搜档网
当前位置:搜档网 › 有限元分析基础教程

有限元分析基础教程

有限元分析基础教程
有限元分析基础教程

有限元分析基础教程

前言

有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。

一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。

本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。

本教程力求体现以下特点。

(1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。

(2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。

(3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。

(4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。

(5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

有限元分析基础教程

Fundamentals of Finite Element Analysis

目录

第一部分有限元分析基本原理

第1章绪论

1.1 概况1

1.2 有限元方法的历史1

1.3 有限元分析的作用5

第2章有限元分析过程的概要7

2.1 有限元分析的目的和概念7

2.2 一维阶梯杆结构问题的求解9

2.3 有限元分析的基本流程17

2.4 有限元分析的特点20

2.5 本章要点22

第3章杆梁结构分析的有限元方法23

3.1 杆梁结构分析的工程概念23

3.2 杆件有限元分析的标准化表征与算例24

3.2.1 杆件分析的基本力学原理24

3.2.2 局部坐标系中的杆单元描述28

3.2.3 杆单元的坐标变换32

3.2.4 杆单元分析的MATLAB程序35

3.2.5杆结构分析的算例38

3.3 梁件有限元分析的标准化表征与算例47

3.3.1 梁件分析的基本力学原理48

3.3.2局部坐标系中的平面梁单元54

3.3.3 平面梁单元的坐标变换62

3.3.4 空间梁单元及坐标变换63

3.3.5 梁单元的常用等效节点载荷66

3.3.6 梁单元分析的MATLAB程序68

3.3.7梁结构分析的算例70

3.4 应用:桥梁结构的ANSYS参数化分析77

3.4.1 桥梁结构描述77

3.4.2 基于ANSYS的桁架桥梁结构分析78

3.5 本章要点83

3.6 习题83

第4章连续体结构分析的有限元方法89

4.1 连续体结构分析的工程概念89

4.2 连续体结构分析的基本力学原理89

4.3 平面问题有限元分析的标准化表征95

4.3.1 平面问题的3节点三角形单元描述95

4.3.2 平面问题的4节点矩形单元描述101

4.3.3 平面问题3节点三角形单元的MATLAB程序114 4.3.4 平面问题4节点矩形单元的MATLAB程序116

4.4 轴对称问题有限元分析的标准化表征118

4.4.1 轴对称问题的基本变量及方程118

4.4.2 3节点三角形轴对称单元(环形单元) 120

4.4.3 4节点矩形轴对称单元(环形单元) 122

4.5 空间问题有限元分析的标准化表征123

4.5.1 空间问题的4节点四面体单元描述123

4.5.2 空间问题的8节点正六面体单元描述126

4.5.3 空间问题4节点四面体单元的MATLAB程序128 4.5.4 空间问题8节点正六面体单元的MATLAB程序130 4.6 形状映射参数单元的一般原理和数值积分133

4.6.1两个坐标系之间的三个方面的变换133

4.6.2参数单元的三种类型137

4.6.3参数单元刚度矩阵计算的数值积分137

4.7 平面问题分析的算例143

4.7.1 平面3节点三角形单元分析的算例143

4.7.2 平面4节点四边形单元分析的算例151

4.8空间问题分析的算例155

4.8.1 空间4节点四面体单元分析的算例155

4.8.2 空间8节点六面体单元分析的算例161

4.9 本章要点165

4.10习题166

第5章有限元分析中的若干问题讨论169

5.1 单元的节点编号与总刚度阵的存储带宽169

5.2 单元形状函数矩阵与刚度矩阵的性质170

5.2.1 形状函数矩阵的性质170

5.2.2 刚度矩阵的性质171

5.3 边界条件的处理与支反力的计算177

5.4 单元位移函数构造与收敛性要求188

5.4.1 选择单元位移函数的一般原则188

5.4.2关于收敛性问题189

5.4.3 位移函数构造的收敛性准则190

5.5 C0型单元与C1型单元192

5.6 有限元分析结果的性质与节点应力的平均处理193 5.

