搜档网
当前位置:搜档网 › 生物医学中纳米材料的作用

生物医学中纳米材料的作用

生物医学中纳米材料的作用
生物医学中纳米材料的作用

生物医学中纳米材料的作用

1用于生物医学的纳米材料

1·1细胞分离用纳米材料

病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,所以利用

纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中实行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子

已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判

断出胎儿细胞中是否带有遗传缺陷。

1·2纳米材料用于细胞内部染色

利用不同抗体对细胞内各种器官和骨骼组织的敏感水准和亲和力的显

著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体

混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各

种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下表现某

种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组

合“贴上”了不同颜色的标签,因而为提升细胞内组织的分辨率提供了

一种急需的染色技术。

1·3纳米药物控释材料

纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的

毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等很多优点,因而

使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米

粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性

纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正

常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地

实行了人体骨骼液中肿瘤细胞的分离,由此来实行冶疗;SharmaP等1用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤

小鼠肿瘤体积的缩小水准和延长存活时间来评价药效,其疗效较同浓度

游离紫松醇明显增加;Damage等2用聚氰基丙烯酸己酯包覆胰岛素制得的纳米胶囊,给禁食的糖尿病鼠灌胃,2天后使血糖水平降低50%~60%,

按每千克体重50单位胰岛素以纳米胶囊给药,降血糖作用可维持20天,而同样条件下,口服游离胰岛素却不能降低血糖水平。

1·4纳米抗菌材料及创伤敷料

按抗菌机理,纳米抗菌材料分为三类:一类是Ag+系抗菌材料,其利用

Ag+可使细胞膜上的蛋白失活,从而杀死细菌。在该类材料中加入钛系

纳米材料和引入Zn2+、Cu+等可有效地提升其的综合性能;第二类是ZnO、TiO2等光触媒型纳米抗菌材料,利用该类材料的光催化作用,与

H2O或OH-反应生成一种具有强氧化性的羟基以杀死病菌;第三类是C-

18A°纳米蒙脱土等无机材料,因其内部有特殊的结构而带有不饱和的

负电荷,从而具有强烈的阳离子交换水平,对病菌、细菌有强的吸附固

定作用,从而起到抗菌作用。

因为纳米银粒子的表面效应,其抗菌水平是相对应微米银粒子的200

倍以上,因而添加纳米银粒子制成的医用敷粒对诸如黄色葡萄球菌、大

肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。深圳安信纳米生物科技有限公司已开发出粒径约25nm的银抗菌颗粒,

其具有广谱、亲水、无抗药性,对大肠杆菌等致病微生物有强烈的杀灭

作用。由其进一步研发出的纳米创口贴,其外观、价格都与普通创口贴

相近,具有护创作用,还具有超强活性,能激活细胞、修复病变组织、加

速伤口恢复的作用;相对应方法还制备了纳米材料抗菌溃疡贴。此外,

青岛化工学院等已开发出具有抗菌功能的多种纺织品;南京希科集团用

纳米银粒子同棉织品复合,制成了广谱抗菌的新型医用棉。

1·5纳米颗粒中药及保健品

微米级中药有50%以上不溶于水,而纳米级中药粒子则可溶于水,从而

有效提升药物利用率。利用纳米技术将中药材制成极易被人体吸收的

纳米粒子口服胶囊、口服液或膏药,不但克服了中药在煎熬中有效成份

损失及口感上的不足,而且可使有效成份吸收率大幅度提升。将制成的纳米中药膏直接贴于患处,纳米粒子很易经皮肤直接被吸收。研发纳米中药产品是促动中药走向世界、提升产品附加值、实现传统中药产业升级的发展方向之一。用纳米技术将不易被人体吸收或毒性较大的药物或保健品制成纳米胶囊或纳米粒子悬浮液,则可制得具有极高效/费比的纳米保健品。如微量元素硒具有防癌、护肝、免疫调节等作用。中国科技大学率先用纳米硒开发出“硒旺胶囊”,生物试验证明,其急性毒性是无机硒的1/7,是有机硒的1/3,其清除羟基自由基活性是无机硒的5倍,清除过氧阴离子和过氧化氢的活性也大幅度提升,使其在免疫调节和抑制肿瘤方面的灵敏性显著提升,纳米硒的安全性和生物活性使硒的保健功能能够更充分地发挥出来。

