搜档网
当前位置:搜档网 › 七年级数学8.1幂的运算讲解与例题

七年级数学8.1幂的运算讲解与例题

七年级数学8.1幂的运算讲解与例题
七年级数学8.1幂的运算讲解与例题

8.1 幂的运算

1.了解幂的运算性质,会利用幂的运算性质进行计算.

2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.

3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.

1.同底数幂的乘法

(1)同底数幂的意义

“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.

(2)幂的运算性质1

同底数幂相乘,底数不变,指数相加.

用字母可以表示为:a m·a n=a m+n(m,n都是正整数).

(3)性质的推广运用

当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).

(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:

①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.

②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.

③不要忽视指数是1的因数或因式.

【例1-1】(1)计算x3·x2的结果是______;

(2)a4·(-a3)·(-a)3=__________.

解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.

答案:(1)x5(2)a10

正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.

【例1-2】计算:

(1)(x+y)2·(x+y)3;

(2)(a-2b)2·(2b-a)3.

分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;

(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5

方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5

.

本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的

两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方

(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5

相乘,读作

“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3

(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n

=m m m n a a a ???个

m m m n a a a a a a a a a ??

???

???

?个

个个

=a mn

(m ,n 都是正整数)

(2)幂的运算性质2

幂的乘方,底数不变,指数相乘.

用字母可以表示为:(a m )n =a mn

(m ,n 都是正整数).

这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用

幂的乘方性质可推广为: [(a m )n ]p =a mnp

(m ,n ,p 均为正整数).

(4)注意(a m )n 与am n

的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58

.因此,(a m )n ≠am n .

【例2】(1)计算(x 3)2

的结果是( ).

A .x 5

B .x 6

C .x 8

D .x 9

(2)计算3(a 3)3+2(a 4)2

·a =__________.

解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.

3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.

答案:(1)B (2)5a 9

防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8

都是错误的.

3.积的乘方

(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n

等.

(2ab )3

=(2ab )·(2ab )·(2ab )(乘方意义)

=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.

(ab )n =n ab ab ab ()()()个

=n a a a (???)个

n b b b (????)个

=a n b n

(n 为正整数).

(2)幂的运算性质3

积的乘方等于各因式乘方的积.

也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.

用字母可以表示为:(ab )n =a n b n

(n 是正整数). (3)性质的推广运用

三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n

(n 是正整数).

【例3】计算:(1)(-2x )3;(2)(-xy )2

(3)(xy 2)3·(-x 2y )2

;(4)? ??

??-12ab 2c 34.

分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)

把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2

,y 的积;(4)-12ab 2c 3含有四个因数-12

,a

b 2,

c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.

解:(1)(-2x )3=(-2)3·x 3=-8x 3

(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2

(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8

(4)? ????-12ab 2c 34=? ??

??-124a 4(b 2)4(c 3)4=116a 4b 8c 12.

(1)在计算时,把x 2

与y 2

分别看成一个数,便于运用积的乘方的运算性质进行

计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.

(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.

4.同底数幂的除法 (1)幂的运算性质4

同底数幂相除,底数不变,指数相减.

用字母可以表示为:a m ÷a n =a m -n

(a ≠0,m ,n 都是正整数,且m >n ).

这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和

同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.

(2)性质的推广运用

三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p

(a ≠0,m ,n ,p 为正整数,m >n +p ).

【例4】计算:

(1)(-a )6÷(-a )3

(2)(a +1)4÷(a +1)2

(3)(-x )7÷(-x 3)÷(-x )2

. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .

解:(1)(-a )6÷(-a )3

=(-a )6-3=(-a )3=-a 3

(2)(a +1)4÷(a +1)2

=(a +1)4-2=(a +1)2

; (3)方法1:

(-x )7÷(-x 3)÷(-x )2

=(-x )7÷(-x )3÷(-x )2

=(-x )7-3-2=(-x )2=x 2

. 方法2:

(-x )7÷(-x 3)÷(-x )2

=(-x 7)÷(-x 3)÷x 2

=x 7-3-2=x 2.

运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性

质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.

5.零指数幂与负整数指数幂

(1)零指数幂:任何一个不等于零的数的零次幂都等于1.

用字母可以表示为:a 0

=1(a ≠0).

a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.

