搜档网
当前位置:搜档网 › 罗汉果提取膜分离工艺流程总结

罗汉果提取膜分离工艺流程总结

罗汉果提取膜分离工艺流程总结
罗汉果提取膜分离工艺流程总结

罗汉果提取膜分离工艺流程总结

罗汉果味甘性凉,归肺、大肠经,有润肺止咳,生津止渴的功效,适用于肺热或肺燥咳嗽,百日咳及暑热伤津口渴等,此外还有润肠通便的功效。罗汉果确实有清热润肺的功效,但中医文献中未记载罗汉果有养阴之功效,也无要回避何种食物的记载。现代医学研究证实,罗汉果含一种比蔗糖甜300倍的甜味素,但它不产生热量,所以是糖尿病、肥胖等不宜吃糖者的理想替代饮料。

罗汉果提取膜分离工艺流程:

高温提取→减压浓缩→卧螺离心机→超滤膜澄清→树脂吸附→纳滤膜浓缩→喷雾干燥→后续处理

罗汉果提取膜分离工艺优势:

1.获得的罗汉果甜苷,品质高,收率高;

2.节约能耗,膜浓缩能耗只相当于蒸汽浓缩的1/5;

3.产生的废液少,绿色环保,物料利用率高;

4.减压浓缩过后进行树脂吸附,节约洗脱剂;

5.洗脱过后,用膜浓缩,对有机溶剂回收率高,可达95%;

6.膜浓缩过后进行喷雾干燥,节约能耗,喷雾干燥效果好;

7.膜的使用寿命长,处理量大,性价比高;

8.设备操作简便,节约劳动力;

9.设备占地面积小,便于厂区扩建等。

德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

叶黄素测定结果对比修改版

20120330叶黄素测定对比 叶黄素是饲料的非营养性添加剂,它有突出的生理着色作用。能用在家禽,水产动物和鸟的蛋黄、皮肤、羽毛以及肉的着色上,并有提高禽畜的免疫力的作用。中心实验室测定饲料中叶黄素含量的方法是使用有机溶剂提取叶黄素后,使用分光光度计测定提取液的吸光度,通过比色法计算得到叶黄素的含量。 分析的简洁步骤如下:称取试样3克左右于100mL干燥棕色容量瓶中,精确到0.1mg,加入30mL有正己烷、无水乙醇、甲苯、丙酮配成的混合溶剂和2mL40%氢氧化钾乙醇溶液,在56℃水浴20分钟,冷清后30ml正己烷,再用10%硫酸钠溶液定容,摇匀后放在暗处定容1小时;移取上清液5mL于50mL棕色容量瓶中,用正己烷定容,在474nm比色计算。 不同实验室检测结果对比如下: 从以上数据可以看出,此次对比测定结果是在允许误差范围内的。虽然如此,差值也体现了部分问题的存在。首先,差值有高也有低,不是同一相对偏高或者相对偏低,很可能是由于测定人操作稳定性造成的;其次,测定方法也会造成结果偏差,测定过程中使用的有机溶剂均是易挥发的液体,在操作过程在(56℃水浴20分钟)中随机挥

发的体积是不确定的,此外,加入30mL正己烷,没有标明是精确加入,造成计算时会有偏差;为什么会造成计算偏差呢?原因在于在定容时,加入30mL正己烷后,用10%硫酸钠溶液定容的,我们都知道抽提剂+正己烷,其中正己烷、甲苯等溶剂是不溶于硫酸钠的,加入硫酸钠(作用是除去醇溶性杂质)后抽提剂+正己烷就与硫酸钠分层,抽提剂+正己烷在上层,硫酸钠在下层,最后我们是从抽提剂+正己烷中抽取5毫升再用正己烷定容至50毫升后测定吸光度的。所以我们 说在56℃水浴20分钟,冷清后30ml正己烷,这时加入正己烷的量 很关键,加多了吸光度会偏低,加少了吸光度会偏高。 而且,我们用的是分光光度法测量的,分光光度法有一个缺陷就是准确度不高,也就是说对474nm波长下有吸收的物质不一定是叶 黄素还有别的黄色物质。再次,叶黄素对光很敏感,测定的整个过程都应该在避光条件下操作为好。这样可能是造成差值逐渐减小的原因。

