

2020年智能交通系统激光雷达行业分析

2020年智能交通系统激光雷达行业分析 一、行业概况 (2) 二、行业竞争状况 (3) 1、SICK (4) 2、IBEO Automotive Systems GmbH (4) 3、Velodyne Lidar (4) 4、速腾聚创 (4) 5、禾赛科技 (5) 6、思岚科技 (5) 三、行业主要壁垒 (5) 1、技术与人才壁垒 (5) 2、资质壁垒 (6) 3、资金壁垒 (6) 4、品牌和客户资源壁垒 (7)

一、行业概况 智能交通系统(即ITS-Intelligent Transportation System)是将信息技术、计算机、数据通信、传感器、电子控制、自动控制、人工智能、运筹学等技术有效集成运用,对交通管理、交通运输、公众出行等交通领域全方位以及交通建设管理全过程进行管控支撑,使交通系统在区域、城市各时空范围内具备感知、互联、分析、预测、控制等能力,以充分保障交通安全、发挥交通基础设施效能、提升交通系统运行交流和管理水平。 智能交通行业是以智能交通系统为载体,智能交通服务为最终目标的、相互关联的增值活动企业个体所组成的企业群,其构成包括智能交通信息采集与处理设备制造商、智能交通信息服务集成商、智能交通信息服务提供商、智能交通信息通信网络运营商、智能交通信息服务和管理终端设备制造商及其软件系统开发商、交通工具生产商和政府管理部门等。其中,智能交通信息采集与处理设备是整个智能交通系统尤为重要的环节,智能交通信息采集与处理设备利用先进传感技术、电子控制技术、现代微波通信技术、嵌入式软硬件技术等,采集并处理交通基础数据,将信息按照一定的接口和编码规范输出给智能交通信息管理应用平台,为使用者和管理者提供应用依据,对智能交通系统和服务的质量起着先导作用。我国政府积极出台相关政策,快速促进智能交通行业发展。政府、行业和企业协力促进智能交通行业的技术革新、标准制定和产品研发。我国开展一系列的示范项目,

2018年国内毫米波雷达市场规模将达60亿元,同比增长44%

2018年国内毫米波雷达市场规模将达60亿 元,同比增长44% 毫米波雷达是ADAS关键的一个传感器,在汽车的周身配置中以1+4或者1+2的方案为主,其中的1多指的是前向的长距雷达,一般用于FCW、ACC、AEB等功能,以77GHz 居多,2或者4是指侧向以及后向中短距雷达,一般用于BSD、LCA、LKA、EBA、PA、FCW,以24G居多。 长久以来,毫米波雷达的技术掌握在国外厂商手中,据高工智能产业研究院(GGAI)报告称,雷达芯片厂商有英飞凌、ST、NXP、TI,而主要的雷达供应商有博世(24 GHz、77GHz)、大陆(24 GHz、77GHz)、海拉(24GHz)、电装(77GHz)、采埃孚天合(77GHz)、德尔福(77GHz)、奥托立夫(24 GHz、77GHz)。这些厂商占据了全球毫米波雷达市场70%以上的份额。 但市场才刚刚开始,目前乘用车中基于毫米波的ADAS 功能,安装率仅5%左右,国外会在10%左右。而国内乘用车在2018-2020年会保持5%的复合增长率,到2020年汽车行业整体销售量达到3300万辆。 高工智能产业研究院(GGAI)发布报告称,2018年国内毫米波雷达市场规模将达60亿元,同比增长44%。到2025