(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.

用字母可以表示为:a -p

=1a

p (a ≠0,p 是正整数).

a -p =1

a

p 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为

正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2

=19

.

规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可

以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n

(a ≠0,

m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1

a

;正整数指数幂的某些运算,在负整数指数幂中也

能适用.如a -2·a -3=a

-2-3

=a -5

等.

【例5】计算:

(1)1.6×10-4;(2)(-3)-3

;(3)? ??

??-53-2;

(4)(π-3.14)0

;(5)? ????130+? ????-13-2+? ??

??-23-1.

分析:此题是负整数指数幂和零指数幂的计算,可根据a -p

=1a

p (p 是正整数,a ≠0)和

a 0=1(a ≠0)计算.其中(1)题应先求出10-4

的值,再运用乘法性质求出结果.

解:(1)1.6×10-4

=1.6×110

4=1.6×0.000 1=0.000 16.

(2)(-3)-3

=1-3=-

127

. (3)? ????-53-2=? ????-352=925

. (4)因为π=3.141 592 6…, 所以π-3.14≠0.

故(π-3.14)0

=1.

(5)原式=1+1? ????-132+1? ??

??-231

=1+9-32=81

2.

只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负

整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即? ????a b -p =? ??

??b a p .

6.用科学记数法表示绝对值较小的数

(1)绝对值小于1的数可记成±a ×10-n

的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.

(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.

(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5

然大于2.57×10-8,前者是后者的103

倍.

【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).

A .0.156×10-5

B .0.156×105

C.1.56×10-6 D.1.56×106

解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.

答案:C

n的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.

【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).

A.0.000 124 B.0.012 4

C.-0.001 24 D.0.001 24

解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.

答案:D

本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.

7.幂的混合运算

幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.

(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.

(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.

①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.

【例7-1】下列运算正确的是( ).

A.a4+a5=a9

B.a3·a3·a3=3a3

C.2a4·3a5=6a9

D.(-a3)4=a7

解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.

答案:C

【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.

分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.

解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3

=-8(x2)3·y3+8x4·x2·y6÷y3

=-8x6y3+8x6y3

=0.

8.幂的运算性质的逆用

对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.

(1)逆用同底数幂的乘法性质:

a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.

当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.

(2)逆用幂的乘方性质:

a mn =(a m )n =(a n )m (m ,n 均为正整数).

逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转

化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2

,至于选择哪一个变形结果,要具体问题具体分析.

(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).

当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.

(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).

当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.

【例8-1】(1)已知3a =2,3b =6,则33a -2b

的值为__________;

(2)若m p =15,m 2q =7,m r =-75

,则m 3p +4q -2r

的值为__________.

解析:(1)因为3a =2,3b

=6,

所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62

=29

.

(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2

=? ????153×72÷? ????-752=15

.

答案:(1)29 (2)1

5

【例8-2】(1)计算:? ??

??18 2 011×22 012×24 024

(2)已知10x =2,10y =3,求103x +2y

的值.

分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012

的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012

逆用积的乘方性质,此

时发现与? ??

??18 2 011

底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性

质,简化计算;(2)可逆用幂的乘方,把103x +2y

化为条件中的形式.

解:(1)原式=? ??

??18 2 011×22 012×(22)2 012

(逆用幂的乘方)

=? ??

??18 2 011×(2×22)2 012

(逆用积的乘方) =? ??

??18 2 011×82 012 =? ??

??18 2 011×82 011

×8(逆用同底数幂的乘法) =? ????18×8 2 011

×8(逆用积的乘方) =8.

(2)因为103x =(10x )3=23=8,102y =(10y )2=32

=9,

所以103x +2y =103x ·102y

=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问

题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.

比较幂的大小,一般有以下几种方法:

(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.

(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.

(3)作商比较法:

当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b

<1,则a <b ”比较.

有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.

【例9】(1)已知a =8131,b =2741,c =961

,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a

(2)350,440,530

的大小关系是( ).

A .350<440<530

B .530<350<440

C .530<440<350

D .440<530<350

(3)已知P =999999,Q =11

99

90,那么P ,Q 的大小关系是( ).

A .P >Q

B .P =Q

C .P <Q

D .无法比较

解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122

,又124

>123>122,所以3124>3123>3122

,即a >b >c .故选A .