1·6纳米医用陶瓷

纳米陶瓷在人工骨、人工关节、人工齿以及牙种植体、耳听骨修复体等人工器官制造及临床应用领域有广阔的应用前景。四川大学李玉宝教授等3~4用硝酸钙、磷酸铵为原料,二甲基甲酰胺为分散剂,在常压下制备出晶体结构类似于人骨组织的纳米级羟基磷灰石针状晶体,可用作人骨组织修复材料;Luo等5用TEOS在氢氟酸催化下,经溶胶/凝胶法制得纳米孔结构的SiO2,再用TEGDMA经光引发原位聚合制得

SiO2/PTEGDMA纳米复合材料,其比传统的牙科用复合材料具有更优异的耐磨性及韧性。通常方法制备的羟基磷灰石人工骨植入物,其强度和韧性都较低,不能满足应用要求。国外已制备出含有ZrO2的纳米羟基磷灰石复合材料,其硬度、韧性等综合性能可达到甚至超过致密骨骼相对应性能。通过调节ZrO2含量,可使该纳米复合人工骨材料具有优良的生物相容性6。美国Arizona材料实验室和Princeton大学的研究人员用聚二甲基丙烯酸酯、聚偏氟乙烯和钛盐作原料,应用溶胶/凝胶工艺合成的纳米TiO2/聚合物复合材料,用其作人工骨,其强度和韧性等力学性能与人体骨相当。

1·7生物活性材料

自Hench7首先报道某些组成的玻璃具有生物活性以来,国内外对生物玻璃的研制十分活跃,但生物玻璃较脆、不能满足人工骨材料的使用要求。随着纳米技术发展,生物活性杂化材料在保持柔韧性的同时,弹性模量已接近硅酸硼玻璃,而且便于加入活性物质,所以是一种开发生物材料的理想途径。Jones等8用TEOS、甲基丙烯酰胺在偶氮类引发剂作用下,加入氯化钠制备出含钙盐的纳米SiO2/聚合物复合材料,将其在人体液中(SBF)放置1周后,能够观察到其表面有羟基磷灰石层形成,因而具有较好的生物活性,OKelly等9总结了借助仿生过程制备具有生物活性的纳米复合材料的思路和研究成果。应用溶胶/凝胶技术制备纳米复合材料,同时在体系中引入胺基、醛基、羟基等有机官能团,使材料表面具有反应活性,可望在生化物质固定膜材料、生物膜反应器等方面获得较大应用。

Schtelzer等10较早研究了在凝胶玻璃中固定胰蛋白酶的特性;Cho 等11开发了有机—无机纳米复合材料固定α-淀粉酶,其稳定性超过1个月,可望用于研制生物膜反应器。含钛硅的纳米复合材料具有优良的透光率、氧气透过率和吸湿性,是理想的隐形眼镜材料。Schmidt等12,13在环硅氧烷、TEOS、异丙醇钛、甲基丙烯基硅烷、丙烯酸甲酯体系中,加入稀酸,使其在酸性条件下水解/聚合,得到隐形眼镜材料。该材料具有良好的透氧性、润湿性及较高的强度,良好的弹性和柔韧性,其透明度和折光率等均满足隐性眼镜的性能要求。我国浙江大学及华南理工大学等单位也展开了类似研究并已取得良好进展14。聚氨酯材料是重要的生物医学材料,因其良好的生物相容性和优异的力学性能常用来制作血管移植物、介入导管、心脏辅助循环体系及人工心脏等。许海燕等15用聚醚型聚氨酯与纳米碳经溶胶/凝胶法制得的纳米碳/聚氨酯复合材料,具有较好的微相分离结构,改善了材料表面的血溶相容性;Huang等16用带羟基的线性聚氨酯(Mn=6000)与TEOS作用,调节二者配比,可得到从柔韧的弹性体到坚硬的塑料等不同性能的纳米复合材料,以满足不同使用要求;Xu等17用聚氨酯和有机蒙脱土经溶液插层、溶胶/凝胶制得的纳米复合材料,在改善聚氨酯材料力学性能的同时,显