年,市场规模有望达到270亿元人民币。 从这些数据可以看出,毫米波雷达的需求将会在未来10年逐渐上升,无论国内外都会遵循这样的规律。因此,虽然国外毫米波雷达巨头实力雄厚,但目前市场还处在早期,国内雷达厂商可以通过10到15年的努力,从自主品牌OEM 入手,积累一定的技术和市场能力。 从毫米波雷达大的两个方向上来看,24GHz的雷达技术已经相当成熟,下一代的雷达是77GHz,国内外厂商都处在初期,差距相对不大。因此国内供应商大都从后者入手,希望在新技术的研发中,能够挣得一点机会。 从2013年开始,国内开始涌现出一些24GHz、77GHz 供应商,24GHz有部分厂商做到了量产,但77GHz的到现在能量产的也寥寥无几。其中不仅有技术、工艺、生产制造的难点,还有销售渠道,原材料供应商的问题。 《高工智能汽车》采访了国内专门研发生产77GHz雷达的莫吉娜科技副总裁童豪良,作为一家初创公司,莫吉娜的雷达将会在年底前同OEM签下SOP,主要客户是商用车OEM。 高德团队背景真的很管用 莫吉娜科技于2015年在美国硅谷创建,2017年落户上海。公司致力于设计、开发自动驾驶和智能交通领域的传感器产品和数据融合计算解决方案。

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

雷达发展历程和相控阵雷达未来发展趋势研究

雷达发展历程和相控阵雷达未来发展趋势研究 发表时间:2017-11-30T08:37:41.610Z 来源:《电力设备》2017年第21期作者: 1徐国星 2欧海峰[导读] 摘要:雷达作为一种军民两用的电子传感器被广泛应用,其首要任务就是探测目标,要求能够在复杂的环境下,以一定的数据率 (陆军31635部队60分队广西桂林 541000) 摘要:雷达作为一种军民两用的电子传感器被广泛应用,其首要任务就是探测目标,要求能够在复杂的环境下,以一定的数据率,在一定的范围内及时发现、识别、稳定跟踪目标。但是随着环境复杂化、目标多样化、任务多元化,特别是一些隐身目标,低空低速高空高速目标的出现,促进了雷达技术的不断发展。本文就雷达发展的历程及相控阵雷达未来发展的趋势进行阐述,以供参考。 关键词:相控阵雷达;发展历程;发展趋势 1雷达发展历程概述 雷达诞生于上个世纪30年代,先后经历了二次世界大战、新军事革命、冷战军备竞赛等不同历史时期,随着时间的推移和各种因素的促进,雷达不论在理论、体制、方法,还是应用上都得到了很大的发展。总体来说,雷达发展的历程可分为四个阶段:第一阶段为上个世纪30年代至50年代,当时雷达典型的技术特点为电子管、非相参,探测目标以飞机为主;第二个阶段为上个世纪50年代至80年代,防空作战对雷达的精确引导技术提出了更高的要求,稳定性和可靠性较高的全相参微波雷达逐渐替代了非相参技术体制的微波雷达,其技术特征主要是半导体、全相参(见图1);第三阶段为上个世纪80年代到上个世纪90年代,为满足现代空战对雷达高精度、高抗干扰能力、高可靠性、高分辨率、多目标跟踪能力等要求,开始发展大规模集成电路、全固态、相控阵技术,从而有效应对复杂电磁环境下低空高速目标的要求;第四个阶段开始于本世纪初期,雷达技术主要向多功能、自适应、目标识别等方面发展,以应对隐身目标、高空高速、低空低速目标的出现。 