6.1 有限元分析结果的下限性质193

5.6.2 共用节点上应力的平均处理195

5.7 高阶单元的构建196

5.7.1 一维高阶单元196

5.7.2 二维高阶单元199

5.7.3 三维高阶单元202

5.8 提高计算精度的h方法和p方法204

5.9 本章要点205

5.10习题205

第二部分有限元分析的典型应用领域

第6章静力结构的有限元分析208

6.1 连续体平面问题的MATLAB有限元分析程序208

6.1.1 程序原理208

6.1.2 完整的MATLAB程序源代码212

6.2 受均匀载荷方形板的有限元分析216

6.3 自主程序开发与ANSYS前后处理器的衔接222

6.4 工程应用:预应力万吨液压机机架的参数化建模与分析228 6.4.1 模锻液压机的描述228

6.4.2 8万吨模锻液压机主牌坊的简化模型的有限元分析230

6.5 习题235

第7章结构振动的有限元分析237

7.1 结构振动分析的基本原理237

7.1.1 结构振动分析的基本方程237

7.1.2 结构振动的有限元分析列式239

7.1.3 常用单元的质量矩阵241

7.2 汽车悬挂系统的振动模态分析243

7.3 带有张拉的绳索的振动模态分析247

7.4 机翼模型的振动模态分析251

7.5 习题255

第8章传热过程的有限元分析258

8.1 传热过程分析的基本原理258

8.1.1 传热过程的基本方程258

8.1.2 稳态传热过程的有限元分析列式259

8.1.3 热应力问题的有限元分析列式262

8.2 平面矩形板的稳态温度场分析264

8.3 金属材料凝固过程的瞬态传热分析267

8.4 温度变化下的结构热应力分析271

8.5 习题275

第9章弹塑性材料的有限元分析279

9.1弹塑性材料分析的基本原理279

9.1.1 弹塑性材料的物理方程279

9.1.2基于全量理论的有限元分析列式282

9.1.3 基于增量理论的有限元分析列式282

9.1.4 非线性方程求解的Newton-Raphson(N-R)迭代法283 9.2 三杆结构塑性卸载后的残余应力分析284

9.3 悬臂梁在循环加载作用下的弹塑性分析289

9.4 习题294

参考文献296

附录A:MATLAB程序基本操作297

附录B:ANSYS程序基本操作309

附录C:常用材料的力学性能316

附录D:常用材料的热力学参数317 附录E:计量单位换算318

中文索引319

英文索引323

单元及编程索引327

典型例题、求解原理、MATLAB算例、ANSYS算例

目录

?

第2章

【典型例题】2.1(1) 一个一维函数的两种展开方式的比较

【典型例题】2.2(1) 1D阶梯杆结构问题的材料力学求解

【典型例题】2.2(2) 1D阶梯杆结构的节点位移求解及平衡关系

【典型例题】2.2(3) 1D阶梯杆结构基于位移求解的通用形式

【典型例题】2.3(1) 1D三连杆结构的有限元分析过程

第3章

【基本变量】3.2.1(1) 1D问题的基本变量

【基本方程】3.2.1(2) 1D问题的基本方程

【求解原理】3.2.1(3) 1D问题的直接求解

【求解原理】3.2.1(4) 1D问题的虚功原理求解

【求解原理】3.2.1(5) 1D问题的最小势能原理求解

【典型例题】3.2.1(6) 变截面杆单元的推导

【单元构造】3.2.2(1) 杆单元的描述

【MATLAB程序】3.2.4(1) 1D杆单元的有限元分析程序(Bar1D2Node) 【MATLAB程序】3.2.4(2) 2D杆单元的有限元分析程序(Bar2D2Node)

【典型例题】3.2.5(1) 四杆桁架结构的有限元分析

【MATLAB算例】3.2.5(2) 四杆桁架结构的有限元分析(Bar2D2Node) 【ANSYS算例】3.2.5(3) 四杆桁架结构的有限元分析

【基本变量】3.3.1(1) 平面梁的基本变量

【基本方程】3.3.1(2) 平面梁的基本方程

【求解原理】3.3.1(3) 简支梁的微分方程解

【求解原理】3.3.1(4) 简支梁的虚功原理求解

【求解原理】3.3.1(5) 简支梁的最小势能原理求解

【单元构造】3.3.2(1) 平面纯弯梁单元的描述

【单元构造】3.3.2(2) 一般平面梁单元的描述

【典型例题】3.3.2(3) 受均布载荷平面梁单元的等效节点载荷

【典型例题】3.3.2(4) 悬臂-简支平面连续梁的有限元分析

【MATLAB程序】3.3.6(1) 1D梁单元的有限元分析程序(Beam1D2Node) 【MATLAB程序】3.3.6(2) 2D梁单元的有限元分析程序(Beam2D2Node)

【典型例题】3.3.7(1) 三梁平面框架结构的有限元分析

【MATLAB算例】3.3.7(2) 三梁平面框架结构的有限元分析(Beam2D2Node) 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析