(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510

,而125<243<256,所以12510<24310<25610,即530<350<440

.故选B .

(3)因为P Q =999999×990119=9999

×990119=99×119999×9

90

11

9=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B

10.幂的运算性质的实际应用

利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.

解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.

【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103

m/s ,则卫星运行3×102

s 所走的路程约是多少?

分析:要计算卫星运行3×102

s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.

解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106

所以卫星运行3×102 s 所走的路程约为2.37×106

m . 11.幂的运算中的规律探究题

探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.

【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×5

2

=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?

(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.

利用你发现的规律计算:

①(x3)15;②(x3)6;③[(2a-b)3]8.

解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.

规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.

(2)x2x2×3=x6x mn

①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.

《幂的运算》习题精选及答案

《幂的运算》提高练习题 一、选择题 1、计算(﹣2)100+(﹣2)99所得的结果是() A、﹣299 B、﹣2 C、299 D、2 2、当m是正整数时,下列等式成立的有() (1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m. A、4个 B、3个 C、2个 D、1个 3、下列运算正确的是() A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 C 、D、(x﹣y)3=x3﹣y3 4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是() A、a n与b n B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1 5、下列等式中正确的个数是() ①a5+a5=a10;②(﹣a)6?(﹣a)3?a=a10;③﹣a4?(﹣a)5=a20; ④25+25=26. A、0个 B、1个 C、2个 D、3个 二、填空题 6、计算:x2?x3=_________;(﹣a2)3+(﹣a3)2= _________ . 7、若2m=5,2n=6,则2m+2n= _________ . 三、解答题 8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a, 求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值. 10、已知2x+5y=3,求4x?32y的值. 11、已知25m?2?10n=57?24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值. 13、若x m+2n=16,x n=2,求x m+n的值. 14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

八上数学幂的运算基础练习题之欧阳数创编

幂的运算练习题 时间:2021.03.02 创作:欧阳数 一、选择题 1、计算(﹣2)100+(﹣2)99所得的结果是() A、﹣299 B、﹣2 C、299 D、2 2、当m是正整数时,下列等式成立的有() (1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m. A、4个 B、3个 C、2个 D、1个 3、下列运算正确的是() A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 C、D、(x ﹣y)3=x3﹣y3 4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是() A、an与bn B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1 5、下列等式中正确的个数是()

①a5+a5=a10;②(﹣a)6?(﹣a)3?a=a10;③﹣a4?(﹣a)5=a20;④25+25=26. A、0个 B、1个 C、2个 D、3个 二、填空题 6、计算:x2?x3=_________ ;(﹣a2)3+(﹣a3)2= _________ . 7、若2m=5,2n=6,则2m+2n= _________ . 三、解答题 8、已知2x+5y=3,求4x?32y的值. 9、已知25m?2?10n=57?24,求m、n. 10、已知ax=5,ax+y=25,求ax+ay的值. 11、若xm+2n=16,xn=2,求xm+n的值. 12、比较下列一组数的大小.8131,2741,961 13、若(anbmb)3=a9b15,求2m+n的值. 14、计算:an﹣5(an+1b3m﹣2)2+(an﹣1bm﹣2)3(﹣b3m+2) 15、若x=3an,y=﹣,当a=2,n=3时,求anx﹣ay 的值. 16、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值. 17、计算:(a﹣b)m+3?(b﹣a)2?(a﹣b)m?(b﹣a)5

人教版数学八年级上册30幂的运算(提高)知识讲解

幂的运算(提高) 【学习目标】 1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方); 2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()() n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其 是遇到底数互为倒数时,计算更简便.如:1010 101122 1.22???? ?=?= ? ????? 要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要 遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加. (4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁.

考研高数基础练习题及答案解析

考研高数基础练习题及答案解析 一、选择题: 1、首先讨论间断点: 1°当分母2?e?0时,x? 2x 2 ,且limf??,此为无穷间断点; 2ln2x? ln2x?0? 2°当x?0时,limf?0?1?1,limf?2?1?1,此为可去间断点。 x?0? 再讨论渐近线: 1°如上面所讨论的,limf??,则x? x? 2 ln2 2 为垂直渐近线; ln2 2°limf?limf?5,则y?5为水平渐近线。 x??? x???