罗汉果甜苷的提取与药理作用研究概况

罗汉果[Siraitia g r osv enorii (Sw in g le) C.Jeffre y]为我国传统保健药材,是一种极具开发潜力的天然产物资源,罗汉果甜苷是罗汉果中主要有效成分,具有广泛的生物特性,其中罗汉果苷Ⅴ为罗汉果果实中含量和甜度均较高的成分,其含量约为1%,甜度相当于蔗糖的350倍,是主要的甜味成分[1]。罗汉果甜苷属于葫芦烷三萜甙类(cucurbitane g l y cosides)型化合物,具有安全,味质好,没有异味;甜度高;热稳定性好;颜色浅;使用简便;使用时不受p H值影响(p H值介于2~10间)等特性。FDA(美国食品药物管理局)于1995年批准罗汉果甜苷应用于食品上,我国也于1996年7月的全国食品添加剂委员会第十七次会议上批准该产品作为食品添加剂,目前,允许罗汉果甜苷作为食品添加剂的国家和地区有:日本、韩国、台湾、香港、泰国、新加坡和英国等[2]。本文对1993年以来在罗汉果甜苷提取分离纯化、测定及生物活性等方面的研究进行综述。 1罗汉果甜苷提取分离与测定1.1提取分离如何将有效成分高效率地提取是中药开发和中药现代化研究的关键技术之一。罗汉果甜苷是罗汉果主要活性成分,随着罗汉果甜苷在食品药品等领域的广泛应用,如何最大限度利用罗汉果资源,提高罗汉果甜苷品质特别引起人们的重视。 李雁群等[3]采用国产材料和 较为简单的方法来提取和纯化罗 汉果甜苷,以水为溶剂的甜苷得率 比乙醇水溶液的得率高,溶剂量以 原料重6倍为宜;Ca(OH)2作澄清 剂比明矾、AlC l3效果好,而且不会 带来很大的甜苷损失,澄清宜在室 温下进行;强碱树脂D290和D280 比酸性树脂的脱色效果好,脱色宜 在25℃下慢速操作;A B-8吸附树 脂吸附罗汉果甜苷的操作宜在 20℃左右的室温下以SV2的流速 操作;用50%乙醇水溶液可以使罗 汉果甜苷从A B-8吸附树脂上解 吸。李俊等[4]采用正交试验设计对 干罗汉果中罗汉果甜苷的乙醇提 取工艺进行了系统研究,优选了工 艺参数,为规模化生产提供理论依 据,采用最佳工艺:用30倍原料重 的30%乙醇,在75~80℃微沸状态 下提取3h,得提取物中罗汉果甜苷 含量为60%。朱晓韵等[5]采用了正 交试验法考察了微波技术对水提 罗汉果甜苷收率的影响,优选出最 佳工艺为:鲜罗汉果投料物液比 为1∶8、微波输出功率为750W、提 取时间15m in,微波提取罗汉果甜 苷的效率明显优于常规水煮法,罗 汉果甜苷得率达7.346m g/g,比常 规水煮法提高21.87%,是一种省 时、省能、操作简便的新提取方 法。马少妹等[6]采用超声提取,探 索乙醇提取罗汉果甜苷的新工艺, 采用超声波辅助提取这一新型提 取技术,提高了罗汉果甜苷的提取 率,为罗汉果甜苷的工业化提取提 供参考依据和方法。最佳工艺分3 次提取。李军生等[7]认为超声波处 理能明显提高罗汉果甜苷的提取 率,高频率的超声波对罗汉果甜苷 提取的影响要比低频率的明显。在 同一频率下,罗汉果甜苷的提取率 随着输出功率的提高而提高,另外 值得注意的是使用频率为50kH z 的超声波,其输出功率虽然只有 80w,但是其提取效果比频率为 28kH z输出功率为200W或400W 的超声波都好。说明罗汉果甜苷提 取与超声波的频率相关。 1.2分离纯化为获得高纯度的 罗汉果甜苷,从20世纪70年代开 始,不少学者对罗汉果甜苷纯化工 艺进行研究,但所用的分离纯化方 法多是采用无机吸附剂和无机脱 色剂,如活性炭、氧化镁、硅酸镁 等,操作工艺复杂,难以工业化生 产。随着仪器设备技术的发展,不 少研究者对罗汉果甜苷精制工艺 进行优化研究,李雁群等[8,9]初步 研究了大孔吸附树脂A B-8对罗 汉果皂甙的吸附性能,比较了15℃ 和65℃下的吸附速度,获得了在 SV2、SV5、SV8三种空速下的穿漏 吸附量;并提出用正丁醇-冰乙酸 -水(4∶1∶1)的混合溶剂做流动 相,硅胶做固定相的层析柱用来分 离罗汉果甜苷,效果明显。刘钟栋[10] 提出采用大孔吸附树脂与离子交 换树脂联用对罗汉果甜苷Ⅴ的精 制工艺,交换树脂对经过吸附处理 的罗汉果洗脱液的处理条件为: p H5.0,洗脱液浓度1%,罗汉果甜 罗汉果甜苷的提取与药理作用研究概况 农毅清广西壮族自治区南宁食品药品检验所530001南宁市明秀东路228号 蒋林广西中医学院制药厂530023 关键词罗汉果甜苷;提取;药理作用;综述 中图分类号:R284.2;R285.5文献标识码:A文章编号:1003-0719(2008)01-0006-03 6 ?6?(总)广西中医药2008年2月第31卷第1期

万寿菊提取叶黄素新技术

万寿菊提取叶黄素新技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

万寿菊提取叶黄素技术 河南省亚临界生物有限公司杨倩 摘要:叶黄素是从万寿菊中提取的一种天然色素,属于类胡萝卜素,其主要成分为黄体素,具有色泽鲜艳、抗氧化、稳定性强、无毒害、安全性高等特点,被广泛应用于食品添加剂、饲料添加剂、化妆品、医药保健品等领域。采用四号溶剂亚临界低温浸出工艺技术,常温下从万寿菊中提取叶黄素,低温浸出脱溶,叶黄素不被破坏。 关键字:叶黄素亚临界萃取低温萃取低温脱溶 叶黄素(xanthophy)是从万寿菊花中提取的一种天然色素,是一种无维生素A活性的类胡萝卜素,其用途非常广泛,主要性能在于它的着色性和抗氧化性。它具有色泽鲜艳、抗氧化、稳定性强、无毒害、安全性高等特点,能够延缓老年人因黄斑退化而引起的视力退化和失明症,以及因机体衰老引发的心血管硬化、冠心病和肿瘤等疾病。叶黄素作为一种天然抗氧化剂既起到一般抗氧化剂的作用又有其独特的生理功能,在防止自由基损害、心血管病,以及癌症方面带来不少创新的功能价值,是极具诱惑力的食品营养保健剂。此外,叶黄素还可以应用在化妆品、饲料、医药、水产品等行业中。叶黄素的高使用价值使众多研究人员致力于它的开发。近年来越来越趋向于从天然植物中直接提取叶黄素。 万寿菊(marigold)--菊科万寿菊属 , 原产墨西哥,为一年生草本植物,含有丰富的叶黄素,是一个极好的叶黄素来源,是生产开发叶黄素的理想原料。采用物理方法从天然植物万寿菊中提取叶黄素,安全无毒,完全符合FAO/WHO有关标准,具备有效性、科学性、安全性、稳定性。 1. 预处理工艺技术