【ANSYS算例】3.4.2(1) 基于图形界面(GUI)的桁架桥梁结构分析

【ANSYS算例】3.4.2(2) 基于命令流方式的桁架桥梁结构分析

【ANSYS算例】3.4.2(3) 基于参数化方式的桁架桥梁结构分析

第4章

【基本变量】4.2.1(1) 连续体问题的三大类变量

【基本方程】4.2.1(2) 连续体问题的三大类方程及边界条件

【求解原理】4.2.1(3) 直接法以及试函数法的求解思想

【求解原理】4.2.1(4) 连续体问题求解的虚功原理

【求解原理】4.2.1(5) 连续体问题求解的最小势能原理

【强度准则】4.2.1(6) 结构分析中的受力状态诊断(强度准则)

【单元构造】4.3.1(1) 平面问题的3节点三角形单元

【单元特征】4.3.1(2) 平面3节点三角形单元的位移坐标变换问题

【单元特征】4.3.1(3) 平面3节点三角形单元的常系数应变和应力

【单元构造】4.3.2(1) 平面问题的4节点矩形单元

【单元特征】4.3.2(2) 4节点矩形单元的线性应变和应力

【典型例题】4.3.2(3) 三角形单元与矩形单元计算精度的比较

【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较

【MATLAB程序】4.3.3(1) 3节点三角形单元的有限元分析程序(Triangle2D3Node) 【MATLAB程序】4.3.4(1) 平面4节点矩形单元的有限元分析程序(Quad2D4Node)

【基本变量】4.4.1(1) 轴对称问题的三大类变量

【基本方程】4.4.1(2) 轴对称问题的三大类方程及边界条件

【单元构造】4.4.2(1) 3节点三角形轴对称单元(环形单元)

【单元构造】4.4.3(1) 4节点矩形轴对称单元(环形单元)

【单元构造】4.5.1(1) 空间问题的4节点四面体单元

【单元特征】4.5.1(2) 4节点四面体单元的位移坐标变换问题

【单元特征】4.5.1(3) 4节点四面体单元的常系数应变和应力

【单元构造】4.5.2(1) 空间问题的8节点正六面体单元

【单元特征】4.5.2(2) 8节点正六面体单元的一次线性应变和应力

【MATLAB程序】4.5.3(1) 4节点四面体单元的有限元分析程序(Tetrahedron3D4Node) 【MATLAB程序】4.5.4(1) 8节点正六面体单元的有限元分析程序(Hexahedral3D8Node) 【基本原理】4.6.1(1) 两个坐标系之间的函数映射

【基本原理】4.6.1(2) 两个坐标系之间的偏导数映射

【基本原理】4.6.1(3) 两个坐标系之间的面(体)积元映射

【基本原理】4.6.2(1) 等参元、超参元以及亚参元

【基本原理】4.6.3(1) 数值积分的Gauss方法

【典型例题】4.6.3(2) 平面4节点四边形等参元的刚度矩阵的计算

【典型例题】4.7.1(1) 基于3节点三角形单元的矩形薄板分析

【MATLAB算例】4.7.1(2) 基于3节点三角形单元的矩形薄板分析(Triangle2D3Node) 【ANSYS算例】4.7.1(3) 基于3节点三角形单元的矩形薄板分析

【MATLAB算例】4.7.2(1) 基于4节点四边形单元的矩形薄板分析(Quad2D4Node) 【ANSYS算例】4.7.2(2) 基于4节点四边形单元的矩形薄板分析

【MATLAB算例】4.8.1(1) 基于4节点四面体单元的空间块体分析(Tetrahedron3D4Node) 【ANSYS算例】4.8.1(2) 基于4节点四面体单元的空间块体分析

【MATLAB算例】4.8.2(1) 基于8节点六面体单元的空间块体分析(Hexahedral3D8Node) 【ANSYS算例】4.8.2(2) 基于8节点六面体单元的空间块体分析

