搜档网
当前位置:搜档网 › 11-材料及成形工艺的选择

11-材料及成形工艺的选择

第11章材料及成形工艺的选择11.1 机械零件的失效分析

11.2 材料及成形工艺选择原则

11.3 材料及成形工艺选择方法

11.4 典型零件的材料及成形工艺选择

11.5综合应用

11.1 机械零件的失效分析

概述

11.1.1 零件的失效形式

11.1.2 零件失效的原因

11.1.3 失效分析的一般过程

概述

零件在使用过程中,由于尺寸、形状或材料的组织与性能发生变化而失去正常工作所具有的效能称为失效。

零件在以下三种情况下都认为已失效:

1.零件完全不能工作,如齿轮轮齿断裂。

2.虽能工作,但已不能完成指定的功能,如

齿轮轮齿严重磨损。

3.零件有严重损坏而不能继续安全工作,如

压力容器螺栓的损坏。

图11.0.1 齿轮断齿

图11.0.2

失效形式

塑性变形

弹性变形

断裂失效

变形失效

塑性断裂

脆性断裂

表面损伤失效

磨损失效

腐蚀失效

表面疲劳失效

11.1.1 零件的失效形式

1.变形失效包括弹性变形失效和塑性变形失效。

(1)弹性变形失效指零件由于发生过大的弹性变形而造成零件失效。

如炮筒若产生过量的弹性变形,射击就会偏离目标。

(2)塑性变形失效指零件由于发生塑性变形而不能继续工作的失效。塑性变形失效是由于零件的工作应力超过材料的屈服点(屈服强度)所致。

如弹簧发生塑性变形而失去弹性。

图11.1.1 坦克

塑性变形

2.断裂失效

(1)塑性断裂是零件在断裂前产生明显的塑性

变形,即零件的尺寸发生明显的变化,一般截面变小,断口常呈纤维状特征。

(2)脆性断裂是断裂前零件几何尺寸几乎不发

生变化,即没有明显的塑性变形,断口较齐平,其断面常呈细颗粒状。

3.表面损伤失效

指机械零件因表面损伤而造成机械设备无法正常工作或失去精度的现象。表面损伤失效大致分为三类:磨损失效、腐蚀失效及表面疲劳失效。

图11.1.2 断裂失效

塑性断裂脆性断裂←

(1)磨损失效指相对运动的接触表面的材料在机械力的作用下,以细屑形式逐渐被磨损掉,而使零件的尺寸不断变小的一种失效方式。如轴颈尺寸减少、刀具的变钝。

(2)腐蚀失效指由于化学或电化学腐蚀作用而造成零件的失效。如金属表面生锈。

(3)表面疲劳失效指零件工作时若承受的是循环交变应力,在这种应力工作下表面发生麻点或剥落的现象。如:刀痕、尖角、截面突变等都会引起应力集中,发生疲劳失效。

11.1.2 零件失效的原因

一般有以下原因(详见教材384页)

1.设计不合理:零件结构和尺寸设计不合理,如铸件设计成直

角。

2.选材不合理:选材质量太差;选材中对可能出现的失效方式

判断有误等。

3.加工工艺不当:采用的工艺方法、工艺参数不正确造成的缺

陷,如表面粗糙度值过大,刀痕较深;热处理中的氧化、脱碳、变形和开裂等。

4.安装使用不当:1)安装:配合过紧,过松;对中不准,固定

不紧,重心不稳;润滑条件不良;密封条件不好等。2)使用:违章操作,超温、超速、超载;对设备检查、维护、保养不善等。

图11.1.3 结构设计

11.1.3 失效分析的一般过程

1.收集情况:包括零件设计、材料选择、制造工艺、安装使用、维修保养等。

2.系统分析:包括破坏处微区成分分析;工作状态分析;裂纹、断口分析;破坏过程分析;正在使用条件分析等。

3.改进措施。

11.2 材料及成形工艺选择原则

1.使用性原则:指机械零件或构件在正常工

作情况下材料应具备的性能,主要指材料的力学性能。还要考虑材料的物理性能和化学性能。若零件主要满足强度要求,则选用强度适当的材料;若在高温下工作的零件,应选用耐热材料。