著地降低了水蒸气及空气的透过率,更好地满足全人工心脏等植入人工器官的应用要求。

用溶胶/凝胶法制备的纳米微孔SiO2玻璃,可用作微孔反应器、功能

性分子吸附剂、生物酶催化剂及药物控释体系的载体等18;利用聚二甲基硅氧烷(PDMS)/纳米SiO2复合材料无毒及优良的生物相容性,通过调节PDMS含量控制其硬度和弹性,可用作生物活性材料;用纳米粒子直接分散法制得的表面带有胺基或羟基的SiO2/聚吡咯纳米复合材料,可用作凝集免疫测定中高显色的“标记器”微粒;利用聚吡咯的良好导电性,其纳米复合材料在组织工程及神经修复等领域具良好应用前景19,20。

2展望

美国伯明翰大学的菲力普教授指出:“纳米技术最终目的还在于生活本身”。全世界的很多科学家已经把目光转向纳米技术在人们生活中

的应用,尤其是旨在提升人们生活质量的生物医学领域中的应用研究。美国科学家利贝认为:利用纳米粒子实行细胞分离的技术,很可能简易地实现肿瘤等癌症的早期诊断。结合纳米靶向药物定向治疗技术的发展,人类彻底战胜癌症已为时不远!另有专家预测:随着纳米药物控释

技术的发展,可望用数层纳米粒子包裹智能药物输送到病患部位,并可

根据患者微区内体温、pH值等微小变化来实现靶向控释药物成份。

该技术在免疫、计划生育、糖尿病等方面的诊疗,以及主动搜索并攻

击癌细胞、修复损伤组织等领域具有广阔的应用前景19~21。此外,纳米医用陶瓷及生物活性材料等方面的技术进步,必将促动组织工程及人工器官的快速发展。所以,纳米材料及纳米技术不但会极大地促动生物医学产业的发展,也必将会给人们生活质量的提升带来长远影响。

生物医学中纳米材料的作用

纳米材料在医学领域的应用研究进展

纳米材料在医学领域的应用研究进展 【摘要】在最近几年,纳米材料和纳米技术迅速发展,得到了科学界的重视。由于纳米材料的特殊的尺寸效应,纳米颗粒、纳米管以及各种纳米技术在医学方面的应用正蓬勃发展,势头十足。但在医学领域发展的同时,人们也逐渐认识到其中的一些问题,如纳米材料的生物毒性等。本文主要综述纳米科技在基医学、药学、临床医学和预防医学中的应用研究进展、问题及改进。 【关键词】纳米材料纳米科学纳米技术药物载体医学生物毒性毒理学 1 引言 纳米仅是一个长度单位,1 nm = 10-9m,当物质进入纳米尺度时,会展现出特有的理化性质,如: 小尺寸效应、表面效应、量子尺寸效应以及宏观量子隧道效应等[1]。随着纳米技术的不断发展,各种纳米材料逐渐进入了我们的视野。碳纳米材料主要包括碳纳米管、富勒烯[2]、石墨烯和纳米钻石及其衍生物,是目前应用非常广泛的一类纳米材料,现有的研究结果表明,碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌以及生物传感等生物医学领域中具有潜在的应用前景。 2 纳米材料在医学领域的应用 2. 1 纳米材料在生物医学领域的应用 应用于生物体内应用的纳米材料,它本身既可以是具有生物活性,也可以不具有生物活性,但它在满足使用需要时还必须易于被生物体接受,而不引起不良反应。目前纳米微粒在这方面的应用十分的广泛,如生物芯片、纳米生物探针、核磁共振成像技术、细胞分离和染色技术、作为药物或基因载体、生物替代纳米 材料、生物传感器等很多领域[3]。 纳米探针一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA 损伤。一些高选择性和高灵敏度的纳米传感器可以用于探测很多细胞化学物质,可以监控活细胞的蛋白质和感兴趣的其他生物化学物质。随着纳米技术的进步,最终实现评定单个细胞的健康状况。使用纳米生物荧光探针可以快速准确的选择性标记目标生物分子,灵敏测试细胞内的失踪剂,标记细胞,也可以用于细胞表面的标记研究。