2相控阵雷达关键技术 2.1射频技术 射频技术是指其使用多种材料和T/R组件来提升雷达在不同射频波段的功率性能和抗噪声性能。在阵列天线上,砷化镓(GaAs)单片微波集成电路制成的T/R组件已普遍应用,技术十分成熟。随着宽禁带半导体技术的进展,在相控阵雷达上,碳化硅和氮化镓(GaN)单片微波集成电路制成的T/R组件已开始使用。GaN用于相控阵雷达比GaAs优越之处在于:高的能量禁带、高的击穿场强、在小芯片尺寸上具有高的射频密度、可用作宽带放大器、高的电源偏压、高热导性、高的抗辐射性能等。GaN单片微波集成电路在S波段T/R组件的应用比较成熟,但由于下一代MPAR工作频率的提高,对于功率、效率、可靠性等都提出了更高的要求,需要进一步研发超高效率的GaN功率放大器、低成本的非密封表面安装组件、高动态范围低噪声放大器、小型而廉价的射频集成电路,以及研究提高T/R组件功率密度、改善输出功率、降低功耗、提高工作电压、降低直流分布损耗、提高系统效率等技术。 2.2子阵列集成技术 该技术可提升相控阵天线的一次成功概率,降低经济成本。其可以通过表面安装技术与电路板组件封装相结合,通过嵌入式处理方式将波束形成、功率控制等集成到模块中,然后利用印制电路板技术一次成型。 2.3多波束形成技术 该技术是相控阵雷达的核心技术之一,其以数字技术为基础,可以直接应用微波集成采技术对信号进行高精度抽样与检测,可以在S 波段中实现多波束形成。形成多波束的方法有多种,主要取决于雷达的需求与其实现的技术基础。随着数字技术和大规模数字与模拟集成电路技术的进步,数字多波束形成技术已开始应用于相控阵雷达中。 2.4双极化技术 雷达对目标对象的识别、反隐以及干扰抑制等都是通过对目标回波的极化特性进行判断来实现的。相控阵雷达的双极化技术可以为每个阵元分配一组共两个互相独立的极化通道,然后利用天线阵元的双通道特性来获得差动反射率的偏差,增强目标的极化特征。 2.5多输入输出技术 MIMO雷达技术起源于20世纪90年代法国的米波稀布阵综合脉冲孔径雷达,到21世纪初才提出MIMO雷达的概念。它可以利用雷达天线阵列的多天线特性向空域目标发射多束探测信号,然后对回波信号进行分集接收和数据融合处理,实现参数可识别性能的提升和发射方向图的设计。在现代战争中,MIMO雷达在低截获、反隐身、抗反辐射导弹和抗干扰等性能上具有明显的优势,是目前最为接近低截获概率雷达性能的一种新体制雷达,对目标还具有距离、方位、俯仰、速度诸元测量能力,已受到雷达和电子战领域的重视。 3相控阵雷达的发展趋势 3.1 AESA技术正得到广泛应用 AESA技术已广泛应用于各个领域的MPAR中,如陆基防空雷达、机载SAR、战斗机雷达。今后的发展趋势是用宽禁带半导体器件制作T/R组件和采用共形结构集成天线。GaN相对GaAs的优越性在前面已经介绍,这里不再赘述。共形结构集成天线可有效利用辐射能量,并具有高度模块化的体系架构、高度可靠性和可维护性、低的全寿命周期成本,以及减小的RCS。