第5章

【基本原理】5.2.1(1) 单元形状函数性质1:0/1性质

【基本原理】5.2.1(2) 单元形状函数性质2:和1性质

【基本原理】5.2.2(1) 单元刚度矩阵性质1:对角线元素的1/0性质

【基本原理】5.2.2(2) 单元刚度矩阵性质2:非对角线元素的1/0性质

【基本原理】5.2.2(3) 单元刚度矩阵性质3:对称性质

【基本原理】5.2.2(4) 单元刚度矩阵性质4:半正定性质

【基本原理】5.2.2(5) 单元刚度矩阵性质5:奇异性质

【基本原理】5.2.2(6) 单元刚度矩阵性质6:行(或列)的代数和为零的性质

【典型例题】5.2.2(7) 平面梁单元形状函数的性质

【基本原理】5.3(1) 处理边界条件的直接法

【基本原理】5.3(2) 处理边界条件的置“1”法

【基本原理】5.3(3) 处理边界条件的乘大数法

【基本原理】5.3(4) 支反力的计算

【基本原理】5.3(5) 处理耦合边界条件的拉格朗日(Lagrange)乘子法

【基本原理】5.3(6) 处理耦合边界条件的罚函数法

【典型例题】5.3(7) 平面问题斜支座的处理

【ANSYS算例】5.3(8) 平面问题斜支座的处理

【基本原理】5.4.3(1) 收敛性准则1:完备性要求(针对单元内部)

【基本原理】5.4.3(2) 收敛性准则2:协调性要求(针对单元之间)

【典型例题】5.4.3(3) 平面单元位移函数选取的要求

【典型例题】5.4.3(4) 平面弯曲梁单元位移函数选取的要求

【典型例题】5.4.3(5) 平面3节点三角形单元的二次位移函数的选择与分析【基本原理】5.5(1) C0型单元的位移函数连续性

【基本原理】5.5(2) C1型单元的位移函数连续性

【基本原理】5.6.1(1) 有限元位移结果的下限性质

【基本原理】5.6.1(2) 有限元模型的刚化性

【典型例题】5.6.1(3) 基于网格加密的求解精度估计

【基本原理】5.6.2(1) 共用节点上应力的直接平均

【基本原理】5.6.2(2) 共用节点应力的加权平均

【单元构造】5.7.1(1) 1D高阶单元:二次杆单元

【单元构造】5.7.1(2) 1D高阶单元:高次梁单元

【基本原理】5.7.2(1) (面积)自然坐标

【单元构造】5.7.2(2) 2D高阶单元:6节点三角形二次单元

【单元构造】5.7.2(3) 2D高阶单元:矩形高阶Lagrange型单元

【单元构造】5.7.3(1) 3D高阶单元:10节点四面体二次单元

【单元构造】5.7.3(2) 3D高阶单元:20节点正六面体高阶单元

【基本原理】5.8(1) 提高计算精度的h方法(h-version或h-method)

【基本原理】5.8(2) 提高计算精度的p方法(p-version或p-method)

第6章

【MATLAB程序】6.1.2(1) 平面问题有限元分析的通用程序FEM2D.m 【MATLAB算例】6.2(1) 受均匀载荷方形板的有限元分析(FEM2D.m) 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析

【ANSYS程序】6.3(1) ANSYS前后处理器与自主程序的衔接

【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI)

【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 第7章

【基本变量】7.1.1(1) 结构振动的三大类变量

【基本方程】7.1.1(2) 结构振动的三大类方程及边界/初始条件

【求解原理】7.1.1(3) 结构振动求解的虚功原理

【单元构造】7.1.2(1) 结构振动分析的单元构造的基本表达式

【单元构造】7.1.3(1) 杆单元的质量矩阵

【单元构造】7.1.3(2) 梁单元的质量矩阵

【单元构造】7.1.3(3) 平面三节点三角形单元的质量矩阵

【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI)

【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI)

【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流)

第8章

【基本方程】8.1.1(1) 传热过程的基本变量及方程

【求解原理】8.1.1(2) 传热过程分析的求解原理(求极值问题)

【单元构造】8.1.2(1) 稳态传热过程的单元构造基本表达式

【单元构造】8.1.2(2) 平面3节点三角形传热单元

【基本方程】8.1.3(1) 热应力问题中的物理方程

【求解原理】8.1.3(2) 热应力问题求解的虚功原理

【单元构造】8.1.3(3) 热应力问题分析的单元构造的基本表达式【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 第9章

【基本原理】9.1.1(1) 材料的弹塑性行为实验

【基本原理】9.1.1(2) 材料塑性行为的三方面准则

【单元构造】9.1.2(1) 基于全量理论的单元构造的基本表达式

【单元构造】9.1.3(1) 基于增量理论的单元构造的基本表达式

【求解原理】9.1.4(1) Newton-Raphson(N-R)迭代法的原理

【ANSYS算例】9.2(1) 三杆结构塑性卸载后的残余应力计算(GUI) 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流)