当正负无穷大两端的水平渐近线重合时,计一条渐近线,切勿上当。 2、f?|x4?x|sgn?|x| sgn?|x|。可见x??1为可导点,x?0和x?3为不可导点。 2011智轩高等数学基础导学讲义——第2章第4页原文: f???|??|,当xi?yj时 为可导点,否则为不可导点。注意不可导点只与绝对值内的点有关。 ?x ,x?0? 设f??ln2|x|,使得f不存在的最小正整数n是 ? ,x?0?0 x?0 1 2 3 limf?f?0,故f在x?0处连续。 f’?lim x?0

f?f ?0,故f在x?0处一阶可导。 x?0 当x?0时,f’?? ? ?x12x’ ‘????223 ?ln?lnlnxsgnx ? 12 ,则limf’?f’?0,故f’在x?0处连续。?23x?0ln|x|ln|x|f’’?lim x?0 f’?f’ ??,故f在x?0处不二阶可导。 x?0 a b x?0 对?a,b?0,limxln|x|?0。这是我们反复强调的重要结论。 3、对,该函数连续,故既存在原函数,又在[?1,1]内

数学人教版八年级上册幂的运算

教学设计 8.1 幂的运算 ----- 幂的乘方 一、教学背景 (一)教材分析 本节课是在前面学习的基础上进一步学习幂的乘方,是对幂的意义的理解、运用和深化.让学生体会幂的乘方运算是一种比乘法还要高级的运算,提高学生数学运算能力.本节内容又是整式的乘法的主要依据,也为后面学习方程、函数做了准备. (二)学情分析 学生已经学过乘方,并掌握代数式的意义,这为本课奠定了基础.从学生的认知规律看,学生已学习了乘方的意义﹑幂的意义以及同底数幂的乘法,为学习幂的乘方运算在教学中提供了引导学生讨论交流提供了保证. 二、教学目标: 1 经历探索幂的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力. 2 了解幂的乘方的运算的性质,培养学生综合运用知识的能力. 三、重点、难点: 重点:理解并正确运用幂的乘方的运算性质. 难点:幂的乘方的运算性质的探究过程及运用. 四、教学方法分析及学习方法指导 教学方法: 利用引导探究法,让学生以“体验-归纳-概括”为主要线索,在合作探索与交流中获得知识,使不同层次的学生都有收获和发展.把幂的乘方的性质应用于计算,培养学生使用一般原理进行演绎推理的能力. 学法指导: 关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.本节主要学习幂的乘方性质后,学习了幂的两个运算性质,深刻理解幂的运算的意义,能熟练地进行幂的乘方运算. 五、教学过程: (一)知识回顾: 1 幂的意义是什么? 2 同底数幂的乘法运算性质是什么? 设计意图:复习旧知识,为学习新知识做铺垫。 (二)情境导入:

一个正方体的边长是210cm,则它的体积是多少? 议一议: ()3 210 怎样计算呢? 完成教材P47页填表: 设计意图:从实例引入课题,强化数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生的思想,从而激发学生的求知欲.引导学生主动反思问题,回顾解决问题的方法,为进入新课做准备. (三)探究新知: 计算下列各式 (1) ()4 26=26×26×26×26= 22226+++=86 (2) ()3 22= 22×22×22= 2222++ = 62 (3) () 2 m a = m a ? m a =m m a += 2m a (4) ()4 m a = m m m m a a a a ???=m m m m a +++=4m a 你能猜想出()n m a 的结果吗? () m n a n m m m m a a a a =???个 ( 乘方的意义) n m m m m a ++???+=个 (同底数幂相乘的法则) mn a = () n m a =mn a (m 、n 都是正整数) 幂的乘方,底数不变,指数相乘. “一般”的过程,培养学生思维的严密性,也感受了数学学习的严谨性,积累了解决问题的经验和方法. (四)合作学习: 例2 计算 (1)()3 510 (2)()2 4x (3)()3 2a -