毫米波雷达的应用及发展

第19卷第4期2004年8月 光电技术应用 ELECTRO-OPTIC TECH NOLOGY APPLICATION Vol.19,No.4 Aug.2004毫米波雷达的应用及发展 同武勤,凌永顺,蒋金水,张鑫 (合肥电子工程学院,安徽合肥230037) 摘要:随着毫米波技术的应用,毫米波频率的雷达也得到了更深的研究和发展.毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面.评述了毫米波雷达的优缺点,以及它的应用,详细阐述了军用毫米波雷达发展的新技术和新方法. 关键词:毫米波;毫米波雷达;毫米波集成电路;毫米波雷达应用 中图分类号:TN958.5文献标识码:A Application and Development of M illimeter Wave Radar TONG Wu-qin,LING Yong-shun,JIANG Jin-shui,ZHANG Xin (Electronic Eng ineering I nstitute,Hefei230037,China) Abstract:With the development of millimetre w ave(M MW)technology,the MMW radar has been stud-ied and developed.Based on the features such as high guidance precision,better ant-i jamming ability, high Doppler resolution and plasma penetration ability etc,the M MW radar has been w idely used in end g uidance,fuse,industry and medical treatment etc.The features and applications are discussed in this pa-per,and the new technolog y and methods of the military M MW radar are presented. Key words:millimetre w ave;MM W radar;M MW integrated circuit;application of M MW radar 毫米波雷达技术的研究起步很早,有文献称,在二战结束前后即已开始,19世纪50年代就已在毫米波器件研制及毫米波传播损耗,水蒸汽与氧气等吸收谱等方面均已取得相当成就,并已研制成功机场交通管制用的毫米波雷达[1,2].最初,对发展毫米波雷达的推动力主要来自要在用小口径天线即可获得比微波雷达更窄的天线波束,高的天线增益.窄波束具有的高分辨率和由于空间选择性好而带来的高抗干扰能力. 近年来海湾战争、科索沃战争的实践已经表明,/远程打击,精确打击0技术在军事应用中非常重要,高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别(AT R)等需求对毫米波(M MW)雷达的发展提供了巨大的新的推动力. 毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大.例如,在8m m和3mm窗口,单程传播损耗分别为0.08dB/km和0.3dB/km 左右[3]. 1毫米波雷达的系统概念 如图1所示,发射信号按雷达计算机控制的速率,通过双工器输出.回波信号的返回时间也由该计算机控制,该信号被输入到接收机,在此, 收稿日期:2004-02-24 作者简介:同武勤(1980-),男,陕西韩城人,硕士研究生,研究方向为毫米波电子对抗研究;凌永顺(1937-),男,安徽定远人,中国工程院院士,研究方向为电子工程;蒋金水(1964-),男,安徽含山人,副教授(博士后),研究方向为毫米波对抗;刘勇(1982-),男,四川资阳人,研究方向为雷达对抗.