2.工艺性原则:指材料适应某种加工的能力,也就是材料加工成零件的难易程度。主要包括:

①铸造性;②锻压性;③焊接性;④切削加工性;

⑤热处理工艺性等。

3.经济性原则:应尽可能选用货源充足、加

工方便、成本低的材料。

11.3 材料及成形工艺的选择方法

一、选材的一般步骤

1)分析;2)调研;3)查手册;

4)选牌号;5)审核;6)试投产。

二、选材的方法与依据

以零件最主要的性能要求作为选材的主要依据,同时兼顾其它性能要求。

1.选材的方法

1)以综合力学性能为主时的选材

选用材料:中碳钢或中碳合金钢,

如45、40Cr等。

应用:轴、杆、套类零件的选材。

2)以疲劳强度为主时的选材

选用材料:中、高碳非合金钢和低碳合金钢

如: 45、40Cr、20CrMnTi 等。应用:弹簧、齿轮等。

3)以磨损为主时的选材

①受力较小的零件

选用材料:高碳非合金钢或高碳合金钢,如

T8A、T10A等。

应用: 钻套、顶尖等。

②同时受摩擦、交变应力等作用的零件

选用材料: 低碳非合金钢或低、中碳合金钢,

如40Cr ﹑20CrMnTi。

应用:汽车、拖拉机变速齿轮等。

2.材料及成形工艺选择的依据

①依据零件的形状与尺寸来选择

轴类零件(如机床主轴):一般锻造成形;盘套类零件(如齿轮等):锻造、铸造较多;箱体支架类零件:以铸造较多。

②依据生产批量选择

单件、小批生产:采用模具或工装费用低、设备投资小的生产方法。如手工砂型铸造、自由锻或胎模锻、钣金、钳工等成形方法。

大批量生产:应采用高精度、高生产率的成形方法, 如

机器造型、模锻、埋弧自动焊及板料冲压、剪切等成形方法。

③依据现有的生产条件选择

应充分利用本企业现有条件完成任务,也可外协或外购。

11.4 典型零件的材料及成形工艺选择

11.4.1 齿轮选材

11.4.2 轴类零件选材

11.4.3 弹簧零件的选材

11.4.4 刃具的选择及热处理

11.4.5 箱体支承类零件的选材

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成形的方法

金属液态成形——液态金属在铸型中冷却、凝固形成零件。液态成形是机械制造中生产机器零件或毛坯的主要方法之一。常用的铸造。 一 铸造定义 铸造(最广泛):将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。 二 铸造分类 1.按铸型材料来分:砂型铸造、金属型铸造、石墨型铸造、陶瓷铸造; 2.按充型方式来分:重力充型、高压充型、低压充型、离心力充型; 3.按液态成形工艺方法的作用力不同又可分为两类: 重力作用下的液态成形工艺方法:砂型铸造、金属型铸造、熔模铸造、气化模铸造、陶瓷型铸造等; 外力作用下的液态成形工艺方法:离心铸造、压力铸造、低压铸造、挤压铸造等。 三 其铸造工艺如图所示 四 铸造的特点 1.能制成形状复杂、特别是具有复杂内腔的毛坯:如阀体、泵体、叶轮、螺旋浆等。 2.铸件的大小几乎不受限制,重量从几克到几百吨。 3.常用原材料来源广泛,价格低廉,成本较低,其应用及其广泛。如机床、内燃机中铸件70~80%;农业机械40~70%。 4.但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。 五 铸造常见的主要问题 组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。 基本工艺过程 制作模样 配制型砂 制作芯盒 制作芯砂