八年级数学幂的运算测试题

幂的运算测试 一、选择题(30分) 1.下列各式运算正确的是( ) A .2a 2+3a 2=5a 4 B .(2ab 2)2=4a 2b 4 C .2a 6÷a 3=2a 2 D .(a 2)3=a 5 2.若a m =2,a n =3,则a m +n 的值为 ( ) A .5 B .6 C .8 D .9 3.在等式a 3·a 2·( )=a 11中,括号里填入的代数式应当是( ) A .a 7 B .a 8 C .a 6 D .a 3 4.计算25m ÷5m 的结果为 ( ) A .5 B .20 C .20m D .5m 5.下列算式:①(-a )4.(-a 3c 2)=-a 7c 2;②(-a 3)2=-a 6;③(-a 3)3÷a 4=a 2; ④(-a )6÷(-a )3=-a 3.其中,正确的有 ( ) A .4个 B .3个 C .2个 D .1个 6.下列运算正确的是( ) A .xy y x 532=+ B .36329)3(y x y x -=- C .442232)2 1(4y x xy y x -=-? D .333)(y x y x -=- 7.下列等式中正确的个数是( ) ①5510a a a += ②6310()()a a a -?-= ③4520()a a a -?-= ④556222+= A .0个 B .1个 C .2个 D .3个 8.计算(a-b)n ·(b-a)n-1等于( ) A.(a-b)2n-1 B.(b-a)2n-1 C.+(a-b)2n-1 D.非以上答案 9.下列各式中计算错误的是( ) A .3422(231)462x x x x x x -+-=+- B . 232(1)b b b b b b -+=-+ C .x x x +-=-22)22(x 21- D .342232(31)232 3x x x x x x -+=-+ 10.如图14-2是L 形钢条截面,它的面积为( ) A .ac+bc B .ac+(b-c)c C .(a-c)c+(b-c)c D .a+b+2c+(a-c)+(b-c)

(完整版)幂的运算经典习题

一、同底数幂的乘法 1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y = 2、102·107 = 3、()()( )34 5 -=-?-y x y x 4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)9 5、()54a a a =? 6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ). (A)a 7 (B)a 8 (C)a 6 (D)a 3 83a a a a m =??,则m= 7、-t 3·(-t)4·(-t)5 8、已知n 是大于1的自然数,则 () c -1 -n () 1 +-?n c 等于 ( ) A. ()1 2--n c B.nc 2- C.c -n 2 D.n c 2 9、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、() =-4 2 x 2、()()8 4 a a = 3、( )2=a 4b 2; 4、() 2 1--k x = 5、3 23221???? ??????? ??-z xy = 6、计算() 73 4 x x ?的结果是 ( ) A. 12x B. 14x C. x 19 D.84x 7、()() =-?3 4 2 a a 8、n n 2)(-a 的结果是 9、()[] 5 2x --= 10、若2,x a =则3x a = 三、积的乘方 1)、(-5ab)2 2)、-(3x 2y)2 3)、332)3 1 1(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 4 2、()45a a a =÷ 3、()() () 333 b a ab ab =÷ 4、=÷+22x x n 5、()=÷44 ab ab . 6、下列4个算式: (1)()()-=-÷-2 4 c c 2c (2) ()y -()246y y -=-÷ (3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )

高等数学基础例题讲解

第1章 函数的极限与连续 例1.求 lim x x x →. 解:当0>x 时,0 00lim lim lim 11x x x x x x x + ++ →→→===, 当0