罗汉果提取物来源以及提取工艺

罗汉果提取物的来源以及提取工艺 导读:罗汉果提取物主要来源于天然葫芦科植物罗汉果,经过“原药材→前处理→提取→浓缩→微滤→超滤→纳滤→喷雾→干燥→灭菌→包装”经过一些列的提取工艺加工而成,全新的工艺提取取代了以往水煮、乙醇溶液浸泡的方式,充分的保证罗汉果药用价值成分与营养。闪式提取技术保证提取工作效率的提升,能够利用较短时间完成工作要求,能在大规模生产中广泛应用。 来源植物 罗汉果是我国特有的珍贵葫芦科植物,素有良药佳果之称。果实中含罗汉果甜苷,较蔗糖甜300倍;另含果糖、氨基酸、黄酮等。 主要来源为葫芦科植物罗汉果Momordica grosvenori Swingle的果实。主产于广西永福、临桂。秋季果实由嫩绿变深绿色时采收,晾数天后,

低温干燥。 提取工艺 1.工艺流程 罗汉果提取物的工艺流程为原药材→前处理→提取→浓缩→微滤→超滤→纳滤→喷雾→干燥→灭菌→包装。 2.提取工艺发展 传统的罗汉果提取主要采用水煮或者是乙醇溶液浸泡的方式,在实践工作中会造成有效成分的遗失,浪费自然资源,同时效果较差等各种问题。现代技术的应用为创新罗汉果有效成分提取工艺奠定了基础。能够充分的保证罗汉果药用价值成分与营养。微波辅助提取技术的应用是罗汉果有效成分提取工艺现代化发展的重要表现,这种技术的应用能够降低时间的投入使用,提升有效成分提取率。探索罗汉果有效成分提取新工艺需要对罗汉果中的因子进行优化处理,在微波技术的影响下提升提取工艺。这是充分利用罗汉果资源,使罗汉果发挥药用价值的关键措施。3.最新提取工艺 采用闪式提取技术能够充分的保证罗汉果有效成分的纯度,其中甜苷的纯度最高,说明采取闪式提取技术对罗汉果中甜苷的获取效果最为明显。罗汉果甜甙的提取率随提取溶剂体积的增加呈上升趋势。闪式提取工艺的应用能够提升罗汉果中动态分子的运行速度,使罗汉果中有效成分能够达到内外平衡发展,这种工艺技术保证提取工作效率的提升,能够利用较短时间完成工作要求,能在大规模生产中广泛应用。

水处理膜分离技术

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下图简单示意了四种不同的膜分离过程:(箭头反射表示该物质无法透过膜而被截留): 微滤又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1-1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在 1000-300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广

银杏叶黄素的提取及紫外光谱表征

浙江农林大学 开放性实验论文 项目名称银杏叶黄素的提取及紫外光谱表征学院班级理学院 姓名王卉殊 学期 2012-2013年第一学期

银杏叶黄素的提取及紫外光谱表征 班级:应用化学112班姓名:王卉殊 摘要:本实验用乙醇提取,通过氧化铝柱层析,用正己烷洗脱,得到的叶黄素。即可除去银杏叶中大量的醇溶性杂质,又可得到了纯净的叶黄素。将叶黄素用紫外分光光度计表征,确定其最大吸收波长。 关键词:银杏叶,叶黄素,提取,柱层析,紫外分光光度计 1文献综述 1.1银杏叶的概述 银杏叶(Ginkgo Leaf)是近年来国内外药物开发和研究的热点之一,其脂溶性提取物主要成分为黄酮和内酯类化合物,已被广泛应用于心脑血管疾病的治疗。银杏叶,性味苦甘涩平,内含双黄酮,经实验和临床证明,它具有降低血清胆固醇、扩张冠状动脉的作用,对于冠心病、高血压有一定的辅助治疗作用.[1] 叶黄素是一种无维生素A活性的类胡萝卜素,属纯天然色素,无毒副作用,不溶于水,溶于油脂、乙醇等。叶黄素有八种异构体,以全反式为主,一般从植物中提取。叶黄素广泛存在于蔬菜、花卉、水果与某些藻类生物中,属于“类胡萝卜素”族物质,而类胡萝卜素是国际公认的具有防病抗病生理功能的天然物质,其主要功能是单线态氧的有效淬灭剂,能消除羟自由基,是脂类过氧化反应的断链抗氧化剂,在细胞和细胞膜中和脂类结合而有效的抑制脂类的氧化,对于人体疾病的预防发挥重要的作用。开发利用银杏叶黄素对于丰富叶黄素来源,提高银杏叶的价值具有重大意义。[1] 抗氧化剂是一种在植物中广泛存在的化学物质,能够和体内的自由基广泛结合,发挥抗氧化作用。自由基可以提高机体的氧化作用,杀死体内的有害菌并产生能量,但过量的自由基将损害细胞,危害健康。随着对抗氧化剂研究的不断深入,人们认识到不同的抗氧化剂在体内执行不同的生物学功能。叶黄素(Xanthophylls)是一种性能优异的抗氧化剂,是构成玉米、蔬菜、水果、花卉等植物色素的主要组分之一,叶黄素在甘蓝、羽衣甘蓝、菠菜等深绿色叶菜以及金盏花、万寿菊等花卉中含量最高。在南瓜、桃子、辣椒、芒果、柑橘、蛋黄中则含丰富的叶黄素前体-叶黄素酯。人类的眼睛黄斑区含有高浓度的叶黄素,是构成人眼视网膜黄斑区域的主要色素[2],但在人体内无法制造,必须靠含叶黄素的食物来补充,若严重缺乏这种色素,眼睛就会失明。 1.2叶黄素化合物的研究进展 国外对叶黄素的研究已有10 多年的历史, 在开发应用叶黄素方面, 美国Kem in 公司、瑞士Roche 公司处于研究的前沿。除了美国和瑞士的公司外, 日本和德国的一些公司也均

罗汉果提取物

罗汉果提取物 罗汉果苷V具有较强的抗氧化活性,能有效清除人体内活性氧自由基,其对肠管的调节改善作用,有效提高了人体排毒能力,增强人体免疫力。此外,罗汉果苷V内含丰富维生素C,具有抗衰老、抗癌、益肝健脾及养肤美容的作用。同时,因为其甜度高但不产生热量的特性,广泛作为肥胖者和糖尿病人的代用糖。 【学名】中文学名:罗汉果提取物, 第二学名:Luo Han Guo P.E 【植物来源】罗汉果为多年生蔓生植物,主要栽培在中国的广西北部。其干燥果实为椭圆或圆形,外壳棕褐色或烟熏色并有大量细小黑色细毛。 【提取来源】果实 【性状及颜色】浅黄色粉剂 【功效】有效清除人体内活性氧自由基,提高人体排毒能力,增强人体免疫力。富维生素C,抗衰老、抗癌、益肝健脾、养肤美容,广泛应用于肥胖者盒糖尿病人的代用糖。