雷达模拟器的未来发展趋势

雷达模拟器未来发展趋势 班级:***************班 学号:***** 作者:薛飞 摘要:本文通过雷达的发展简史、计算机模拟技术发展历史及趋势、电子游戏画面引擎技术和雷达模拟器的相关图形学原理作为参考依据,通过类比的方法和引用未来电子画面渲染技术的发展方向来分析和推测雷达模拟器的未来几年的发展趋势。 关键词:雷达电子计算机模拟技术模拟软件游戏引擎 0 引言 雷达:是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置…… 计算机模拟:是利用计算机进行模拟的方法。利用计算机软件开发出的模拟器,可以进行故障树分析、测试VLSI逻辑设计等复杂的模拟任务…… 1 雷达的发展历史及现状 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。 二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。 后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。还有一种精神感应雷达,该雷达能够对人类在脑电波起反应,对人体的生命迹象进行感知。 当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标 进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。 自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。 雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面也显示出了很好的应用潜力。

毫米波雷达的应用及发展趋势

87 科协论坛·2009年第1期 (下)科研探索 与知识创新 1 引言 最初,对发展毫米波雷达的推动力主要来自于用小口径天线即可获得比微波雷达更窄的天线波束,更高的天线增益。窄波束具有高分辨率和由于空间选择性好而带来的高抗干扰能力。近年来海湾战争、科索沃战争的实践已经表明,“远程打击,精确打击”技术在军事应用中非常重要,高精度、高分辨率测量、精确制导和精确目标指示、实现自动目标识别(ATR)等需求对毫米波(MMW)雷达的发展提供了巨大的新的推动力。毫米波雷达的应用主要限制在近程雷达上,其主要原因有两个:一是难以获得要求的高发射功率和相应的低损耗传输馈线;二是毫米波在大气中传输时损耗大,例如,在8mm 和3mm 窗口,单程传播损耗分别为0.08dB/km 和0.3dB/km 左右。 2 毫米波雷达的系统概念 如图1所示,发射信号按雷达计算机控制的速率,通过双工器输出。回波信号的返回时间也由该计算机控制,该信号被输入到接收机,在此,它经下变频处理并采样。得到的信号由数字脉冲压缩系统压缩处理。该数字信号被记录在一个“廉价硬盘冗余阵列”(redundant array of inexpensive disks)(RAID)记录系统上,并且也输入到一个阵列处理机上, 该阵列处理机对这些数字实施综合处理。 3 毫米波雷达的优缺点 (1)毫米波雷达的优点与其他传感器系统比较,毫米波雷达有如下优点:1)高分辨率,小尺寸;由于天线和其他的微波元器件尺寸与频率有关,因此毫米波雷达的天线和微波元器件可以较小,小的天线尺寸可获得窄波束;2)干扰,大气衰减虽然限制了毫米波雷达的性能,但有助于减小许多雷达一起工作时的相互影响;3)与常常用来与毫米波雷达相比的红外系统相比,毫米 波雷达的一个优点是可以直接测量距离和速度信息。 (2)毫米波雷达的缺点1)与微波雷达相比,毫米波雷达的性能有所下降,原因如下:①发射机的功率低;②波导器件中的损耗大;2)与天气的关系很大,降雨时更为严重;3)在防空环境中,不可避免的会出现距离模糊和速度模糊;4)毫米波器件昂贵,不能大批量生产装备。 4 毫米波雷达的应用需求与特征4.1 对毫米波雷达的应用需求 (1)进行高精度、高分辨测量,精确制导和目标指示;(2)获得宽带信号与增大回波信号多普勒带宽;(3)获得高天线增益,获得高雷达能量(发射机平均功率,发射天线增益和接收天线口径的乘积,即PavGtAr); (4)获得精细的距离———多普勒图像和目标识别;(5)测量复杂目标的结构;(6)改善雷达的抗干扰能力;(7)观测小尺寸目标;(8)空间雷达,空间飞行器交汇雷达;(9)受体积、重量严格限制的平台上的雷达,例如安装在坦克、导弹、飞机,特别是直升机和无人机等上的雷达,例如导弹上的寻的头,机载地形跟随,地形回避等; (10)低角跟踪、测高、抑制多径干扰;(11)毫米波无源探测。4.2 毫米波对目标高精度探测 目标的高分辨测量,在纵向距离维,主要依靠大的雷达信号瞬时带宽(Δf=1GHz),其理论距离分辨Δθ。 ΔRcr=λ/(2Δθ) 由于毫米波雷达波长比微波雷达短许多,故为获得同样的ΔRcr ,Δθ可相应降低,因而实现转角Δθ所需的目标飞行时间(亦称雷达观察时间)也相应降低,这对在远距离高机动飞行目标(例如在空间变轨的卫星和导弹目标)进行成像特别有意义。为了说明这一点,若设目标相对于雷达的切向飞行速度为υtang ,目标至雷达的距离为Rt ,为实现要求的横向分辨率ΔRcr 所需时间为Tobs ,则有:Tobs=λRt/(2υtang ΔRcr)。图2中a为对λ=8.57mm ,图中b为对λ=3cm 时要求的观察时间Tobs 与目标相对于雷达的切向飞行速度Vtang 的关系图。将来Rt设为1000km ,要求的△Rcr 为0.3m。由此不难看出,如果目标远离雷达,即使是对高速飞行导弹目标,为了获得很高的横向分辨率,对雷达观察时间的要求仍是很高,因此,即使采用X波段,仍嫌不够,必须毫米波波段雷达。 毫米波雷达的应用及发展趋势 □ 刘荣丰 李 博 (91550部队第210所 辽宁·大连 116023) 摘 要 毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面。本文评述了毫米波雷达的优缺点,以及它的应用,详细阐述了军用毫米波雷达发展的新技术和新方法。 关键词 毫米波 毫米波雷达 毫米波集成电路 毫米波雷达应用 中图分类号:TN95 文献标识码:A 文章编号:1007-3973(2009)01-087-02