第1章绪论

1.1 概况

有限元方法(finite element method)或有限元分析(finite element analysis)[1][2],是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。将它用于在科学研究中,可成为探究物质客观规律的先进手段。将它应用于工程技术中,可成为工程设计和分析的可靠工具。严格来说,有限元分析必须包含三个方面:(1)有限元方法的基本数学力学原理,(2)基于原理所形成的实用软件,(3)使用时的计算机硬件。随着现代计算机技术的发展,一般的个人计算机就能满足第(3)方面的要求;因此,本书的重点将在以上的第(1)和第(2)方面,将通过一些典型的实例来深入浅出地系统阐述有限元分析的基本原理,并强调原理的工程背景和物理概念;基于MATLAB平台来系统演示基于有限元原理的编程方法和过程;通过ANSYS分析平台来展示具体应用有限元方法的建模过程。

1.2 有限元方法的历史

有限元方法的思想最早可以追溯到古人的“化整为零”、“化圆为直”的作法,如“曹冲称象”的典故,我国古代数学家刘徽采用割圆法来对圆周长进行计算;这些实际上都体现了离散逼近的思想,即采用大量的简单小物体来“冲填”出复杂的大物体。

早在1870年,英国科学家Rayleigh就采用假想的“试函数”来求解复杂的微分方程,1909年Ritz将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。

20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法;1943年,Courant发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文[3];1956年波音公司的Turner,Clough,Martin和Topp在分析飞机结构时系统研究了离散杆、梁、三角形的单元刚度表达式[4];1960年Clough在处理平面弹性问题,第一次提出并使用“有限元方法”(finite element method)的名称[5][6];1955年德国的Argyris出版了第一本关于结构分析中的能量原理和矩阵方法的书[7],为后续的有限元研究奠定了重要的基础,1967年Zienkiewicz和Cheung出版了第一本有关有限元分析的专著;1970年以后,有限元方法开始应用于处理非线性和大变形问题;我国的一些学者也在有限元领域做出了重要的贡献,如胡海昌于1954提出了广义变分原理[8],钱伟长最先研究了拉格朗日乘子法与广义变分原理之间关系[9],钱令希在20世纪五十年代就研究了力学分析的余能原理,冯康在20世纪六十年代就独立地、并先于西方奠定了有限元分析收敛性的理论基础。图1-1展示了有限元方法的发展过程。

随着计算机技术的飞速发展,基于有限元方法原理的软件大量出现,并在实际工程中发挥了愈来愈重要的作用;目前,专业的著名有限元分析软件公司有几十家,国际上著名的通用有限元分析软件有ANSYS,ABAQUS,MSC/NASTRAN,MSC/MARC,ADINA,ALGOR,PRO/MECHANICA,IDEAS,还有一些专门的有限元分析软件,如LS-DYNA,DEFORM,PAM-STAMP, AUTOFORM,SUPER-FORGE等;国际上著名的主要有限元分析软件状况见表1-1。有关有限元分析的学术论文,每年也不计其数,学术活动非常活跃,表1-2 列出的是刊登有限元分析论文的常见学术期刊。

图1-1 有限元方法的发展过程表1-1国际上著名的有限元分析软件状况

表1-2 刊登有限元分析论文的学术期刊

下面介绍几位有限元方法的创始人的情况

Richard Courant(美国数学家,1888.01.08-1972.01.27,出生地:德国Lublinitz), 1910年在哥廷根大学获得博士学位,1928年创办了应用数学研究所,并在1928~1933年担任所长,开始应用数学的研究,1936年去纽约大学创立了数学研究所,1964年该研究所被命名为Courant数学科学研究所,出版了数学物理方法教科书,成为最有影响的书籍之一,还出版了科普读物“什么是数学?”,至今还再版发行,Courant的名字还与有限元方法紧密联系在一起,是他给这种数值求解偏微分方程以坚实的理论基础,“Courant–Friedrichs–Lewy条件”以及“Courant最小值原理”都是以他的名字命名的重要定理。

John Argyris(德国人,1913.08.19-2004.04.02,出生地:希腊V olos)是公认的计算科学、航空航天、流体力学领域的杰出专家,被誉为有限元分析的发明人和创始者之一,所创立的力学分析的矩阵位移方法

