搜档网
当前位置:搜档网 › 锐角三角函数的经典测试题含答案

锐角三角函数的经典测试题含答案

锐角三角函数的经典测试题含答案
锐角三角函数的经典测试题含答案

锐角三角函数的经典测试题含答案

一、选择题

1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )

A .asinα+asinβ

B .acosα+acosβ

C .atanα+atanβ

D .tan tan a a αβ

+ 【答案】C

【解析】

【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.

【详解】

在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=

BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,

∴CD =BC+BD =atanα+atanβ,

故选C .

【点睛】

本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.

2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【分析】

如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2

220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40° ∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8 故选:C

【点睛】

本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

3.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )

A 5

B .35

C .22

D .23

【解析】

【分析】

先根据翻折变换的性质得到DEF AEF ???,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.

【详解】

解:∵△DEF 是△AEF 翻折而成,

∴△DEF ≌△AEF ,∠A =∠EDF ,

∵△ABC 是等腰直角三角形,

∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,

∴∠BED =∠CDF ,

设CD =1,CF =x ,则CA =CB =2,

∴DF =FA =2﹣x ,

∴在Rt △CDF 中,由勾股定理得,

CF 2+CD 2=DF 2,

即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠=

=. 故选:B .

【点睛】 本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.

4.直角三角形纸片的两直角边长分别为6,8,现将ABC V 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )

A .247

B 7

C .724

D .13

【答案】C

【解析】

试题分析:根据题意,BE=AE .设BE=x ,则CE=8-x .

在Rt △BCE 中,x 2=(8-x )2+62,

解得x=254,故CE=8-254=74

∴tan ∠CBE=724CE CB =. 故选C. 考点:锐角三角函数.

5.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45?,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60?和30°,则该电线杆PQ 的高度( )

A .623+

B .63+

C .103-

D .83+

【答案】A

【解析】

【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.

【详解】

解:延长PQ 交直线AB 于点E ,设PE=x .

在直角△APE 中,∠A=45°,

AE=PE=x ;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE 中,BE=

33PE=33x , ∵AB=AE-BE=6米,

则3, 解得:3

则BE=33+3.

在直角△BEQ中,QE=

3

3

BE=

3

3

(33+3)=3+3.

∴PQ=PE-QE=9+33-(3+3)=6+23.

答:电线杆PQ的高度是(6+23)米.

故选:A.

【点睛】

本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题. 6.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与

函数

1

y

x

=-、

2

y

x

=的图象交于B、A两点,则∠OAB大小的变化趋势为()

A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D

【解析】

【分析】

如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE

OF AF

=;设B为(a,

1

a

-),A为

(b,2

b

),得到OE=-a,EB=

1

a

-,OF=b,AF=2

b

,进而得到222

a b=,此为解决问题的关

键性结论;运用三角函数的定义证明知tan∠OAB=

2

2

为定值,即可解决问题.

【详解】

解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,

∴BE OE OF AF

=,

设点B为(a,

1

a

-),A为(b,2

b

),

则OE=-a,EB=

1

a

-,OF=b,AF=2

b

可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:

OB=22221OE EB a a +=+,

OA=2222

4OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b

++==++=222214()24b b b b ++=2 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.

故选D

【点睛】

该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.

7.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC=100米,∠PCA=35°,则小河宽PA 等于( )

A .100sin35°米

B .100sin55°米

C .100tan35°米

D .100tan55°米

【答案】C

【解析】

【分析】 根据正切函数可求小河宽PA 的长度.

【详解】

∵PA⊥PB,PC=100米,∠PCA=35°,

∴小河宽PA=PCtan∠PCA=100tan35°米.

故选:C.

【点睛】

此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

8.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:

tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)

A.5.6 B.6.9 C.11.4 D.13.9

【答案】C

【解析】

【分析】

根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.

【详解】

解:如图,延长DC、AB交于点E,

由斜坡轨道BC的坡度(或坡比)为i=1:2,得

BE:CE=1:2.

设BE=xm,CE=2xm.

在Rt△BCE中,由勾股定理,得

BE2+CE2=BC2,

即x2+(2x)2=(12)2,

解得x=12,

BE=12m,CE=24m,

DE=DC+CE=8+24=32m,

由tan36°≈0.73,得

=0.73,

解得AB=0.73×32=23.36m.

由线段的和差,得

AB=AE﹣BE=23.36﹣12=11.36≈11.4m,

故选:C.

【点睛】

本题考查解直角三角形的应用,利用勾股定理得出CE,BE的长是解题关键,又利用了正切函数,线段的和差.

9.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )

A.83

3

B.

43

3

C.8 D.83

【答案】A 【解析】【分析】

根据折叠性质可得BE=1

2

AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠

EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.