【检测方法】HPLC 【果实形状】本品呈卵形、椭圆形或球形,长4.5~8.5cm,直径3.5~6cm。表面褐色、黄褐色或绿褐色,有深色斑块及黄色柔毛,有的有6~11 条纵纹。顶端有花柱残痕,基部有果梗痕。体轻,质脆,果皮薄,易破。果瓤(中、内果皮)海绵状,浅棕色。种子扁圆形,多数,长约1.5cm,宽约1.2cm;浅红色至棕红色,两面中间微凹陷,四周有放射状沟纹,边缘有槽。气微,味甜。显微鉴别果皮横切面;外果皮为1列扁小表皮细胞,外果皮为1列扁小表皮细胞,外被角质层,厚4-12μm,气孔微向外突;有时可见多细胞非腺毛或基残基。中果皮外侧为4-6列圆形或切向延长的确良薄壁细胞;向内为6-9列石细胞层,细胞呈圆形、长圆形、类方形或不规则多角形。紧贴石细胞层内侧,为数列大形不规则的多角形细胞,壁略厚、具壁孔。其内数列七壁细胞常皱缩或颓废;维管束双韧型,常两个内外相连稀疏散布。内果皮为1列扁小的落地壁细胞。 种子横切面:表皮在种子扁平向的上下部位,为1列棚状细胞,长205-280μm,宽12-30μm,左右两侧表皮细胞粘液化,其内为数层切向延长的薄壁组织。在栅状细胞下层为数层厚壁纤维和大型石细胞层,近种仁处排列成环。内表皮为1列扁小细胞。胚乳细胞1-2列。子叶细胞含脂肪油滴。 【分布范围】罗汉果对生长环境要求十分特殊,只有在中国广西北部才能生长。中国广西龙胜县、永福县、融安县、临桂县是罗汉果的四大产地,产量占全球90%,其中龙胜县、永福县是原产地。目前,全球罗汉果的年均产量仅为1亿枚左右。 【活性成分】果中含非糖甜味的成分,主要是三萜甙类:罗汉果甜苷(mogroside)Ⅴ及Ⅳ,苷Ⅴ的甜度是蔗糖(srcrose)的256-344倍,苷Ⅳ的甜度为蔗糖的126倍。还含大量葡萄糖(glucose)[6],果糖(fructose)占14%。又含锰、铁、镍、硒、锡、碘、钼等26种无机元素、蛋白质、维生素(vitamin C)等。

膜分离实验报告

膜分离实验报告 一、实验目的 1.了解不同膜分离工艺的原理、设备及流程。 2.掌握RO、NF的适用范围和对象。 二、实验原理 1.反渗透(RO) 反渗透膜的孔径在0.1-1nm之间。反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。 为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。 溶液进行实验,用在线电导仪测定进水、“淡水”和实验采用NaCl、MgSO 4 “浓水”的电导率变化,表示反渗透膜的处理效果。 图1 反渗透(RO)示意图 2.纳滤(NF) 纳滤膜的孔径范围介于反渗透膜和超滤膜之间。纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。 纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。 为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。 实验采用NaCl、MgSO 溶液进行实验,用在线电导仪测定进水、“淡水”和 4 “浓水”的电导率变化,表示纳滤膜的处理效果。同时将纳滤和反渗透对一价和

叶黄素

叶黄素:又名“植物黄体素”,在自然界中与玉米黄素共同存在,是一种重要的抗氧化剂。是构成玉米、蔬菜、水果、花卉等植物色素的主要组分,含于叶子的叶绿体中,可将吸收的光能传递给叶绿素a,推测对光氧化、光破'坏具有保护作用,也是构成'人眼视网膜黄斑区域的主要色素。 1、视网膜的主要色素成分:人类的眼睛含有高量的叶黄素,这种元素是人'体无法'制'造的,必须靠摄入叶黄素来补充,若缺乏这种元素,眼睛就会失明。 2、保护眼睛不受光线损害,延缓眼睛的老化及防止病变:太阳光中的紫外线及蓝光进'入眼睛会产生大量自'由基,导致白内障,黄斑区退化,甚至癌症。紫外线一般能被眼角膜及晶状体过滤掉,但蓝光却可穿透眼球直达视网膜及黄斑,黄斑中的叶黄素则能过滤掉蓝光,避免蓝光对眼睛的损害。黄斑区的脂肪外层特别容易受到太阳光的氧化伤'害,因此这个区域极易发生退化。 3、保护视力:叶黄素作为抗氧化剂和光保护作用,可促进视网膜细胞中视紫质(Rhodopsin)的再生成,可预防重度近视及视网膜剥离,并可增进视力、保护视力。特别适合学'生、司机等人食用 除了紫外线外,其实皮肤会变黑还有很多原因: 1、洗澡太用力 有些人洗澡时喜欢用力揉搓皮肤,意在洗得更干净一些,殊不知用力过大或反复进行揉搓,亦可导致皮肤变黑,谓之“摩擦黑变病”。摩擦黑变病的奥秘尚未完全揭开,但与用力搓澡不当的关系已被专家确认,主要是由于局部皮肤受到强大摩擦压迫等机械刺激所致,多发生在洗澡用浴巾或化纤类搓澡巾用力摩擦的人。表现为淡褐色到暗褐色的色素沉着,呈弥漫网状,高发于锁骨、肋骨、肩胛、肘、膝部等骨骼隆起处。 2、食物 某些食物也是皮肤黑变的祸根,富含铜、铁、锌等金属元素的食物有此弊端。这是因为这些金属元素可直接或间接地增加与黑色素生成有关的酪氨、酪氨酸酶以及多巴胺酉昆等物质的数量与活性。这些食物主要有动物肝、动物肾、牡蛎、虾、蟹、豆类、核桃、黑芝麻、葡萄干等。 3、药物 不少药物能改变正常肤色,服用奎宁者约10%的病人面部出现蓝色色素斑。在镇静药中,氯丙口秦对肤色的威胁最大,长时间服用者面、颈部出现蝴蝶斑,手臂等处则呈棕灰、浅蓝色或浅紫色。此外,反复使用含汞软膏,也可在病患处