锻压: 对坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。 主要方法: 锻造:将坯料加热到高温状态后进行加工. 冲压:将坯料在常温下进行加工. 特点: (1)改善金属组织、提高力学性能 (2)节约金属材料 (3)较高的生产率 (4)毛坯或零件的精度较高 (5)不能加工脆性材料 (6)不能获得形状复杂的毛坯或零件 一自由锻: 1.定义:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。 2.分类:手工锻造和机器锻造两种。手工锻造只能生产小型锻件,生产率也较低。机器锻造是自由锻的主要方法。 3. 特点:工具简单、通用性强,生产准备周期短。自由锻件的质量范围可由不及一千克到二、三百吨,对于大型锻件,自由锻是唯一的加工方法,这使得自由锻在重型机械制造中具有特别重要的作用,例如水轮机主轴、多拐曲轴、大型连杆、重要的齿轮等零件在工作时都承受很大的载荷,要求具有较高的力学性能,常采用自由锻方法生产毛坯。 由于自由锻件的形状与尺寸主要靠人工操作来控制,所以锻件的精度较低,加工余量大,劳动强度大,生产率低。自由锻主要应用于单件、小批量生产,修配以及大型锻件的生产和新产品的试制等。 4自由锻工序 自由锻工序:基本工序、辅助工序和修整工序。 (1)基本工序

工程材料与成型工艺基础习题汇编答案-老师版

《工程材料及成形技术》课程习题集班级:________________ 姓名:________________ 学号:________________ 2013年2月——5月

习题一工程材料的性能 一、名词解释 σs:σb:δ:ψ:E:σ-1:αk: HB: HRC: 二、填空题 1、材料常用的塑性指标有(δ)和(ψ)两种,其中用(ψ)表示塑性更接近材料的真实变形。 2、检验淬火钢成品的硬度一般用(洛氏硬度HRC),而布氏硬度是用于测定(较软)材料的硬度。 3、零件的表面加工质量对其(疲劳)性能有很大影响。 4、表征材料抵抗冲击载荷能力的性能指标是(ak ),其单位是( J/cm2 )。 5、在外力作用下,材料抵抗(塑性变形)和(断裂)的能力称为强度。屈服强度与(抗拉强度)比值,工程上成为(屈强比)。 三、选择题 1、在设计拖拉机缸盖螺钉时,应选用的强度指标是( A ) A.σs b.σb c.σ-1 2、有一碳钢支架刚性不足,解决办法是( C ) A.用热处理方法强化 b.另选合金钢 c.增加截面积 3、材料的脆性转化温度应在使用温度( B ) A.以上 b.以下 c.相等 4、在图纸上出现如下硬度技术条件标注,其中哪种是正确的?( B )A.HB500 b.HRC60 c.HRC18

四、简答题 1、下列各种工件应采取何种硬度试验方法来测定其硬度?(写出硬度符号) 锉刀: HRC 黄铜轴套:HB 供应状态的各种非合金钢钢材: HB 硬质合金刀片:HV 耐磨工件的表面硬化层: HV 调质态的机床主轴:HRC 铸铁机床床身:HB 铝合金半成品 HB 2、在机械设计中多用哪两种强度指标?为什么? 常用σs : σb : 原因:大多数零件工作中不允许有塑性变形。但从零件不产生断裂的安全考虑,同时也采用抗拉强度。 3、设计刚度好的零件,应和什么因素有关? (1)依据弹性模量E 选材,选择E 大的材料 (2)在材料选定后,主要影响因素是零件的横截面积,不能使结构件的横截面积太小。一些横截面积薄弱的零件,要通过加强筋或支撑等来提高刚度。 交作业时间: ε σe E =0A P e =σ0L L ?=ε00EA PL L =?