幂的运算测试题

幂的运算检测题 一.选择题: 1.下列运算正确的是 ( ) A .a 5·a 2=a 10 B .(a 2)4=a 8 C .a 6÷a 2=a 3 D .a 3+a 5=a 8 2.下列各式(1)55b b ?52b = (2) (-2a 2)2=4-4a (3) (1-n a )3=13-n a (4) 963 321256454y x y x =??? ??, 其中计算错误的有 ( ) A.1个 B.2个 C.3个 D.4个 3.若a m =2,a n =3,则a m+n 等于 ( ) A .5 B .6 C .8 D .9 4.在等式a 3 ·a 2 ·( )= a 11 中,括号里面代数式应当是 ( ) A .a 7 B .a 8 C .a 6 D .a 3 5.下列四个算式:(-a )3 ·(-a 2 ) 3 =-a 7 ;(-a 3 ) 2 =-a 6 ; (-a 3)3÷a 4=a 2;(-a )6÷(-a )3=-a 3.其中正确的有( ) A .1个 B .2个 C .3个 D .4个 6.计算99 10022)()(-+-所得的结果是( ) A.-2 B.2 C.-99 2 D.99 2 7.当m 是正整数时,下列等式一定成立的有( ) (1)22)(m m a a =(2)m m a a )(22=(3)22)(m m a a -=(4)m m a a )(22-= A.4个 B.3个 C.2个 D.1个 8.连接边长为1的正方形对边中点,可将一个正方形分成4个大小相同的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成4个更小的小正方形……重复这样的操作,则5次操作后右下角的小正方形面积是 ( ) A .5)21( B 、5)4 1 ( C 、51 D 、5)41(1- 9.计算() 73 4 x x ?的结果是 ( ) A. 12x B. 14x C. x 19 D.84x 二、填空题 9.计算:102·108 = ; (m 2)3= ; (-a )4÷(-a )= ; (-b 3)2= ; (-2xy )3= ; =-?-22)(x x ; ()()=-?-32a b b a ; 2332)()(a a -+-= ; (-t 4)3÷t 10=______; 10.(a +b) 2 ·(b+a )3 =__________;(2m -n) 3 ·(n -2m) 2 =___________. 11.若3n =2,3m =5,则3 2m+3n -1 =______. 若a m =2,a n =6,则a m +n =_______;a m -n =__________. 若52=m ,62=n ,则n m 22+= . 12.0.25 ×55 =_______;0.125 2008 ×(-8)2009=________. 200820074)25.0(?-=______ 13.如果x+4y-3=0,那么2x ·16y = 14.已知3×9m ×27m =321 ,则m 的值 . 15.16a 2b 4 =(_______)2 ; ()(2?-m )=m 7 ; ×2 n -1=2 2n +3; 三、解答题 16、计算与化简:(要写出规范的过程) (1)(-3pq) 2; ⑵ ()3 242a a a -+?

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

华师大版数学八上13.1《幂的运算》(第2课时)word教案

21.1.2 单项式除以单项式 教学目标: 1、使学生掌握单项式除以单项式的方法,并且能运用方法熟练地进行计算。 2、探索多项式除以单项式的方法,培养学生的创新精神。 3、培养学生应用数学的意识。 重点难点: 重点:单项式除以单项式,多项式除以单项式方法的总结以及运用方法进行计算是重点。 难点:运用方法进行计算以及多项式除以单项式方法的探求是难点。 教学过程: 一、复习提问: ①、叙述并写出幂的运算性质及怎样用公式表示? ②、叙述单项式乘以单项式的法则 ③、叙述单项式乘以多项式的法则。 ④、练习 x6÷x2= ,(—b)3÷b = 4y2÷y2 = (-a)5÷(-a) 3= y n+3÷y n = , (-xy) 5÷(-xy)2 = ,(a+b)4÷(a+b)2= , y9 ÷(y4 ÷y) = ; 二、创设问题情境 问题:地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字) 解(1.9×1027)÷(5.98×1024) =(1.9÷5.98)×1027-24 ≈0.318×103=318. 答:木星的重量约是地球的318倍. 教师提问:对于一般的两个单项式相除,这种方法可运用吗? 概括: 两个单项式相除,只要将系数及同底数幂分别相除就可以了 三、例1计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)-21a2b3c÷3ab.

分析:对于(1)、(2),可以按两个单项式相除的方法进行;对于(3),字母c只在被除数中出现,结果仍保留在商中。 说明:解题的依据是单项式除法法则,计算时,要弄清两个单项式的系数各是什么,哪些是同底数幂,哪些是只在被除式里出现的字母,此外,还要特别注意系数的符号 由学生归纳小结如: 一般地,单项式相除,把分数、同底数幂分别相除,作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的一个因式。 练习1:计算: (1)(2) 练习2:计算:课本第4页练习1、2 例2:计算:(1) 练习:计算(1) (2) 四、探索多项式除以单项式的一般规律 讨论:有了单项式除以单项式的经验,你会做多项式除以单项式吗? (1)计算(ma+mb+mc)÷m; (2)从上面的计算中,你能发现什么规律?与同伴交流一下 概括:多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算法则:先把多项式的每一项除以这个单项式,再把所有的商相加. 例3 (1)计算 (12x3-5ax2-2a2x)÷3x (2)讨论探索:已知一多项式与单项式-7x5y4的积为21x5y7-28x6y5,求这个多项式。 教学小结 1、单项式除以单项式,有什么方法? 2、多项式除以单项式有什么规律? 布置作业:

高等数学典型例题

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。 例4:设 解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 例5:

f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D.周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定 解:因为f(x+y)=f(x)+f(y),故f(0)= f(0+0)=f(0)+f(0)=2f(0),可知f(0)=0。在f(x+y)=f(x)+f(y)中令y = -x,得0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)所以有f(-x) = - f(x),即f(x)为奇函数,故应选 A 。 例 8:函数的反函数是()。 A. B. C. D. 解: 于是,是所给函数的反函数,即应选C。 例 9:下列函数能复合成一个函数的是()。 A.B. C.D. 解:在(A)、(B)中,均有u=g(x)≤0,不在f (u)的定义域,不能复合。在(D)中,u=g(x)=3也不满足f(u)的定义域,也不能复合。只有(C)中的定义域,可以复合成一个函数,故应选C。 例 10:函数可以看成哪些简单函数复合而成:

华东师大版八年级数学上册《幂的运算》教案

《幂的运算》教案 教学目标 1.熟记同底数幂的乘法的运算性质,了解法则的推导过程. 2.能熟练地进行同底数幂的乘法运算.会逆用公式a m a n=a m+a n. 3.使学生掌握幂的乘方的法则,并能够用式子表示; 4.通过自主探索,让学生明确幂的乘方法则是根据乘方的意义和同底数幂法则推导出来的,并能利用乘方的法则熟悉地进行幂的乘方运算; 5.使学生理解.掌握和运用积的乘方的法则; 6.使学生通过探索,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得的; 7.让学生通过类比,对三个幂的运算法则在应用时进行选择和区别; 8.了解同底数幂的除法法则,注意运算顺序. 教程方法:经历法则的探索过程,感受法则的来龙去脉,加深学生对知识的掌握.情感态度:通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想.教学重点 掌握并能熟练地运用同底数幂的乘法法则进行乘法运算; 幂的乘方法则的应用; 积的乘方法则的理解和应用; 同底数幂的除法法则的应用. 教学难点 对法则推导过程的理解及逆用法则; 理解幂的乘方的意义; 积的乘方法则的推导过程的理解; 同底数幂的除法法则的应用. 教学过程 【一】 引入 1.填空. (1)2×2×2×2×2=( ),a·a·…·a=( ) m个 (2)指出各部分名称.

2.应用题计算. (1)1平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧105千克煤所产生的热量.那么105平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧多少千克煤? (2)卫星绕地球运行的速度为第一宇宙速度,达到7.9×l05米/秒,求卫星绕地球3×1 03秒走过的路程? 新课教学 一.探索,概括 1.试一试,要求学生说出每一步变形的根据之后,再提问让学生直接说出23×25=( ),36×37=( ),由此可发现什么规律? (1)23×25=( )×( )=2( ), (2)53×54=( )×( )=5( ), (3)a3a4=( )×( )=a( ). 2.如果把a3×a4中指数3和4分别换成字母m和n(m.n为正整数),你能写出a m a n的结果吗?你写的是否正确? 即a m·a n=a m+n(m.n为正整数)这就是同底数幂的乘法法则. 二.举例及应用 1.例1计算: (1)103×104(2)a·a3(3)a·a3·a5 三.拓展延伸(公式的逆用) 由a m a n=a m+n,可得a m+n=a m a n(m.n为正整数.) 例2已知a m=3,a m=8,则a m+n=( ) 提问:通过以上练习,你对同底数是如何理解的?在应用同底数幂的运算法则中,应注意什么? 课堂小结 1.在运用同底数幂的乘法法则解题时,必须知道运算依据. 2.“同底数”可以是单项式,也可以是多项式. 3.不是同底数时,首先要化成同底数. 【二】