罗汉果质量标准

标准依据:《中华人民共和国药典》(2010年版一部)。 原药材 1【来源】 本品为葫芦科植物罗汉果Momordica grosvenori Swingle的干燥果实。秋季果实由嫩绿变深绿色时采收,晾数天后,低温干燥。 2【性状】 本品呈卵形、椭圆形或球形,长4.5~8.5cm,直径3.5~6cm。表面褐色、黄褐色或绿褐色,有深色斑块及黄色柔毛,有的具6~11条纵纹。顶端有花柱残痕,基部有果梗痕。体轻,质脆,果皮薄,易破。果瓤(中、内果皮)海绵状,浅棕色。种子扁圆形,多数,长约1.5cm,宽约1.2cm;浅红色至棕红色,两面中间微凹陷,四周有放射状沟纹,边缘有槽。气微,味甜。 3【鉴别】 3.1显微鉴别 本品粉末棕褐色。果皮石细胞大多成群,黄色、方形或卵圆形,直径7~38μm,壁厚,孔沟明显。种皮石细胞类长方形或不规则形,壁薄,具纹孔。纤维长梭形,直径16~42μm,胞腔较大,壁孔明显。可见梯纹和螺纹导管。薄壁细胞不规则形,具纹孔。 3.2理化鉴别 取本品粉末1g,加水50ml,超声提取30分钟,滤过。取滤液20ml,加正丁醇萃取两次,每次20ml,合并正丁醇液,减压蒸干,残渣加甲醇1ml使溶解,作为供试品溶液。另取罗汉果对照药材1g,同法制成对照药材溶液。再取罗汉果皂苷Ⅴ对照品,加甲醇制成每1ml含1 mg的溶液,作为对照品溶液。照ZT-TS-02-004-1《薄层色谱法》试验,吸取上述三种溶液各5μl,分别点于同一硅胶G薄层板上,以正丁醇-乙醇-水(8:2:3)为展开剂,展开,取出,晾干,喷以2%香草醛-10%硫酸乙醇溶液显色,加热至斑点显色清晰。供试品色谱中,在与对照品色谱、对照药材色谱相应的位置上,显相

膜分离制备多肽

膜分离法制备多肽的研究 一、膜分离技术简介 1、膜分离技术 膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下面简单介绍四种不同的膜分离过程: (1)微滤(MF) 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 (2)超滤(UF) 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留 分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、

叶黄素

叶黄素 叶黄素:血浆中几种主要类胡萝卜素之一,平均分布在高密度脂蛋白和低密度脂蛋白之中。食物中的叶黄素酯在小肠中经胆汁和胰脂酶的共同作用而生成叶黄素,被小肠黏膜吸收。叶黄素又名“植物黄体素”,在自然界中与玉米黄素共同存在。是构成玉米、蔬菜、水果、花卉等植物色素的主要组分,含于叶子的叶绿体中,可将吸收的光能传递给叶绿素a,推测对光氧化、光破坏具有保护作用。也是构成人眼视网膜黄 斑区域的主要色素。 人体所需叶黄素补充量: 由于光的照射,短光(蓝光)对人体的伤害很大,每天大量消耗叶黄素,而叶黄素在人体内不能合成,所以必须补充每天18mg可满足叶黄素的流失。叶黄素是一种广泛存在于蔬菜、花卉、水果等植物中的天然物质,居于“类胡萝卜类”族物质,目前已知在自然界中存在着600多种类胡萝卜素其中只有约20种存在于人的血液和组织中.在人体中发现的类胡萝卜素主要包括d一胡萝卜素,P一胡萝卜类,隐黄素、叶黄素、番茄红素和正未黄素.医学实验证明植物中所含的天然叶黄素是一种性能优异的抗氧化剂,在食品中加入一定量的叶黄素可预防细胞衰老和机体器官衰老,同时还可预防老年性眼球视网膜黄斑退化引起的视力下降与失明,通过一系列的医学研究,类胡萝卜素已被建议用作癌症预防剂,生命延长剂,溃疡抵制剂,心脏病发作与冠状动脉疾病的抵制剂.同时,叶黄素还可作为饲料添加剂用于家禽肉蛋的着色,同时也已在食品工业中用作着色与营养保健剂。 叶黄素作用 叶黄素是一种重要的抗氧化剂,为类胡萝卜素家族(一组植物中发现的天然的脂溶性色素)的一员,又名“植物黄体素”,在自然界中与玉米黄素共同存在。 (1)视网膜的主要色素成分:叶黄素与玉米黄素构成了蔬菜、水果、花卉等植物色素的主要组分,也是人眼视网膜黄斑区域*的主要色素。人类的眼睛含有高量的叶黄素,这种元素是人体无法制造的,必须靠摄入叶黄素来补充,若缺乏这种元素,眼睛就会失明。 (2)保护眼睛不受光线损害,延缓眼睛的老化及防止病变:太阳光中的紫外线及蓝光进入眼睛会产生大量自由基,导致白内障,黄斑区退化,甚至癌症。紫外线一般能被眼角膜及晶状体过滤掉,但蓝光却可穿透眼球直达视网膜及黄斑,黄斑中的叶黄素则能过滤掉蓝光,避免蓝光对眼睛的损害。黄斑区的脂肪外层特别容易受到太阳光的氧化伤害,因此这个区域极易发生退化。 (3)抗氧化,有助于预防机体衰老引发的心血管硬化、冠心病和肿瘤疾病。 (4)保护视力:叶黄素作为抗氧化剂和光保护作用,可促进视网膜细胞中视紫质(Rhodopsin)的再生成,可预防重度近视及视网膜剥离,并可增进视力、保护视力。特别适合学生、司机等人食用。 (5)缓解视疲劳症状;(视物模糊、眼干涩、眼胀、眼痛、畏光等) (6)提高黄斑色素密度,保护黄斑,促进黄斑发育; (7)预防黄斑变性及视网膜色素变性; (8)减少玻璃膜疣的产生,预防AMD的发生;[1] 叶黄素加工工艺 目前,市场上所售叶黄素主要来源于万寿菊鲜花的深加工, 加工工艺如下: 万寿菊鲜花采收-酶解-脱水-烘干-造粒-低温浸出-叶黄素浸膏-包装。