为有限元方法的前身,被称为世界上最先进的数学工具,先后因在有限元方法以及混沌理论方面的贡献而获得菲利普王子奖章、美国最高荣誉的爱因斯坦奖,获得包括5个G8国家在内的由16发达国家授予的杰出科技与工程奖;Argyris于1950年代在斯图加特大学创立计算机应用研究所,并担任所长近40年,立至于有限元分析的研究,开发了几个著名的在欧洲广泛使用的有限元分析商业化软件,在有限元方法的应用方面也作出了杰出的贡献。

Olgierd Cecil Zienkiewiz (英国人,1921.05.18-,出生地:英国Caterham)。英国Swansea大学的荣誉退休教授,是该校工程数值方法研究所的原主任,现在仍然是西班牙巴塞罗那Calalunya技术大学工程数值方法的UNESCO主席。从1961至1989年,担任Swansea大学土木工程系的主任,使该系成为有限元研究的重要中心之一。在1968年,创办了International Journal for Numerical Methods in Engineering杂志并任主编,该杂志至今仍然是该领域的主要刊物。他被授予24个荣誉学位和多种奖励。Zienkiewiez教授还是5所科学院的院士,这是对他在有限元方法领域的奠基性发展和贡献的赞誉。1978年,成为皇家科学院和皇家工程院的院士;并先后被选为美国工程院的外籍院(1981),波兰科学院院士(1985),中国科学院院士(1998)和意大利国家科学院院士(1999)。1967年,他出版了有限元领域的第一本专著《有限元方法》,该书目前也出版到第5版,可参见《有限元方法第1卷:基本原理》(O.C.Zienkiewicz, R.L.Taylor(第5版),曾攀译)(清华大学出版社,2008)。

1.3 有限元分析的作用

基于功能完善的有限元分析软件和高性能的计算机硬件对设计的结构进行详细的力学分析,以获得尽可能真实的结构受力信息,就可以在设计阶段对可能出现的各种问题进行安全评判和设计参数修改,据有关资料,一个新产品的问题有60%以上可以在设计阶段消除,甚至有的结构的施工过程也需要进行精细的设计,要做到这一点,就需要类似有限元分析这样的分析手段。

下面举出几个涉及土木工程、车辆工程、航空工程以及生物工程的实例。

北京奥运场馆的鸟巢由纵横交错的钢铁枝蔓组成,它是鸟巢设计中最华彩的部分,见图1-2,也是鸟巢建设中最艰难的。看似轻灵的枝蔓总重达42000吨,其中,顶盖以及周边悬空部位重量为14000吨,在施工时,采用了78根支柱进行支撑,也就是产生了78个受力区域,在钢结构焊接完成后,需要将其缓慢而又平稳地卸去,让鸟巢变成完全靠自身结构支撑;因而,支撑塔架的卸载,实际上就是对整个钢结构的加载,如何卸载?需要进行非常详细的数值化分析,以确定出最佳的卸载方案。2006年9月17日成功地完成了整体钢结构施工的最后卸载。

图1-2 北京奥运场馆鸟巢的钢铁枝蔓结构

图1-3 列车车厢整体结构的有限元模型

图1-3给出的是现代列车车厢整体结构的有限元分析模型[10];图1-4表明的是空客A350后机身第19框的设计与有限元分析过程[11];图1-5为人体肩部区域的骨胳有限元分析模型以及计算结果[12],并与实际测试结果进行了比较。所有这些表明了有限元方法的广泛适应性以及在科学研究与重大工程中的重要性。

图1-2 空客A350后机身第19框的设计与有限元分析过程

图1-5 人体肩部区域的骨胳有限元分析模型及计算结果

第2章有限元分析过程的概要

本章先通过一个简单的实例,采用直接的推导方法,逐步展示有限元分析的基本流程,从中可以了解有限元方法的思路形成过程,以及如何由具体的求解步骤归纳出一种通用的标准求解方法。

2.1 有限元分析的目的和概念

任何具有一定使用功能的构件(称为变形体(deformed body))都是由满足要求的材料所制造的,在设计阶段,就需要对该构件在可能的外力作用下的内部状态进行分析,以便核对所使用材料是否安全可靠,以避免造成重大安全事故。

描述可承力构件的力学信息一般有三类:

(1) 构件中因承载在任意位置上所引起的移动(称为位移(displacement));

(2) 构件中因承载在任意位置上所引起的变形状态(称为应变(strain));

(3) 构件中因承载在任意位置上所引起的受力状态(称为应力(stress));

若该构件为简单形状,且外力分布也比较单一,如:杆、梁、柱、板就可以采用材料力学的方法,一般都可以给出解析公式,应用比较方便;但对于几何形状较为复杂的构件却很难得到准确的结果,甚至根本得不到结果。