浅谈纳米材料与生活

浅谈纳米材料与生活 摘要:人类迈着欢快的步伐轻松地进入二十一世纪。二十世纪是计算机技术革命蓬勃发展的时期,计算机技术得到了卓越的发展。现在人类进入了又一世纪,在这个日新月异的新的世纪里,科学家通过运用的发达的计算机技术,为我们奏起了“纳米技术”发展的号角。“纳米技术”主要是围绕开发纳米材料为核心而发展的技术,它有着广阔的发展前景,随着纳米技术的发展纳米材料也不断有着新的开发。“纳米材料”的有效发掘及其利用必定会给人们的生活带来又一翻天覆地变化,给人们的衣、食、住、行、医疗卫生事业带来极大便利。本文主要是通过给大家说明纳米材料的本质这一基点,向大家普及纳米材料的特性,以使更多的人能对纳米材料有整体的认识。除此之外更重要的就是联系生活实际,向大家说明纳米材料是如何影响人们生活的。到目前为止,它的发展的确已经给我们生活带来了很多便利,我相信在纳米技术不断进步、发展的未来,纳米材料一定有更广阔的空间。 关键词:纳米、纳米技术、纳米材料、应用 现如今,科学界普遍认为,纳米技术是21世纪经济增长的一台主要发动机,他将成为超过网络技术和基因技术的“决定性技术”,并将成为最有前途的材料,它所见具有的独特物理和化学性质,可以节省资源、合理利用能源并且能够净化生存环境,它的发展研究会对化工行业带来新的机遇。 纳米材料的特性: 纳米材料是英文“napometer”的译音,是一个物理学上的长度单位。1纳米是1米的十亿分之一,用我们能看见的最小微粒院子来表示的话,相当于45个远在啊排列起来的长度。自然界只有生物具有纳米尺度,遗传基因DNA螺旋结构的半径约1纳米左右,一个典型的病毒大约100纳米长,相当于万分之一的头发丝的粗细。纳米科技就是一门以0.1至100纳米这样的尺度为研究对象的前沿科学。作为尺度单位的纳米,并没有物理内涵,当物质到纳米尺度后,

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢 1、特殊性能材料的生产 材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。 纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。 2、生物医学中的纳米技术应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

纳米材料在医学上的应用

纳米技术的应用对各行各业的帮助很大,其中,生物医学方面,已经取得了较为喜人的成果。生物医学方面应用较多的是纳米材料,它的种类形态多样,有的呈粉末状,也有的是纤维状,块状,不可否认的是所具备的性能十分独特。本文从诊断、治疗两大方向进行介绍。 一、在诊断方面的应用 1.遗传病诊断 纳米技术有助于诊断胎儿是否有遗传缺陷。妇女怀孕8个星期时,血液中开始出现少量胎儿细胞。利用具有纳米级大小孔洞的半透膜或特殊的合成纳米管等,可把胎儿细胞分离出来进行诊断。不需要进行羊水穿刺。 目前美国已将此项技术应用于临床诊断中。 2.病理学诊断 肿瘤诊断较为可靠的手段是建立在组织细胞水平上的病理学方法,但存在着良恶性及细胞来源判断不准确的问题。利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米级结构改变,以解决肿瘤诊断的难题。 二、在治疗方面的应用 1、纳米化增加药物吸收度

1)增大药物的表面积促进溶解。 2)药物大分子就能穿透组织间隙,也可以通过人体细小的毛细血管。而且分布面极广。 3)应用于中药制剂。药物的物理活性、靶向性比普通中药大大提高。 2、纳米医用材料 纳米银粉:银在纳米状态下的杀菌能力产生了质的飞跃。只需要用极少量的纳米银即可产生强大的杀菌作用。 智能药物:美国正在设计一种纳米“智能炸弹”,它可以识别出癌细胞的化学特征。这种“智能炸弹”很小,仅有20纳米左右,能够进入并摧毁单个的癌细胞。 纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。 纳米材料在医学方面应用广泛,南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,可提供相关产品,更多详情欢迎登陆官网查看!