罗汉果甜苷提取工艺的研究

罗汉果甜苷提取工艺的研究 【摘要】目的建立适合工业化生产的罗汉果甜苷提取工艺。方法用ZTC1+1澄清剂除去罗汉果水提液中的杂质,以D101大孔吸附树脂分离罗汉果甜苷,D301R弱碱性离子交换树脂脱色。结果ZTC1+1澄清剂是一种很好的澄清剂,D301R弱碱性树脂具有很好的脱色能力,D101大孔吸附树脂能有效地分离罗汉果甜苷。结论生产工艺简单易行,产品收 率高,质量好,适合大工业生产。 【关键词】罗汉果甜苷提取工艺澄清剂D101大孔吸附树脂 罗汉果为葫芦科植物罗汉果Momordica grosvenori Swingler 的果实,是我国特有的传统保健药材,它味甘、性凉、具有清热润肺、滑肠通便、促进肠胃功能的作用,用于治疗急慢性支气管炎、急慢性扁桃体炎、大便秘结等[1]。罗汉果甜苷是罗汉果中主要成分,它是一种三萜烯葡萄糖苷,其配糖苷元是三萜烯醇[2],具有非发酵性、低热量、甜度是蔗糖的300倍的特点,具有广泛的应用价值。广西是罗汉果的主产地,占全国产量的80%以上,因此研制开发出一种先进的罗汉果甜苷提取工艺,对于提高罗汉果商品价值、推动广西罗汉果产业化发展具有重要意义。对罗汉果甜苷提取方法的研究,国外大都采用无机吸附剂和无机脱色剂,操作工艺复杂,无法工业化生产。特别是工业生产中不能很好的解决罗汉果甜苷的脱色、除杂问题[3]。现代中药提取的新趋势是以合适的澄清剂来除杂,以大孔树脂来吸附中药有效成分及脱色,本研究正是应用这两项技术进行提取工艺的研究。现将结果报道如下。 1 仪器与试药 高效液相色谱仪(日本岛津),SPD-10A 检测器系统控制器,威玛龙色谱工作站,Shodex Asahipak NH2色谱柱(250 mm×4.6 mm,5 μm),试剂乙腈为色谱纯,水为去离子重蒸水;其余试剂均为分析纯。 罗汉果甜苷对照品由广西百年乐倩倩公司提供,纯度96.5%;鲜罗汉果购自广西永福龙江乡,经广西中医学院药用植物教研室韦松基副教授鉴定为葫芦科植物罗汉果Momordica grosvenori Swingler的果实,ZTC1+1澄清剂为天津正天成澄清有限公司产品,D101大孔吸附树脂为天津农药总厂产品,D301R弱碱性离子交换树脂为南开大学化工厂产品。 2 方法与结果 2.1 罗汉果甜苷的制备[4]鲜罗汉果→绞碎→溶剂提取→澄清剂处理→粗提液→大孔树脂→交换树脂脱色→干燥→超微粉碎→罗汉果甜苷成品。影响工艺的因素主要有澄清剂、大孔树脂及用于脱色的树脂种类,用于树脂洗脱的溶液浓度。经工艺优化后,选用ZTC-101澄清剂脱去溶液中的鞣质和蛋白质,D101大孔树脂富集罗汉果甜苷,D301R大孔弱碱性苯乙烯系阴离子交换树脂脱色,50%乙醇液为树脂洗脱液,收集罗汉果甜苷。 2.2 薄层展开及罗汉果甜苷的含量测定

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

金盏花中叶黄素提取工艺研究

金盏花中叶黄素提取工艺研究 摘要:文章研究了从金盏花中提取叶黄素的强化工艺条件,对提取剂、皂化液浓度及皂化时间进行了考察,并确定出以二氯甲烷作提取剂、皂化液浓度为4%,皂化时间为2 h的适宜工艺条件。粗提物经柱层析分离,重结晶,再经过超临界流体沉淀处理后,可提高叶黄素的纯度。 关键词:金盏花;叶黄素;超临界流体沉淀 中图分类号:S681.7 文献标识码:A 文章编号:1000-8136(2010)27-0011-02 金盏花又名金盏菊,为菊科金盏菊属植物。金盏菊植株矮生,花朵密集,花色鲜艳夺目,花期又长。金盏菊原产欧洲,我国金盏菊的栽培,是18世纪后从国外传入的,20世纪80年代后重瓣、大花和矮生金盏菊引入我国,金盏菊的面貌焕然一新,现已成为我国重要草本花卉之一。 金盏花主要成分是叶黄素和叶黄素酯,而叶黄素酯水解可得到叶黄素。叶黄素又称为黄体素,系统命名为3,3`-二羟基-β,α-胡萝卜素,是天然类胡萝卜素的一种。研究表明,它不仅是天然的着色剂,还具有保护视力,预防白内障(cataracts),防止动脉硬化及增强免疫力等重要作用。[1]但是,由于叶黄素有8种同分异构体,人工合成工艺复杂,至今尚未成功,工业上只能从天然植物金盏花等中提取得到。国内外对叶黄素的提取及检测方面研究比较多,[2]但对叶黄素纯化方面的报道相对少一些,[3]文章优化了从金盏花中提取叶黄素以及利用柱层析,重结晶和超临界流体沉淀技术进一步纯化叶黄素的工艺条件。 1实验部分 1.1原料、试剂和仪器 金盏花颗粒,正已烷、石油醚、二氯甲烷、苯、乙酸乙酯、四氢呋喃、甲醇均为分析纯试剂,CO2(纯度99.9%),索氏提取器、层析柱(50 cm×2 cm)、电子天平(上海天平仪器厂)、721型分光光度计、超临界流体沉淀设备。 1.2叶黄素的提取 取一定量金盏花颗粒装入滤纸筒,开口朝上放入索式提取器的提取筒内,纸筒开口端折回封口。然后将适量溶剂装入圆底烧瓶,冷凝管中通冷却水,加热到60 ℃回流提取,直至索式提取器中提取液为无色为止,收集提取液,用旋转蒸发仪减压浓缩除去溶剂。以氢氧化钾—甲醇为皂化液,对提取的浓缩液进行皂化。用水洗至中性,过滤,再经过柱层析分离,得到橙黄色固体粉末,重结晶处理,得到橙黄色且有金属光泽的叶黄素粗品。 1.3超临界流体沉淀技术纯化叶黄素