8分钟就懂的毫米波雷达系统及毫米波技术发展趋势

8 分钟就懂的毫米波雷达系统及毫米波技 术发展趋势 随着ADAS 普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+ 中+ 短”多颗毫米波雷达,到了最终L5 级自动驾驶阶段甚至超过10 颗,预计2021 年全球毫米波雷达的出货量将达到8400 万个。 在上一篇《毫米波雷达在ADAS 中的应用》中,麦姆斯咨询提到随着ADAS 普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+ 中+ 短”多颗毫米波雷达,到了最终L5 级自动驾驶阶段甚至超过10 颗,预计2021 年全球毫米波雷达的出货量将达到8400 万个。这是一个可预见的庞大市场,所以无论是传统的汽车Tier 1 厂商,还是新兴的初创企业,都纷纷加入到汽车雷达产业中来,希望能分一杯羹! 不过现实的竞争又是很残忍的。首先,汽车的空间容量有限,特别是现在汽车主流是向轻便、节能方向发展,别说增加零部件了;其次,精明的消费者只接受加量不加价,性能提高了,价格还得降低。所以,能不能抢到市场先机,摆在各家毫米波雷达厂商面前的主要问题是如何实现“更小巧、更便宜、更智能”的毫米波雷达!带着这些疑问,今天我们来了解一下车载毫米波雷达系统及其核心元器件,探一探毫米波雷达技术的发展趋势。 毫米波雷达系统基本结构在《认识毫米波雷达》文章中,我们

知道了毫米波雷达是基于多普勒原理,根据回波和发射波之间的时间差和频率差来实现对目标物体距离、速度以及方位的测量。根据辐射电磁波方式不同,毫米波雷达主要有脉冲和连续波两种工作方式(图1)。其中连续波又可以分为FSK(频移键控)、PSK(相移键控)、CW(恒频连续波)、FMCW(调频连续波)等方式。 图 1 、毫米波雷达工作方式 FMCW 雷达具有可同时测量多个目标、分辨率较高、信号处理复杂度低、成本低廉、技术成熟等优点,成为目前最常用的车载毫米波雷达,德尔福(Delphi)、电装(Denso)、博世(Bosch)等Tier 1 供应商均采用FMCW 调制方式。 以FMCW 为例(图2),毫米波雷达系统主要包括天线、前端收发组件、数字信号处理器(DSP)和控制电路,其中天线和前端收发组件是毫米波雷达的最核心的硬件部分。以下将分别详细介绍。

雷达技术发展规律和宏观趋势分析——4

附件 4 雷达技术发展规律和宏观趋势分析 摘要:该文着眼于历史、现实和未来的时间尺度,从目标、环境和任务等外因与方式、能力和资源等内因相互作用的视角,对雷达技术的发展动因和阶段特征进行分析寻证后认为,在通道构型、视角覆盖和信号维度等方面,实现由低维度探测向高维度探测的阶梯式演进,是雷达技术发展的基本规律,而改变信息获取方式、提升实现能力和增大资源利用,是雷达技术创新的主要途径。文中还据此推演了未来雷达技术的发展方向和主要特征,并提出了促进创新发展的建议。 01 引言 雷达技术已经走过了 70 多年的发展历程,先后经历了二次世界大战、冷战军备竞赛、新军事革命等不同历史因素的促进并经受了考验,雷达技术的体制、理论、方法、技术和应用都已得到很大的发展。进入新世纪前后的10 多年间,雷达技术面临的目标、环境、任务,以及支撑雷达系统研制生产的相关技术,都发生了深刻的变化。当今雷达技术仍在高速地发展和演变,从而衍生出许多新的概念、体制和技术,以适应未来全球资源竞争对雷达技术提出的严峻挑战。 目前已有许多综述性文献,在不同的历史时期,分别从特定历史阶段[3-4]、多种系统体制[5-11]、不同应用领域[12-15]、特定国家和机构[16-20]等角度,对雷达技术的发展进行了回顾和分析,剖析重点装备和技术、分析历史阶段划分、透视装备发展主线、归纳技术发展动向。这些工作对于促进当时的雷达技术发展,起到了重要的推动作用。 本文试图从宏观的视角和大的时间尺度,认识雷达技术发展的内外因素和物理实质,分析雷达技术创新和变革的源动力,探讨雷达技术发展的规律和主要表现形式,剖析不同发展阶段的主要技术特征,推演预测未来发展的方向和特征,透视制约雷达技术发展节奏的内外因素。以期为把握雷达技术发展的时代脉络和宏观趋势、契合需求和引领创新、推动发展和促进应用,提供新的观察视角和思考方法。 02 02 雷达系统技术的发展外因 目标、环境和任务,是促成雷达体制、频段、理论和技术不断发展演变的3 个主要外部因素。其中,对雷达技术发展推动作用最大的是目标多样化,其次是环境复杂化和任务多元化。 目标多样化是指目标的种类构型、运动特性、活动空间、散射特性、极化特性、频谱特性等方面呈现多样化的趋势。例如,目标的种类构型由常规的空中飞机逐渐扩展为战术导弹、弹道导弹、巡航导弹、掠海导弹、无人飞机、浮空平台、临近空间平台、空天