有限元分析的目的:针对具有任意复杂几何形状变形体,完整获取在复杂外力作用下它内部的准确力学信息,即求取该变形体的三类力学信息(位移、应变、应力)。

在准确进行力学分析的基础上,设计师就可以对所设计对象进行强度(strength)、刚度(stiffness)等方面的评判,以便对不合理的设计参数进行修改,以得到较优化的设计方案;然后,再次进行方案修改后的有限元分析,以进行最后的力学评判和校核,确定出最后的设计方案。图2-1给出一个针对大型液压机机架的设计过程以及采用有限元分析的状况。

(a)机架设计与受力状况(b)有限元分析模型与得到的变形状况

图2-1 大型液压机机架的设计过程与数字化分析

为什么采用有限元方法就可以针对具有任意复杂几何形状的结构进行分析,并能够得到准确的结果呢?这时因为有限元方法是基于“离散逼近(discretized approximation)”的基本策略,可以采用较多数量的简单函数的组合来“近似”代替非常复杂的原函数。

一个复杂的函数,可以通过一系列的基底函数(base function)的组合来“近似”,也就是函数逼近,其中有两种典型的方法:(1)基于全域的展开(如采用傅立叶级数展开),以及(2) 基于子域(sub-domain)的分段函数(pieces function)组合(如采用分段线性函数的连接);下面,仅以一个一维函数的展开为例说明全域逼近与分段逼近的特点。

【典型例题2.1(1)】

一个一维函数的两种展开方式的比较。设有一个一维函数

分析它的展开与逼近形式。 【解答】

首先考虑基于全域的展开形式,如采用傅立叶级数(Fourier series)展开,则有

(2-1)

其中 所采用的基底函数,它定义在全域

上,

为展开的系数。

第二种是基于子域

上的分段展开形式,若采用线性函数,有

(2-2)

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: ?高级仿真的功能。 ?由高级仿真使用的文件。 ?使用高级仿真的基本工作流程。 ?创建FEM和仿真文件。 ?用在仿真导航器中的文件。 ?在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 ?高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 ?高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 ?高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 ?高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限元分析的一般过程

一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。 但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。 2、位移插值函数的收敛性(完备性)要求: 1)位移插值函数必须包含常应变状态。 2)位移插值函数必须包含刚体位移。 3、复杂单元形函数的构造 对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。 形函数的性质: 1)相关节点处的值为 1,不相关节点处的值为 0。 2)形函数之和恒等于 1。 1、建立数学模型(特征消隐,理想化,清除)((即从CAD 几何体→FEA 几何体),共 有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。) 2、建立有限元模型:(选择网格种类及定义分析类型;添加材料属性;施加约束;定义载 荷;网格划分) 3、求解有限元模型:再在此基础上计算应变和应力等其它物理量;在热分析中,FEA 首先 计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等其它物理量. 一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载荷,则求解会终止。 4、结果分析:材料线性假设、小变形假设、静态载荷假设等等。

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

ProE Mechanica有限元分析入门教程

Pro/E Mechanica有限元分析入门教程 一、进行Mechanica分析的步骤: 1)建立几何模型:在Pro/ENGINEER中创建几何模型。 2)识别模型类型:将几何模型由Pro/ENGINEER导入Pro/MECHANICA中,此步需要用户确定 模型的类型,默认的模型类型是实体模型。我们为了减小模型规模、提高计算速度,一般用面的形式建模。 3)定义模型的材料属性。包括材料、密度、弹性模量、泊松比等。 4)定义模型的约束。 5)定义模型的载荷。 6)有限元网格的划分:由Pro/MECHANICA中的Auto GEM(自动网格划分器)工具完成有限元 网格的自动划分。 7)定义分析任务,运行分析。 8)根据设计变量计算需要的项目。 9)图形显示计算结果。 二、下面将上述每一步进行详解: 1、在Pro/ENGINEER模块中完成结构几何模型后,单击“应用程序”→“Mechanica”,弹出下 图所示窗口, 点击Continue继续。弹出下图,启用Mechanica Structure。一定要记住不要勾选有限元模式前面的复选框,最后确定。