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

材料成型工艺

材料成型工艺复习资料 1.材料成型技术可分为:凝固(或称液态)成型技术(铸造)、塑性成型技术(锻压)、焊接(连接)成型技术、粉末冶金成型技术、非金属成型技术等。 2.铸造是将熔融金属浇注、压摄或吸入铸型腔中,待其凝固够而获得一定形状和性能的铸件工艺方法。 3.液态金属的凝固方式:逐层凝固;糊状凝固;中间凝固。 4.铸造合金从浇注到室温经历的收缩阶段:液态收缩;凝固收缩;固态收缩。 5.影响收缩的因素;化学成分、浇注温度、铸件结构与铸型条件等。 6.铸铁的熔炼设备:冲天炉、电弧炉、工频炉等,其中冲天炉应用最广。 7.机器造型按照砂型紧压方式的不同分为:振击压实造型、微振压实造型、高压造型、气冲造型、射压造型和抛砂造型。 8.常用的特种铸造方法有熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造、陶瓷型铸造等。 9.熔模铸造是指用易熔材料(蜡)制成模样,然后在其表面涂挂若干层耐火材料,待其硬化干燥后,将模样 熔去后面而制成形壳,再经焙烧、浇注而获得铸件的一种方法。 10.浇注位置的选择应考虑:1,重要加工面或主要工作面应出于铸型的底面或侧面。2,铸件上的大平面 结构或薄壁结构应朝下或成侧立状态。3,对于容易产生缩孔的铸件,应使厚的部分放在上部或侧面。 4,应尽量减少芯子的数量,便于芯子安放、固定、检查和排气。5,便于起模,使造型工艺简化。6,应尽量使铸件的全部或大部置于同一沙箱中,或使主要加工面与加工的基准面处于同一砂型中,以避免产生错箱、披缝和毛刺,降低铸件精度,增加清理工作量。 11.金属塑性成形是利用金属材料所具有的塑性变形能力,在外力的作用下使金属材料产生预期的塑性变 形来获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。 12.模锻是在模锻设备上利用高强度锻模使金属坯料在模膛内受压产生变形而获得所需形状、尺寸以及内 部质量的锻件的成型工艺。 13.拉拔是将金属坯料拉过拔模的模孔而变形得到的成型工艺。 14.挤压是将金属坯料在挤压模内受压被挤出模孔而变形的成型工艺。 15.轧制是将金属坯料在两个回转轧锟之间受压变形那个人形成各种产品的成型工艺。 16.金属的塑性成形性能在工程上常用金属的锻造性表示,锻造性能的好坏,常用金属的塑性和变形抗力 两个指标来衡量。 17.模锻模膛按作用分为:模锻模膛(预锻模膛、终锻模膛),制坯模膛(拔长模膛、滚压模膛、弯曲模膛、 切断模膛)。 18.板料冲压的坯料厚度一般不大于4cm,通常在常温(低于板料的再结晶温度)下冲压,称为冷冲压。 19.板料冲压的特点:1.冲压件的尺寸公差由模具保证,可获得尺寸精确、表面光洁、形式复杂的冲压件。 2.冲压件由薄板加工,材料经过塑性变形产生冷变形强化,具有质量轻、强度高和刚性好的优点。 3. 冲压生产操作简单、生产效率高、易于实现机械化和自动化。 20.冲裁变形过程:1。弹性变形过程2.塑性变形阶段3.剪裂分离阶段 21.拉深过程中的主要缺陷是起皱和拉裂。 22.常用的冷冲压模按工序组合可分为简单冲模、连续冲模和复合冲模。 23.超塑性成形指金属或合金在低的变形速率、一定的变形温度和均匀的细晶粒度条件下,其相对伸长率 A超过100%以上的变形。 24.高速高能的成形方法:1.爆炸成形2.电液成形3.电磁成形。 25.锤上模锻的结构设计:1.应有一个合理的分没面2.合理设计加工表面和加工表面3.外形应力求简单、 平直、对称(为了使金属易于充满模膛,减少工序,零件的外形应力求简单、平直、对称。避免零件截面差别过大,或具有薄壁、高筋、凸起等不良结构)4. 尽量避免深孔或多孔结构。 26.焊接热影响区:1.过热区2.正火区3.部分相变区4.再结晶区(P112)