2018-2022年我国汽车雷达发展前景分析

中投顾问产业研究中心 中投顾问·让投资更安全 经营更稳健 2018-2022年我国汽车雷达发展前景分析 国内车载雷达发展综况 对于车载雷达来说,前端单片微波集成电路是毫米波雷达的关键部件,然而这项技术主要被国外零部件巨头垄断,国内在此领域尚处于起步阶段。此外,汽车零部件巨头对车载雷达的掌控除了硬件工艺本身之外,对于后端雷达信号的处理、决策及与整车控制系统之间的联动是其核心竞争力,国内车载雷达与车辆控制系统之间无法顺畅连接,造成国产车载雷达产业发展缓慢。 近几年,我国涌现出一批从事车载雷达研究与生产的创业公司,经过不懈努力,24GHz 和77GHz 车载雷达技术已获得突破,已实现量产,并得到广泛应用。对于79GHz 雷达产品的研制由于受到国外的技术封锁,目前大多还处于研发试验阶段。预计随着智能汽车行业的快速发展及国际79GHz 频段的开放,未来对79GHz 频段车载雷达有大量的需求,我国79GHz 车载雷达产业将迅速发展,与国外车载雷达企业之间的差距将进一步缩小,最终将实现车载雷达国产化。 汽车雷达市场发展前景 汽车智能化发展是大势所趋,通常而言,汽车驾驶智能化发展要经历五个层次,分别为:完全无智能化的层次、具有特殊功能的智能化层次、具有多项功能的智能化、有限制条件下的无人驾驶、全工况下的无人驾驶而ADAS 的普及又是未来无人驾驶的先行条件。在目前ADAS 的应用普及阶段,多种传感器融合是未来的趋势。其中包括超声波雷达、摄像头、红外线、激光雷达、毫米波雷达等,分析认为激光雷达和毫米波雷达将率先成为ADAS 系统主力传感器。 中投顾问发布的《2018-2022年中国汽车雷达行业深度调研及投资前景预测报告》分析认为,随着雷达技术的发展与进步,汽车雷达传感器将逐步应用用于汽车电子、无人机、智能交通等多个领域。汽车雷达的市场需求空间广阔,尤其是在各个汽车巨头加大无人驾驶汽车布局的背景下,作为无人驾驶汽车核心应用系统之一的汽车雷达传感系统,将迎来良好的发展前景。

探地雷达实验数据处理报告

探地雷达数据基本处理报告 实验目的:学会探地雷达数据的基本处理步骤,掌握一定处理数据能力,学会运用软件处理收集数据,突出有效波,抵制干扰波,收集有利信息,然后可以对地下的情况进行简单的分析,进行简单地分层。实验仪器:Terra SIR-3000,处理软件:RADAN6.5.3.0软件。 实验处理过程: 第一步,装载文件,打开File—Open,加亮文件名FILE____039.DZT,点OK,选定的文件就会在屏幕上显示出来。 第二步,改变输出路径,选择菜单Window>Close ALL,即可关闭所有文件。 选择View>Customize,移动鼠标到输出如果输出路径不存在,利用WINDOWS浏览器创建一个文件夹,然后返回View>Customize选择新建立的文件目录。 第三步,改变显示参数。 1,点击显示按钮。 2,点击线扫描图标。 3,点击线扫描图标。在灰度比例尺中选择彩色表20,显示资料。点OK或者回车,退出线扫描参数对话框,再点OK退出显示参数设置资料显示。