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

(完整版)幂的运算练习题

幕的运算练习题(每日一页) 【基础能力训练】 」、同底数幕相乘 1下列语句正确的是() A ?同底数的幕相加,底数不变,指数相乘; B. 同底数的幕相乘,底数合并,指数相加; C. 同底数的幕相乘,指数不变,底数相加; D. 同底数的幕相乘,底数不变,指数相加 2. a 4 ? a m ? a n =() A. a 4m B . a 4(m+n) C . a m+n+4 D . a m+n+4 7. 计算:a ? (-a ) 2 ?(-a ) 3 8. 计算:(x — y ) 2 ? (x -y ) 3-(x — y ) 4 ? (y -x ) 3. (-x ) ? (-x ) 8 ? (-x ) 3=() A . (-x ) 11 B . (-x ) 24 C . x 12 4. 下列运算正确的是() A . a 2 ? a 3=a 6 B . a 3+a 3=2a T C . a 3a 2=a 6 5. a- a 3x 可以写成() A . (a 3 ) x+1 B . (a x ) 3+1 C . a 3x+1 6. 计算:100X 100m - 1x 100m+1 12 a 8- a 4=a D . (a x ) 2x+1

、幕的乘方 9?填空:(1) (a8) 7= ______ ; (2) (105) m= _______ ; (3) (a m) 3= ______ ; (4) (b2m) 5= _______ ; (5) (a4) 2? (a3) 3= _______ . 10. 下列结论正确的是() A .幕的乘方,指数不变,底数相乘; B .幕的乘方,底数不变,指数相加; C. a的m次幕的n次方等于a的m+n次幕; D. a的m次幕的n次方等于a的mn次幕 11. 下列等式成立的是() A. ( 102) 3=105 B. (a2) 2=a4 C. (a m) 2=a m+2 D. (x n) 2=x2n 12. 下列计算正确的是() A. (a2) 3? (a3) 2=a6? a6=2a6 B. ( —a3) 4? a7=a7? a2=a9 2 3 3 2 6 6 12 C. (—a ) ?( —a ) = ( —a ) ?( —a ) =a D. — (—a3) 3? ( —a2) 2=—(—a9) ? a4=a13 13. 计算:若642X 83=2x,求x的值. 、积的乘方 14. 判断正误: (1)积的乘方,等于把其中一个因式乘方,把幕相乘( ) (2)(xy) n=x ? y n() (3)(3xy) n=3 (xy) n() (4) (ab) nm=a m b n() (5) ( —abc) n= (—1) n a n b n c n() 15. (ab3) 4=()

高等数学习题集[附答案及解析]

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+=x x y 在),(+∞-∞内是有界的。

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

2014电大《高等数学基础》期末复习资料(例题附答案7)

2014电大《高等数学基础》期末复习资料(例题附答案7) 高 等 数 学 基 础 学 习 辅 导(7) 导数的应用例题讲解(二) (一)计算题 1. 解: 2. x x x 2tan ) 3sin 1ln(lim 0+→ 解:x x x 2tan )3sin 1ln(lim 0+→=x x x x 22sec 3sin 13cos 3lim 20+→ =2 3 2cos )3sin 1(23cos 3lim 20=?+→x x x x 3. 解:

4. x x e x x 2sin 1 cos lim 0-→ 解: x x e x x 2sin 1cos lim 0-→ =x x e x e x x x 22cos sin cos lim 0-→=21 5. 求函数)1ln(x x y +-=的单调区间。 解:函数)1ln(x x y +-=的定义区间为),1(+∞-, 由于 x x x y +=+- ='1111 令0='y ,解得0=x ,这样可以将定义区间分成)0,1(-和),0(+∞两个区间来讨论。 当01<<-x 时,0<'y ;当+∞<'y 。 由此得出,函数)1ln(x x y +-=在)0,1(-内单调减少,在),0(+∞内单调增加。 6. 求y =x -ln(1+x )的单调区间 解: y 的定义域为(-1,+∞) 令 ,得驻点:x =0。列表如下: 即 单调减少区间为(-1,0),单调增加区间为(0,+∞)。

7. 求y=x2e-x的极值 解:函数y的定义域是(-∞,+∞) ,得驻点:x1=0,x2=2。列表如下: 令 即极小值为:y(0)=0,极大值为:y(2)=4e-2 8. 求曲线y=2x3+3x2-12x+1的凹凸区间及拐点解:函数y的定义域是(-∞,+∞) 令。列表如下: 即凹区间为:,凸区间为: 拐点为:

相关主题