【详解】

∵对折矩形纸片ABCD,使AD与BC重合,AB=4,

∴BE=1

2

AB=2,∠BEF=90°,

∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,

∴∠EA′B=30°,

∴∠EBA′=60°,

∴∠ABM=30°,

∴在Rt△ABM中,AB=BM?cos∠ABM,即4=BM?cos30°,

解得:BM=83

故选A.

【点睛】

本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.

10.如图,菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,∠DOE=120°,DE =1,则BD=()

A 3

B.

23

3

C.3D.3

【答案】B

【解析】

【分析】

证明△OBE是等边三角形,然后解直角三角形即可.

【详解】

∵四边形ABCD是菱形,∴OD=OB,CD=BC.

∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.

∵∠DOE=120°,∴∠BOE=60°,∴△OBE是等边三角形,∴∠DBC=60°.

∵∠DEB=90°,∴BD=

23 sin60

DE

=

?

故选B.

【点睛】

本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

11.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()

A.2 B.4 C.23D.43

【答案】C

【解析】

【分析】

点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】

解:设AB=a,∠C=30°,则AC=2a,BC=3a,

设P、Q同时到达的时间为T,

则点P的速度为3a

T

,点Q的速度为

3a

T

,故点P、Q的速度比为3:3,

故设点P、Q的速度分别为:3v、3v,

由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,

y=1

2

?AB×BQ=

1

2

?6v×23v=63,解得:v=1,

故点P、Q的速度分别为:3,3,AB=6v=6=a,

则AC=12,BC=63,

如图当点P在AC的中点时,PC=6,

此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,

PC=6,则PH=PC sin C=6×1

2

=3,同理CH=3,则HQ=CH﹣CQ=33

3,

PQ22

PH HQ

+39

+3,

故选:C.

【点睛】

本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.

12.一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()

A.(303-50,30) B.(30, 303-50) C.(303,30) D.(30,303)

【答案】A

【解析】

【分析】

【详解】

解:OA=15×4=60海里,

∵∠AOC=60°,∴∠CAO=30°,

∵sin30°=OC

AO

=

1

2

∴CO=30海里,

∴AC=303海里,

∴BC=(303-50)海里,

∴B(303-50,30).

故选A

【点睛】

本题考查掌握锐角三角函数的应用.

13.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,嘉淇与假山的水平距离BD为6m,他的

眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60?刻度线,则假山的高度CD 为( )

A .()23 1.6m +

B .()22 1.6m +

C .()43 1.6m +

D .23m

【答案】A

【解析】

【分析】 根据已知得出AK=BD=6m ,再利用tan30°=

6

CK CK AK =,进而得出CD 的长. 【详解】

解:如图,过点A 作AK ⊥CD 于点K

∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,

∴DB=AK ,AB=KD=1.6米,∠CAK=30°,

∴tan30°=6

CK CK AK =, 解得:CK=23

即CD=CK+DK=23+1.6=(23+1.6)m .

故选:A .

【点睛】

本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.

14.如图,△ABC 的顶点是正方形网格的格点,则cos A =( )

A.1

2

B.

2

2

C.

3

2

D.

5

5

【答案】B

【解析】

【分析】

构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】

过A作AE⊥BE,连接BD,过D作DF⊥BF于F.

∵AE=BF,∠AEB=∠DFB,BE=DF,

∴△AEB≌△BFD,

∴AB=DB.∠ABD=90°,

∴△ABD是等腰直角三角形,

∴cos∠DAB=

2 2

.

答案选B.

【点睛】

本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.

15.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()

A.1

4

B.

1

6

C.

2

6

D.

3

10

【答案】B

【解析】

【分析】

过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平

行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=1

2 x,

CF=x.再由锐角三角函数定义作答即可.

【详解】

解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,

∴BC=AD,

设AB=2x,则BC=x.

如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,

∴四边形BOCE是平行四边形,

∵四边形ABCD是矩形,

∴OB=OC,

∴四边形BOCE是菱形.

∴OE与BC垂直平分,

∴EF=1

2

AD=

1

2

x,OE∥AB,

∴四边形AOEB是平行四边形,

∴OE=AB=2x,

∴CF=

1

2

OE=x.

∴tan∠EDC=

EF

DF

1

2

2

x

x x

+

1

6

故选:B.

【点睛】

本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.

16.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()

A.

cot cot

m

αβ

-

千米B.

cot cot

m

βα

-

千米C.

tan tan

m

αβ

-

千米D.

tan tan

m

βα

-

千米

【答案】A

【解析】

【分析】

根据锐角三角函数的概念进行作答.