第四步,编辑文件头,选择Edit > File Header。察看文件头信息。

第五步,编辑文件,去除多余道。 a,利用右滑动箭头,将数据文件滑动到文件末。采用高分辨率显示器,就不必用滑动功能。 点击选择按钮,或者在数据窗口点鼠标右键,加亮选择区域。打开选择编辑块体对话框。 b,选择编辑>剪切(Edit-select,使用剪刀按钮。

被选剖面将从文件中剪切,得到新文件。 c,运用窗口振动简图切换图标,演示图像如下

第六步,突出有效波,,采用增益的方法。 1,点击显示按钮-点击线扫描图标-点击线扫描图标,在显示窗口分 别调节Color Table,Color Xform找到突出部分。

毫米波雷达技术及其发展趋势

1.引言 毫米波的工作频率介于微波和光之间,因此兼有两者的优点。它具有以下主要特点: 1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带 宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束 窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰 地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因 此毫米波系统更容易小型化。由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫米波技术和应用得到了迅速的发展。 2.毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能 互补的系统。下面分述各种应用的进展情况。 2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发 射功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作 于35GHz的空间目标识别雷达其天线直径达36m。用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。一部工作于 94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发射功率时,可以对14400km 远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积 要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇 移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细 的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作

浅谈探地雷达的原理与特点

浅谈探地雷达的原理与特点 摘要:地下管线系统的建立是城市现代化建设的重要因素,但由于地下管线中的非金属管线的大量存在以及城市建设快速安全的需要,探地雷达探测技术的独特优势就显现出来,本文通过对探底雷达和地下管线的分析,为应用探底雷达在城市地下管线建设提供参考。 关键字:探地雷达;地下管线;探测技术 0 引言 随着城市现代化的发展,地下管线的密集程度也在不断地扩大。地下管线作为城市的重要基础设施之一,它一方面关系着城市居民生活及城市工业的发展,担负着巨大的社会责任,另一方面又由于它深埋于地下,具有不透明性,纵横交错、结构复杂。近年来,在许多大城市出现施工时挖断通信、电力电缆导致通讯中断、区域性停电、停产事故,这些事故给该地区经济和人们的生产生活带来了巨大的损失。因此,地下工程在施工时如何避免破坏这些地下管线就变得越来越重要,建立完整的城市地下管线系统成为现代城市快速建设的关键因素。 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标或界面进行定位的电磁法,并以其探测的高分辨率和高效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展及工程实践的增多和经验的不断积累,探地雷达技术也得到极大提高,仪器也不断更新,探地雷达检测技术具有分辨率高、采集速度快、后期数据处理简便等特点。因此在铁路、公路、建筑、市政、考古等领域得到广泛的应用,并受到广大现场技术人员的认可和喜爱。 1 探地雷达的发展 国外探底雷达技术最早可追溯到二十世纪初,西方国家以专利形式提出将雷达原理用于探地,正式提出了探地雷达的概念。但是直到50年代后期探地雷达技术才被慢慢重视起来。探地雷达在矿井、冰层厚度、地下粘土属性、地下水位等方面的得到了应用。1967年,一个与Stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年,Rex Morcy和Art Drake开创了GSSI公司,主要从事商业探底雷达的销售。随着电子技术的发展,电子存储设备的问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探底雷达的应用领域迅速扩大,其中有:石灰岩地区采石场的探测、淡水和沙漠地区的探测、工程地质探测、煤矿井探测、泥灰调查、放射性废弃物处理调查、埋设物探测、水文地质调查、地基和道路下空洞及裂缝调查、水坝的缺陷检测、隧道及堤坝探测等。 自70年代以来,许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国GSSI公司的SIR和MK系列,加拿大Sensor&Software公司的Pulse Ekko系列。这些雷达的基本原理大同小异主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,

相关主题