材料焊接成型方法的选择原则与依据

材料焊接成型方法的选择原则与依据 摘要:工程材料除切削加工以外有各种成型方法包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。材料成型技术主要讲述金属材料成型和非金属材料成型,现对其进行详细论述。金属液态成型又称为铸造是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件即铸件的方法,它是成形毛坯或机器零件的重要方法之一。金属塑性成形昰利用金属材料所具有的塑性变形规律,在外力作用下通过塑性变形,获得具有一定形状、尺寸、精度和力学性能的零件或毛坯的加工方法。 关键词:材料成型金属非金属 一、材料成型方法概述金属液态成形 金属材料在液态下成形,具有很多优点:1最适合铸造形状复杂、特别是复杂内腔的铸件。2适应性广,工艺灵活性大。3成本较低。但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能特别是冲击性能低于塑形成行件。 铸件涉及的工序很多,不易精确控制,铸件质量不稳定。由于目前仍以砂型铸造为主自动化程度还不够高,工作环境较差,大多数铸件只是毛坯件,需经过切削加工才能成为零件。砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。砂型铸造的工艺过程称为造型。造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。手工造型时,填砂、紧实和起模都用手工和手动完成。其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。但生产效率低、劳动强度大、铸件质量不易保证。故手工造型只适用于单件、小批量生产。机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。 冲模的种类一般分为成形模、冲裁模湾曲模3种,模具结构可根据压力使用情况做更详细的划分。成形模的种类有拉延、成形、整形和压印等;冲裁模的种类有落料、冲孔、修边、切断和切废料等;弯曲模的种类有翻边、弯曲、折弯和卷边等。 二、材料成形方法选择的依据选择材料成形方法的主要依据有: (一)零件类别、功能、使用要求及其结构、形状、尺寸、技术要求等根据零件类别、用途、功能、使用性能要求、结构形状与复杂程度、尺寸大小、技术要求等,可基本确定零件应选用的材料与成形方法。而且,通常是根据材料来选

工程材料及成型技术 鞠鲁粤编

第一章工程材料 1)固体材料的主要性能包括力学性能、物理性能、化学性能、工艺性能 力学性能包括弹性、强度、塑性、硬度、韧性、疲劳强度、蠕变和磨损 2)材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力 最常用的强度指标有屈服强度和抗拉强度 固态物质按原子的聚集状态分为晶体和非晶体 常见的晶格类型:体心立方格,面心立方格,密排六方晶格 3)晶格缺陷:点缺陷,面缺陷,线缺陷 4)细化液态金属结晶晶粒的方法:增加过冷度,变质处理,附加振动 5)合金:由两种或两种以上的金属或金属与非金属组成的具有金属性质的物质 组元:组成合金的最基本、最独立的物质 二元合金:由两种组元组成的合金 相:合金中成分相同、结构相同,并与其他部分以界面分开的均匀组成部分 组织:一种或多种相按一定方式相互结合所构成的整体 6)固态合金中的相可分为固溶体和金属化合物 固溶体分为间隙固溶体和置换固溶体 7)固溶强化:当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的现象 弥散强化:金属化合物呈细小颗粒均匀分布在固溶体基体上时,使合金的强度、硬度、耐热性和耐磨性明显提高 8)铁碳合金的基本相有铁素体、奥氏体、渗碳体、珠光体、莱氏体和低温莱氏体 9)铸铁的类型 铸铁分为一般工程应用铸铁和特殊性能铸铁 一般工程性能铸铁按石墨形貌不同分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁 10)影响石墨化的因素主要有化学成分和冷却速度 11)钢的热处理:将固态钢采用适当的方式进行加热、保温和冷却,以获得所需组织结构与性能的一种工艺 热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理等) 12)铁碳合金相图(分析题)P32 第二章铸造成形 1)铸件的生产工艺方法 按充型条件不同分为重力铸造、压力铸造、离心铸造 按形成铸件的铸型分为砂型铸造、金属型铸造、熔模铸造、壳型铸造、陶瓷型铸造、消失模铸造、磁型铸造等 2)影响金属充型能力的因素和原因 ①合金的流动性②浇注温度③充型能力④铸型中的气体⑤铸型的传热系数⑥铸型温度⑦浇注系统的结构⑧铸件的折算厚度⑨铸件复杂程度 影响原因①流动性好,易于浇出轮廓清晰,薄而复杂的铸件,有利于非金属夹杂物和气体的上浮和排除,易于对铸件补缩 ②浇注温度越高,充型能力越强 ③压力越大,充型能力越强,但压力过大或充型速度过高会发生喷射、飞溅和冷隔④铸型中的气体能产生气膜,减少摩擦阻力 ⑤传热系数越大,铸型的激冷能力越强,金属液于其中保持液态的时间越短,充型能力下降