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

纳米材料的背景意义

纳米材料的背景意义集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。

第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位 错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米 晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所 以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效

纳米技术 纳米银材料 生物学效应相关的理化性质表征指南(标准

I C S71.040.40 A43 中华人民共和国国家标准 G B/T36083 2018 纳米技术纳米银材料生物学效应相关的理化性质表征指南 N a n o t e c h n o l o g y S i l v e r n a n o m a t e r i a l s G u i d a n c e f o r t h e c h a r a c t e r i z a t i o no f b i o l o g i c a l e f f e c t-r e l a t e d p h y s i c o c h e m i c a l p r o p e r t i e s 2018-03-15发布2018-10-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 引言Ⅳ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 理化性质表征的检测方法1 5 测试报告3 附录A (资料性附录) 纳米银材料理化性质检测示例4 附录B (资料性附录) 测试报告12 参考文献13

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中国科学院提出三 本标准由全国纳米技术标准化技术委员会(S A C/T C279)归口三 本标准起草单位:国家纳米科学中心二中国食品药品检定研究院三 本标准主要起草人:谢黎明二刘颖二李瑞如二黄河二刘海宁二葛广路二徐丽明三

G B/T36083 2018 引言 纳米银具有广谱的抗菌性能,在生物医学领域具有广泛应用三含纳米银产品的生物效应与其使用的纳米银材料的理化性质紧密相关[1-4],如粒径及粒径分布二形貌二表面性质等三纳米银材料相关理化性质表征涉及共性的表征方法,因此制定本标准三 本标准建议表征的理化性质包括平均粒径及粒径分布二z e t a电势二p H二紫外可见吸收光谱最大吸收峰二总银含量二银的价态三本标准主要参考了国际标准化组织纳米标准技术委员会(I S O/T C229)颁布的相关标准[5-6]及美国国家癌症研究所(N a t i o n a lC a n c e r I n s t i t u t e)下属的纳米技术表征实验室(N a n o-t e c h n o l o g y C h a r a c t e r i z a t i o nL a b o r a t o r y,N C L)发布的相关标准表征方法,以及纳米银生物效应分析的学术文献中通常采用的理化表征方法三部分理化性质虽然与生物效应紧密相关,如表面功能团二聚集程度,但目前缺乏相应的标准方法,因此没有将此类理化性质表征包括在本标准中三

纳米材料的背景意义

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和 增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还 要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位 错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具 材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21 世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标。结合纳米靶向药物定向治疗技术的发展,人类彻底战胜癌症已为时不远! 目前,纳米材料在生物医学领域已得到了广泛应用,其在检测诊断、药物治疗以及抗菌等方面都取得到了很好的发展,发挥着都不容忽视的作用。 一:生物医学起源于诊断, 没有准确的诊断就不可能有对症的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器五花八门, 在其迅猛发展的过程中纳米材料起到了关键作用。

纳米技术在生物和医学上的应用

《纳米材料导论》 学院:材料与化学工程学院 专业:电化学 姓名:张博 学号:541304060149

纳米技术在生物和医学上的应用 摘要:纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。 20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美《业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100 nm 的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。 1 纳米生物学的研究对象 有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1 nm~100 nm范围的微小结构。1纳米等于10-9m,即1m的十分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。 2 纳米技术在生物医学方面的应用