罗汉果的提取分享

罗汉果的提取及作用分享 罗汉果Momordica grosvenori是葫芦科罗汉果属植物,其叶呈卵形或长卵形,夏季开淡黄色花,微带红色;单性,雌雄异株,苞片极少。罗汉果叶除可治疗癣症外,还对致病金黄色葡萄球菌、白色葡萄球菌、卡他双球菌有较强的抑制作用。对罗汉果叶的研究证实其含有黄酮类化合物。 罗汉果提取物的最佳提取工艺。方法单因素考察提取溶剂、提取次数和膜截留相对分子质量对罗汉果甜苷的收率、含量和提取率的影响。巴科医药结果最佳提取工艺条件为用水提取2次,每次用3倍量水,过截留相对分子质量为40000的超滤膜,然后再经过纳滤,干燥。结论采用最佳提取工艺条件,可较好地提取纯化罗汉果中的罗汉果甜苷。 茶叶抗HIV活性组(成)分的研究为了从中草药中寻找并发现 具有抗HIV活性的天然有效成分,在前期的工作中,采用HIV的5′端LTR序列转染的BF-24细胞为活性筛选模型,以牙龈卟啉单胞菌为激 活子,以报告基因—氯霉素乙酰转移酶基因(CAT)的表达为评价指标, 有针对性的对上百种中草药进行了抗HIV活性的筛选,结果表明,茶 叶75%乙醇粗提物具有较强的下调控HIV-1 LTR作用,并进一步证实了茶叶乙醇提取物的乙酸乙酯部分活性最好。本研究的目的是寻找并确定茶叶中具有下调控HIV-1 LTR作用的活性组(成)分,即在活性

测试指导下,对茶叶乙酸乙酯部分的化学成分进行系统的分离纯化, 得到了乙酸乙酯部分中活性最好的部位,分别是石油醚/乙酸乙酯 =5:1,3:1,1:2,1:3,1:5,并得到了相关的数据。从中分离得到5个化合物,目前完全鉴定了其中2个化合物,分别为:咖啡因、β-谷甾醇。 罗汉果叶和茎乙醇提取物抑菌作用的初步研究罗汉果是葫芦 科属植物,具有润肺、去痰、止咳的功效,广泛用于医药、饮料和调味品中。前人主要是研究罗汉果果实,很少有人对罗汉果叶子和茎进行研究,巴科采用二分法测定罗汉果叶和茎乙醇提取物对大肠杆菌、绿脓杆菌、金黄色葡萄球菌、藤黄微球菌、白色念珠球菌的抑菌作用。结果表明,叶和茎乙醇提取物对绿脓杆菌的抑菌活性最好,当提取物 浓度为50mg/mL时抑菌率分别达到90.9%和76.8%;茎提取物对大肠杆菌的抑菌活性较好,抑菌率达到70.3%。 为探讨罗汉果Momordica grosvenori叶和茎乙醇提取物对大 肠杆菌、绿脓杆菌、金黄色葡萄球菌、藤黄微球菌、白色念珠球菌的抑菌作用,样品用50%乙醇浸提,采用二分法测定样品对不同供试菌种的抑菌率。结果表明,罗汉果叶和茎乙醇提取物的浓度越大,其抑菌率越大。叶和茎乙醇提取物对绿脓杆菌的抑菌活性最好,提取物浓度达到50.00mg/mL时抑菌率分别为90.9%和76.7%;茎提取物对大肠杆菌