2、添加材料属性单击“材料”,进入下图对话框,选取“More”进入材料库,选取材料 Name---------为材料的名称; References-----参照Part(Components)-----零件/组件/元件 V olumes-------------------体积/容积/容量; Properties-------属性Material-----材料;点选后面的More就可以选择材料的类型 Material Orientation------材料方向,金属材料或许不具有方向性,但是某些复合材料是纤维就具有方向性,可以根据需要进行设置方向及其转角。点选OK,材料分配结束。 3、定义约束 1):位移约束 点击,出现下图所示对话框,

有限元分析步骤

有限元建模与分析 有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。 有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵:{F}=[K]、{d} 尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。 有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。 一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。 对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。 一般来讲,如模型细分更小的单元,则求解将更准确。了解你在最终的求解结果上有充分收敛的唯一确信的方法是用更细网格的单元来建立更多的模型,以检查求解结果的收敛性。 新的有限元用户经常产生想象上的错误,即建立一个有限元模型的目的是建立一个看起来象这种结构的模型。有限元建模的目的是建立一个从数学意义是“相似”的模型,而不是一个外观相似的模型。一个有经验的使用者学会了怎样选择单元的正确类型,和在模型的不同区域中怎样来细分网格。 一个经常忽略的错误根源是在一个模型中的负载和边界条件上进行了错误的假设。同时也很轻易地相信一个有限元模型的每个十进位的结果。以及忘掉了在负载和边界条件上粗糙的假设。如果有一个关于怎样建立边界条件模型的问题的话,宁可用你的模型以不同的方法去测试其灵敏度,而不是仅遵循一种方法,得出一种答案,

Matlab有限元分析操作基础

Matlab 有限元分析20140226 为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵 11221 2 1200k k k k k k k k -?? ??-????--+??

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

步骤二:构造单元刚度矩阵 >>k1=SpringElementStiffness(100) >>…?

步骤三:构造系统刚度矩阵 a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ?? ?? -- ?? ?

有限元分析-清华大学教程

8.1 进入工程分析模块 8.2施加约束 8.3 施加载荷 8.4 静态有限元计算过程和后处理 8.5动态分析的前处理和显示计算结果8.6有限元分析实例 习题

工程分析指的是有限元分析,包括静态分析(Static Analyses)和动态分析。动态分析又分为限制状态固有频率分析(Frequency Analyses)和自由状态固有频率分析(Free Frequency Analyses),前者在物体上施加一定约束,后者的物体没有任何约束,即完全自由。 8.1 进入工程分析模块 1. 进入工程分析模块前的准备工作 (1)在三维实体建模模块建立形体的三维模型,为三维形体添加材质,见4.7。 (2)将显示模式设置为Shading(着色)和Materials(材料),这样才能看到形体的应力和变形图,详见2.11.6。

2. 进入工程分析模块 选择菜单【Start】→【Analysis & Simulation】→【Generative Structural Analysis】弹出图8-1所示新的分析实例对话框。 在对话框中选择静态分析(Static Analyses)、限制状态固有频率分析(Frequency Analyses)还是自由状态固有频率分析(Free Frequency Analyses),单击OK按钮,将开始一个新的分析实例。 图8-1新的分析实例对话框

3.有限元分析的过程 有限元分析的一般流程为: (1)从三维实体建模模块进入有限元分析模块。(2)在形体上施加约束。 (3)在形体上施加载荷。 (4)计算(包括网格自动划分),解方程和生成应力应变结果。 (5)分析计算结果,单元网格、应力或变形显示。(6)对关心的区域细化网格、重新计算。 上述(1)~(3)过程是有限元分析预(前)处理,(4)是计算过程,(5)、(6)是有限元后处理。 有限元文件的类型为CATAnalysis。

有限元单元法求解问题的的基本步骤

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元单元法求解问题的的基本步骤 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2) 区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3) 确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4) 单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5) 总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。 (6) 边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。 (7) 解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

有限元分析过程

有限元分析过程 有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点:a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律2.几何模型建立几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。3.单元类型选择划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。4.单元特性定义有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等.5.网格划分网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来。目前广泛采用自动或半自动网格划分方法,如在Ansys中采用的SmartSize网格划分方法就是自动划分方法。6.模型检查和处理一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析。由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间。7.边界条件定义在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型。计算机几何建模方法㈠.几何模型的形式1.线框模型:用组成结构的棱边表示结构形状和大小的模型称为线框模型,或线架模型。它是使用最早的几何模型,其特点是数据量少、数据结构简单、算法处理方便,模型输入可以通过定义线段端点坐标来实现。但是这种模型有很大的局限性,它的几何描述能力差,只能提供一个框架,对几何形状的理解很容易产生多义性,也不能计算结构的重量、

相关主题