【详解】

在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β= cot cot m αβ

-. 所以答案选A. 【点睛】

本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.

17.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )

A .183π-

B .183π

C .32316π

D .1839π-

【答案】C

【解析】

【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.

【详解】

解:∵四边形ABCD 是菱形,∠DAB=60°,

∴AD=AB=8,∠ADC=180°-60°=120°,

∵DF 是菱形的高,

∴DF ⊥AB , ∴DF=AD ?sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积

=2

120(43)84332316360

ππ??=. 故选:C.

【点睛】

本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.

18.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )

A.303n mile B.60 n mile C.120 n mile D.(30303)

+n mile 【答案】D

【解析】

【分析】

过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.

【详解】

过C作CD⊥AB于D点,

∴∠ACD=30°,∠BCD=45°,AC=60.

在Rt△ACD中,cos∠ACD=CD AC

∴CD=AC?cos∠3

303 =.

在Rt△DCB中,∵∠BCD=∠B=45°,

∴3

∴3

答:此时轮船所在的B处与灯塔P的距离是(3)nmile.

故选D.

【点睛】

此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

19.已知B 港口位于A 观测点北偏东45°方向,且其到A 观测点正北风向的距离BM 的长为102km ,一艘货轮从B 港口沿如图所示的BC 方向航行47km 到达C 处,测得C 处位于A 观测点北偏东75°方向,则此时货轮与A 观测点之间的距离AC 的长为( )km .

A .83

B .93

C .63

D .73

【答案】A

【解析】

【分析】

【详解】

解:∵∠MAB=45°,BM=102,

∴AB=22BM MA +=22(102)(102)+=20km ,

过点B 作BD ⊥AC ,交AC 的延长线于D ,

在Rt △ADB 中,∠BAD=∠MAC ﹣∠MAB=75°﹣45°=30°,

tan ∠BAD=BD

AD =3

∴AD=3BD ,BD 2+AD 2=AB 2,即BD 2+(3BD )2=202,

∴BD=10,∴AD=103,

在Rt △BCD 中,BD 2+CD 2=BC 2,BC=43,∴CD=23,

∴AC=AD ﹣CD=103﹣23=83km ,

答:此时货轮与A 观测点之间的距离AC 的长为83km .

故选A .

【考点】

解直角三角形的应用-方向角问题.

20.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

A.60海里B.45海里C.3D.3

【答案】D

【解析】

【分析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.

【详解】

解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,

故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:22303

-=

AB AP

故选:D.

【点睛】

此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

中考数学压轴题专题锐角三角函数的经典综合题

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3 AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得33,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ?=6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30 CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴33∴3 ∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235

锐角三角函数单元测试题

锐角三角函数单元测试题 1、已知Rt △ABC 中,∠C=90°,tanA= 4 3,BC=8,则AC 等于( ) A .6 B .323 C .10 D .12 2、已知∠A 是锐角,且sinA= 3 2 ,那么∠A 等于( ) A .30°B .45° C .60° D .75° 4、化简2)130(tan - =( )。A 、3 31- B 、13- C 、133 - D 、13- 5、在Rt △ABC 中,∠C =900 ,∠A 、∠B 的对边是a 、b ,且满足02 2=--b ab a ,则tanA 等于( ) A 、1 B 、 251+ C 、251- D 、2 5 1± 6、如图1所示,△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,若BD :AD=1:4,则tan ∠BCD 的值是( )A .1 4 B . 13 C .1 2 D .2 (1) (2) (3) 7、如图2所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P?是AB?延长线上一点,?BP=2cm ,则tan ∠OPA 等于( ) A . 32 B .23 C .2 D .1 2 8、如图3,起重机的机身高AB 为20m ,吊杆AC 的长为36m ,?吊杆与水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C 离地面的最大高度和离机身的最远水平距离分别是( ) A .(30+20)m 和36tan30°m B .(36sin30°+20)m 和36cos30°m C .36sin80°m 和36cos30°m D .(36sin80°+20)m 和36cos30°m 9、王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向 走200m 到C 地,此时王英同学离A 地 ( ) A 350m B 100 m C 150m D 3100m 一、 填空题 1、在△ABC 中,若│sinA-1│+(3 -cosB )=0,则∠C=_______