膜分离技术概述

膜分离技术概述 天然色素应用技术推广实验室 膜分离(Membrane Separating)是利用天然或人工制备的具有选择透过性膜,以外界能量或化学位差为推动力对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的方法。膜分离法可以用于液相和气相,对液相分离,可以用于水溶液体系、非水溶液体系以及水溶胶体系。膜分离技术由于省能、高效、简单、造价低、易于操作,可代替传统的分离技术(如精馏、蒸发、萃取、结晶等过程),所以是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高技术之一。 膜分离过程的发展概况 膜分离技术研究应用虽有上百年时间,但是由于制膜的技术所限,在工业中应用还仅一、二十年的时间。目前膜法除大规模用于各种水处理外,还在食品工业、医药工业、生物工程、石油、化学工业、核工业等领域得到应用。全球已有30多个国家和地区的2000多个科研机构从事膜技术研究和应用开发,已形成了一个较为完整的边缘学科和新兴产业,并正逐步地有针对地代替目前的一些传统分离净化工艺,而且朝反应-分离耦合、集成分离技术等方面发展。据报道,1998世界膜产品市场销售额已超过440亿美元,且以14%~30%的年增长速度在发展。膜产业将是21世纪新型十大高科技产业之一。 在膜分离技术中,微滤、超滤、反渗透和电渗析分离过程已较为成熟。这些膜过程的应用比大概为:微滤35.71%;反渗透13.04%;超滤19.10%;电渗析3.42%;气体分离9.32%;血液透析17.70%;其他1.71%。 膜分离技术特点 膜分离与传统的分离技术(蒸馏、吸收、吸附、萃取、深冷分离等)相比,具有以下特点: <1>膜分离过程不发生相变化,耗能少,可以保持物质的原态、特别适合热敏性物质,如酶、果汁、某些药品的分离浓缩、精制等。 <2>膜分离技术不耗化学试剂和添加剂,不会因此而污染产品; <3>膜分离通常是一个高效的分离过程,目前已广泛的应用与盐水与海水淡化、工业用水和生活用水的净化、溶质的浓缩与分离过程。 <4>膜分离设备本身没有运动部件,工作温度在室温附近。它的操作十分简单,从开动到得到产品的时间很短,可以在高频的启、停下工作。 <5>膜分离设备的体积比较小,占地较少,通常可以直接插入已有的生产工艺流程,不需要对生产线进行大的改变。 膜分离过程的原理及分类 在膜分离过程中,由于膜具有选择透过性,当膜两侧存在某种推动力(如压力差,浓度差,电位差等),原料侧组分选择性地透过膜以达到分离提纯的目的。实际中物质通过膜的传递极为复杂,不同的膜过程使用的膜不同,推动力不同,其传递机理也不同。 膜分离过程按其分离对象可分为气体(蒸汽)分离和液体分离。按其分离方法可分为反渗透法(RO)、纳滤(NF)、超滤(UF)、微滤(MF)、电渗析(ED)、气体分离(GS)和渗透蒸发(PV)以及与其它过程相结合的分离过程,例如:,膜蒸馏、膜吸收、膜萃取等。由于本论文中用超滤膜对红花提取液进行了分离、纯化的初步探讨,下面就超滤过程做简单介绍。超滤 超滤膜技术的发展现状 超滤膜过程是根据体系中相对分子质量的大小和形状,通过膜孔的筛分、吸附等作用,

天然产物提取的资料(整合版)

第一、二章 1.天然产物提取工艺学的特点:多学科性、多层次多方位性、复杂性。 2天然产物提取过程的选择:细胞破碎、初步纯化、高度纯化、成品加工。 3天然产物提取利用建议:1)要注意生物资源多样性和用途多功能性,进行综合利用2)充分利用先进科学技术,生产高技术天然产物产品3处理好利用与资源保护、环境保护的矛盾,使其处于良性循环状态4)面向市场生产适销对路产品 4破坏细胞膜和壁的方法:风干法、加热干燥法、机械法、非机械法。 5原料的前处理:除杂、干燥、粉碎、发酵、脱脂、水解。 7提取法原理:提取又称浸出、固液萃取,是应用有机或无机溶剂将固体原料中的可溶性组分溶解,使其进入液相,再将不溶性固体和溶液分开的操作。渗透溶解分配扩散 萃取法原理:是利用混合物中各成分在两种无不相容的溶剂中分配系数的不同进行分离的方法。 微波提取的原理和特点:由于物质分子偶极振动同微波振动具有相似的频率,在快速振动的微波磁场中,被辐射的极性物质分子吸收电磁能,以高速振动而产生热能。 特点:投资少、设备简单、适用范围广、重现性好、选择性高、操作时间短、溶剂耗量少、不产生噪声、不产生污染。 超声波提取的特点:1提取时不需要加热,2提取提高了药物有效成分的提取率3溶剂用量少,节约溶剂4提取时一个物理过程,不影响大多数药物有效成分的生理活性5提取物有效成分含量高有利于进一步精制。提取原理:机械效应空化效应热效应 8结晶的方法:盐析法有机溶剂法等电点结晶法利用温差结晶法 9为什么多孔性固体物质具有吸附能力? 这是因为固体表面分子所处的状态与固体内部分子或原子所处的状态不同。固体内部分子受到邻近四周分子的作用力是对称的,作用力总和为零,所以分子处于平衡状态,但在界面上的分子同时受到不相等的两相等的两相分子的作用力,因此界面分子所受力是不对称的作用力不为零,合力方向指向固体内部,所以处于表面层的固相分子始终受到一种里的作用。 10吸附的三种类型:物理吸附化学吸附交换吸附 第三章 1.固体可分为多孔和非多孔性物质 3.吸附三种类型:物理吸附(吸附剂与吸附物之间作用力是分子间引力),化学吸附(通过生成化学键来吸附),交换吸附(也叫极性吸附,通过带相反电荷离子的交换来吸附) 5.吸附分离:利用适当吸附剂在一定条件下,使提取液中有效成分被吸附然后再用适当洗脱剂将其解吸下来,达到浓缩和提纯的目的。 6.吸附等温线:在等温情况下,吸附剂的吸附量与吸附物质的压力(或浓度)的关系曲线(图及类型见书79) 8.膜的性能:通常指膜的物化稳定性(膜的抗氧化、抗水解性能,膜的耐热性和机械强度)和膜的分离透过性(反渗透膜,超过滤膜,微孔过滤)。 9.膜过滤设备要求:具有尽可能大的有效过滤面积;为膜提供可靠的支撑装置;提供引出滤过液的路径;尽可能清除或减弱浓差极化现象。 11.分子蒸馏原理:依据液体分子受热会从液面逸出,不同种类分子逸出后在气相中其运动平均自由程不同这一性质实现。其特点是:操作温度低、无需沸腾,蒸馏压强低,受热时间短,分离程度高。 12.超临界流体萃取:利用超临界流体即温度和压力略超过或靠近超临界温度和压力,介于气体和液体之间的流体做萃取剂,从固体或液体中萃取成分以达到分离和纯化目的。最常用CO2,原因:临界温接近室温,临界压力处于中等,无毒无味不腐蚀价格便宜。 14.色谱:利用混合物中各组分的物化性质差异,基于被分离物质分子在两相中分配系数的差别进行分离。 15.层析法分类:吸附层析,分配层析,凝胶过滤层析,离子交换层析等。常用吸附剂:氧化铝,硅胶,活性炭,聚酰胺。 16.分配系数:当一种溶质分布在两互不相溶熔剂中在固定相和流动相的浓度之比。

相关主题