医药磁性纳米材料的构建生物效应及诊疗应用-东南大学

2017年高等学校科学研究优秀成果奖(科学技术)推荐项目公示材料(自然奖、自然奖-直报类) 1、项目名称:医药磁性纳米材料的构建、生物效应及诊疗应用 2、推荐奖种:高等学校科学研究优秀成果奖自然科学奖 3、推荐单位(专家):东南大学 4、项目简介: 磁性纳米材料因其丰富的磁学特性和良好的生物相容性,在生物传感与检测、磁共振成像以及磁感应肿瘤热疗等生物医学领域有广泛的应用前景。如何构建生物医用磁性纳米材料,解决其控制制备的关键科学问题和建立相关标准,发现磁性纳米材料新的生物效应,并解决其在生物医学应用中核心科学问题,是实现临床实际应用的挑战和迫切需求。本项目经过多年研究取得了如下创新成果: (1)磁性纳米材料的制备、标准研制及电磁控制组装 系统研究了磁性纳米颗粒(Fe 3O 4 与γ-Fe 2 O 3 )的制备方法及机理,实现了结构、尺寸和形貌控制制备,结果发表在Coll. Surf. A、J. Mag. Mag. Mater.、Chem. Mater.等专业期刊上,被SCI正面他引总计290篇次。研制出10L纳米γ-Fe 2O 3 弛豫率国家标准物 质(GBW(E)130387),教育部组织的科技成果鉴定认为该标准物质填补了国内外空白,对磁共振成像造影剂研制、生产及临床应用具有重要意义。提出了一种基于交变磁场下磁性纳米颗粒间弛豫率差异导致的组装新机制,制备得到具有各向异性磁热效应的水凝胶,结果发表在Angew. Chem. Int. Ed.、ChemPhysChem、Adv. Mater.等专业期刊上,被同行认为“交变磁场组装磁性纳米颗粒是过去十几年来除了静磁场控制组装以外首次提出的新的组装方式和机制”,“首次制备除了具有各向异性磁热效应的磁性水凝胶”,“在未来的临床热疗中具有重要应用前景”。

纳米材料在医药方面的应用

纳米材料在医药方面的应用

纳米材料在医药方面的应用 摘要:本文介绍了什么是纳米材料,纳米材料在生物医学领域的最新应用及研究状况,简要列举了纳米生物材料在医药学应用的最新实例,并对其前景进行了展望。 关键词:纳米材料生物医药最新应用展望 正文:纳米是一个微小的尺度单位,纳米是十亿分之一米(109-),大约是单个原子直径的4倍,通过对在纳米尺度上新现象、新过程的观察,纳米技术为人们提供了许多性能独特的工具、材料、器件和系统]1[。当前纳米技术的研究正快速地从观察和发 现向设计和制造复杂的纳米尺度集合体转变纳米技术研究将是系统的、基于多学科的纳米技术具有巨大的潜能,可望取代现有大多数技术,创造新的工业,并在能源、环境、通信、计算、医药、空间探索、国家安全和基于材料的任何领域中改变基础的科学模型。 我们知道,细胞具有微米(106-m)量级的空间尺度,生物大分子具有纳米量级的空 间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米 微粒制成特殊药物或新型抗体进行局部定向治疗等]2[。 1、纳米材料在医药、医学领域的应用 目前纳米材料在生物医学领域已经得到广泛的应用,在基础医学、药物学、临床医学和预防医学方面,纳米材料作用的发挥都已不容忽视]3[。纳米材料在生物医学中检测、诊断。药物治疗以及健康预防等方面都取得了很好的发展。 1.1纳米材料在医学检验诊断技术方面的应用 生物医学起源于诊断,没有很好的诊断手段就没有很好的治疗和预防,目前随着科学技术的发展,诊断手段越来越高明、先进,得到了前所未有的发展。纳米材料在检验诊断中主要应用于三个方面:[1]利用纳米材料跟踪生物体内活动,对生物体内元素的积累和排除作出判断。[2]利用纳米颗粒极高的传感灵敏效应对疾病进行早期诊断]4[。利用纳米材料的特性去化验检测试样从而辅助治疗。 在具体应用方面的典型有量子点的荧光效应、磁性纳米材料的磁效应、纳米材料的吸附作用等等。 1.2纳米材料在药物治疗方面的应用 纳米生物材料,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好特性已在药物治疗方面取得了很大成功。 药物纳米载体具有高度靶向、药物控制释放、提高难溶药物的溶解率和吸收率优

相关主题