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

材料成形工艺知识点

一.铸造成型 1.1收缩:铸造合金在液态、凝固态和固态的冷却过程中,由于温度降低而引起的体积减小的现象,称为收缩。 缩松缩孔:铸件在冷却和凝固过程中,由于合金的液态和凝固收缩,往往在铸件最后凝固的部分出现空洞。容积大而集中孔洞称为缩孔,细小而分散的孔洞称为缩松。 影响缩孔和缩松的因素及防止措施: 因素:浇筑温度,合金的结晶范围,铸型的冷却能力越大 防止措施:用顺序凝固方法 1.1.5铸造应力怎么产生的: 铸件凝固后在冷却过程中,由于温度下降将继续收缩。有些合金还会发生固态相变而引起收缩或膨胀,这导致铸件的体积和长度发生变化,若这种变化受到阻碍,就会在铸件内产生应力,称为铸造应力。 1.2砂型铸造 剖面示意图:上型下型,明冒口,出气冒口,浇口杯,型砂,砂箱,直浇道,横浇道,暗冒口,内浇口,型腔,型芯,分型面。 工艺流程! 1.3金属型铸造 金属型铸造又称硬模铸造,它是将金属液浇入金属型中,以获得金属铸件的一种工艺方法。(永久型铸造) 1.4熔模铸造:熔模铸造又称失蜡铸造,通常是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再经过焙烧,然后进行浇注,而获得铸件的一种方法。熔模铸造工艺(重点) 1.5压力铸造:在高压作用下,使得液态或半液态金属以较高的速度充填压铸模型腔,并在压力下成形和凝固。 1.6铸造工艺设计 1.6.2铸件结构的工艺性。 1.铸造结构形式:结构外形应方便起模,尽可能减少和简化分型面,铸件的内腔应尽量不用或少用型芯。 2.合理的铸件壁厚:铸件壁厚过小,易产生浇不到、冷隔等缺陷;壁厚过大,易产生缩孔、缩松、气孔等缺陷。壁厚应均匀。 3.铸件壁的链接:连接处或者转角处应有结构圆角。,厚壁与薄壁间的链接要逐步过渡。 4.铸件应尽量避免有过大的平面 1.6.4型芯设计的作用是形成铸件的内腔、孔洞、形状复杂阻碍取模部分的外形以及铸型中有特殊要求的部分。 1.6.5浇注系统设计:浇口杯,直浇道,横浇道,内浇道。 金属型的浇筑位置一般分为三种:顶注式、底注式和侧注式。 基本要求: 1.防止浇不足缺陷 2.液态金属平稳地流入型腔 3.能把混入合金液中的熔渣挡在浇筑系统中 4能够合理地控制和调节铸件各部分的温度分布,减少或消除缩松缩孔 5.结构简单,体积小

材料成形工艺期末复习总结

7.简述铸造成型的实质及优缺点。 答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯 缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。 8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响? 答:合金流动性取决于 1.合金的化学成分 2.浇注温度 3.浇注压力 4.铸型的导热能力5.铸型的阻力 合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。 9.何谓合金的收缩,影响合金收缩的因素有哪些? 答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象 影响因素:1.化学成分 2 浇注温度 3.铸件的结构与铸型条件 11.怎样区别铸件裂纹的性质?用什么措施防止裂纹? 答:裂纹可以分为热裂纹和冷裂纹。 热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。 防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。 冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。 防止方法:减少铸件内应力和降低合金脆性,设置防裂肋 13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。 答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱 原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。 [力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。故工业上较多使用的是珠光体基体的灰铸铁。 [其他性能]:良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性 14.可锻铸铁是如何获得的?为什么它只适宜制作薄壁小铸件? 答:制造可锻铸铁必须采用碳、硅含量很低的铁液,以获得完全的白口组织。 可锻铸铁件的壁厚不得太厚,否则铸件冷却速度缓慢,不能得到完全的白口组织。 17. 压力铸造工艺有何缺点?它熔模铸造工艺的适用范围有何显著不同? 答:压力铸造的优点: 1.生产率高 2.铸件的尺寸精度高,表面粗糙度低,并可直接铸出极薄件或带有小孔、 螺纹的铸件 3.铸件冷却快,又是在压力下结晶,故晶粒细小,表层紧实,铸件的强 度、硬度高 4.便于采用嵌铸法 压力铸造的缺点: 1.压铸机费用高,压铸型成本极高,工艺准备时间长,不适宜单件、不批生产。 2.由于压铸型寿命原因,目前压铸尚不适于铸钢、铸造铁等高熔点合金的铸造。

工程材料与材料成型技术教案

教案 (理论课) 2010~2011学年第2学期 课程名称工程材料与成形技术基础教学系机械工程系 授课班级焊接091 主讲教师晏丽琴 职称讲师

培黎工程技术学院二○一一年二月课程基本情况

系主任:年月日 目录 第一章绪论 第一节材料加工概述 一、材料加工概述 二、材料加工的基本要素和流程 第二节材料成形的一些基本问题和发展概况 一、凝固成形的基本问题和发展概况 二、塑性成形的基本问题和发展概况 三、焊接成形的基本问题和发展概况 四、表面成形的基本问题和发展概况 第三节本课程的性质和任务 绪论 学习思考问题 ·材料加工的基本要素和流程是什么? ·材料成形存在的基本问题是什么? ·本课程的性质和基本任务是什么? 一、材料加工概述 任何机器或设备,都是由许许多多的零件装配而成的。这些零件所用材料有金属材料,也有非金属材料。零件或材料的加工方法多种多样,归纳起来有以下4类: (1)成形加工:用来改变材料的形状尺寸,或兼有改变材料的性能。主要有凝固成形、塑性成形、焊接成形、粉末压制和塑料成形等。 (2)切除加工:用于改变材料的形状尺寸,主要有车、铣、刨、钻、磨等传统的切削加工,以及直接利用电能、化学能、声能、光能进行的特殊加工,如电火花加:[、电解加工、超声加工和激光加工等。 (3)表面成形加工:用来改变零件的表面状态和(或)性能,如表面形变及淬火强化、化学热处理、表面涂(镀)层和气相沉积镀膜等。

(4)热处理加工:用来改变材料或零件的性能,如退火、正火、淬火和回火等。 根据零件的形状尺寸特征、工作条件及使用要求、生产批量和制造成本等多种因素,选择零件的加工方法,以达到技术上可行、质量可靠和经济上合理。零件制成后再经过检验、装配、调试,最终得到整机产品。 二、材料加工的基本要素和流程 材料加工方法的种类虽然繁多,但通过对每种材料加工方法的过程分析表明,它们都可以用建立在少数几个基本参数基础上的统一模式来描述。该模式便于对各种加工方法进行综合分析和横向比较。 任何一种材料的加工过程,都是为了达到材料的形状尺寸或性能的变化。而为了产生这种变化,必须具备三个基本要素:材料、能量和信息(图1.2)。因而材料的加工过程,可以用相关材料流程、能量流程和信息流程来描述。 三大流程: 1.材料流程 表征加工过程特点的类型; 要改变形状尺寸和性能的材料状态; 能够用来实现这种形状尺寸和性能变化的基本过程; 2.能量流程 包括机械过程的能量流程,热过程能量:电能、化学能、机械能 3.信息流程 形状信息、性能信息

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

材料成型工艺基础习题答案

材料成型工艺基础(第三版)部分课后习题答案第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。 答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白

口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否 相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果不如球墨铸铁好?普通灰铸铁常用的热处理方法有哪 些?其目的是什么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除内应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。

材料成型方法

材料成型方法 绪论 “材料成型方法”是材料成型及控制工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课程。通过本课程的学习,可获得常用工程材料及材料成形工艺的知识,培养学生工艺分析的能力,了解现代材料成形的先进工艺、技术和发展趋势,为后续课程学习和工作实践奠定必要的基础。 材料是科学与工业技术发展的基础。先进的材料已成为当代文明的主要支柱之一。人类文明的发展史,是一部学习利用材料、制造材料、创新材料的历史。如果查看一下诺贝尔物理、化学奖的获得者,不难发现20世纪的物理学家和化学家们曾对材料科学做过一系列的贡献。Laue(1914)发现X光晶体衍射,Guillaume(1920)发现合金中的反常性质,Bridgeman (1946)发现高压对材料的作用,Schockley、Bardeen、Brattain(1956)三人发现了半导体晶体管,Landau(1962)的物质凝聚态理论,Townes(1964)发现导致固体激光的出现,Neel (1970)发现材料的反铁磁现象,Anderson、Mott、van Vleck(1977)研究了非晶态中的电子性状,Wilson(1982)对相变的研究成功,Bednorz、Müller(1987)发现了30°K的超导氧化物,Smaller、Kroto(1996)发现C-60,Kilby(2000)发明第一块芯片,上述物理领域的诺贝尔获奖者的不少工作是直接针对材料的。至于化学家们,可以举出Giauque(1949)研究低温下的物性,Staudinger(1953)研究高分子聚合物,Pauling(1954)研究化学键,Natta、Ziegler(1963)合成高分子塑料,Barton、Hassel(1969)研究有机化合物的三维构象,Heegler、Mcdermild、白川英树(2000)三人发现导电高分子。 近年来,材料科学的发展极为迅速。以钢铁工业为例,2003年,我国钢产量2.2亿t,是世界钢产量9.6亿t的23%,从1890年张之洞创办汉阳铁厂,直到1949年半个多世纪,中国产钢总量只有760万t,不足现在一个大型钢铁厂的年产量。1949年,全国产钢15.8万t,占世界钢产量的0.1%,只相当于现在全国半天的产量。1996年至今,我国钢产量年年超过1亿t,成为世界第一产钢大国。从6000万t增长到1亿t钢,美国经过13年,日本经过6年,中国为7年。这对于我国立足于工业化、现代化的世界,意义重大。但是我国又是一个钢的消费大国,2003年我国钢消费2.67亿t。我国钢厂结构不合理,10%以上的钢是由规模不到50万t以下的小型钢铁企业完成的,70%以上的生产能力是由150万t以下的中小钢铁企业完成的。因此,我国钢铁企业的能耗大,产品品质不高,许多高附加值的优质钢材仍需进口,2003年就进口了3717万t的优质钢材。为此,新一代钢铁材料的主要目标是探索提高钢材强度和使用寿命。经研究证明,纯铁的理论强度应能高于8000MPa,而目前碳素钢为200MPa级,低合金钢(如16Mn)约400MPa级,合金结构钢也只有800MPa级。日本拟于2010年将钢的强度和寿命各提高1倍,2030年再翻一番(即1t钢可相当于现在的4t),这个计划展示了材料挖潜的前景。 类比钢铁,其他材料也有很大潜力可挖。现代材料逐步向高比强度、比模量方向发展。20世纪上半叶,材料科学家利用合金化和时效硬化两个手段,把铝合金的强度提高到700MPa,这样,铝的比强度(强度/密度)达到2.64×106cm,是钢的比强度(0.64×106cm)的4倍有余。要达到同样的强度,铝合金的用量只有钢的1/4,这就是铝合金作为结构材料的极大优势。 美国1980年汽车平均质量为1500kg,1990年则为1020kg。每台车的铸铁用量由225kg 降至112kg,铸铁的比例由15%减至11%;而铝合金由4%增至9%;高分子材料由6%增

相关主题