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

(完整版)锐角三角函数练习题及答案

锐角三角函数 1.把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 2.如图1,已知P 是射线OB 上的任意一点,PM ⊥OA 于M ,且PM :OM=3:4,则cos α的值等于( ) A .34 B .43 C .45 D .35 图1 图2 图3 图4 图5 3.在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 4.在Rt △ABC 中,∠C=90°,cosA=23 ,则tanB 等于( ) A .35 B .53 C .255 D .52 5.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,?tanA=_______. 6.如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______. 7.如图3,在Rt △ABC 中,∠C=90°,b=20,c=202,则∠B 的度数为_______. 8.如图4,在△CDE 中,∠E=90°,DE=6,CD=10,求∠D 的三个三角函数值. 9.已知:α是锐角,tan α=724 ,则sin α=_____,cos α=_______. 10.在Rt △ABC 中,两边的长分别为3和4,求最小角的正弦值为 10.如图5,角α的顶点在直角坐标系的原点,一边在x 轴上,?另一边经过点P (2,23),求角α的三个三角函数值. 12.如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,?BC=4,?求sin α,cos α,tan α的值. 解直角三角形 一、填空题 1. 已知cosA=2 3,且∠B=900-∠A ,则sinB=__________.

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

锐角三角函数》单元测试题

第四章《锐角三角函数》单元测试题 一.选择题(共10小题) 1.利用计算器求sin30°时,依次按键,则计算器上显示的结果是 () A.0.5 B.0.707 C.0.866 D.1 2.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于() A.B.C.D. 3.已知sinα?cosα=,45°<α<90°,则cosα﹣sinα=() A.B.﹣C.D.± 4.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A.B.C.D. 5.在Rt△ABC中,∠C=90°,sinA=,则cosB等于() A.B.C.D. 6.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是() A.bcosB=c B.csinA=a C.atanA=b D. 7.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是() A.b=atanB B.a=ccosB C.D.a=bcosA 8.如果∠A为锐角,且sinA=0.6,那么() A.0°<A≤30°B.30°<A<45°C.45°<A<60°D.60°<A≤90° 9.若锐角α满足cosα<且tanα<,则α的范围是() A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°

10.下面四个数中,最大的是( ) A . B .sin88° C .tan46° D . 二.填空题(共8小题) 11.用“>”或“<”号填空: 0. 12.已知∠A 为锐角,且,那么∠A 的范围是 . 13.在Rt △ABC 中,∠C=90°,sinA=,则tanA= . 14.如上图,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB 的值 是 . 15.如图,当小杰沿坡度i=1:5的坡面由B 到A 行走了26米时,小杰实际上升高度 AC= 米.(可以用根号表示) 16.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,若cosB=,EC=2,P 是AB 边上的一个动点,则线段PE 的长度的最小值 是 . 17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据 sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器). 18.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角 为30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为 m (结果保留根号). 三.解答题(共8小题) 19.在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c , 求证:=. 第16题 第17题

新初中数学锐角三角函数的经典测试题及答案

新初中数学锐角三角函数的经典测试题及答案 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3 tan 4 B =,CD 为AB 边上的中线,CE 平分ACB ∠,则 AE AD 的值( ) A . 35 B . 34 C . 45 D . 67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE = 3 7 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE = 12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :1 2 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4 B =, ∴A C :BC =3:4, ∴AE :BE =3:4 ∴AE = 3 7 AB , ∵CD 为AB 边上的中线, ∴AD = 1 2 AB ,

∴ 3 6 717 2 AB AE AD AB ==, 故选:D . 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键. 2.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( ) A .1000sin α米 B .1000tan α米 C . 1000 tan α 米 D . 1000 sin α 米 【答案】C 【解析】 【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α=,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α=, ∴1000 tan tan AC AB αα = =米. 故选:C . 【点睛】 本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

完整版锐角三角函数练习题及答案.doc

锐角三角函数 1 .把 Rt △ABC 各边的长度都扩大 3 倍得 Rt △A′B′C′,那么锐角 A , A ′的余弦值的关系为() A .cosA=cosA ′B. cosA=3cosA ′C. 3cosA=cosA ′ D .不能确定 2 .如图 1 ,已知 P 是射线 OB 上的任意一点, PM ⊥ OA 于 M ,且 PM :OM= 3 : 4 ,则 cos α的值等于() A .3 B. 4 C. 4 D . 3 4 3 5 5 图 1 图 2 图 3 图 4 图 5 3 .在△ABC 中,∠C=90 °,∠A ,∠B,∠C 的对边分别是a, b , c,则下列各项中正确的是() A .a=c ·sin B B. a=c ·cosB C.a=c ·tanB D.以上均不正确 4 .在 Rt △ABC 中,∠C=90 °,cosA= 2 ,则 tanB 等于()3 A .3 B. 5 C. 2 5 D . 5 5 3 5 2 5 .在 Rt △ABC 中,∠C=90 °,AC=5 ,AB=13 ,则 sinA=______ , cosA=______ , ?tanA=_______ . 6 .如图 2 ,在△ABC 中,∠C=90 °,BC: AC=1 : 2 ,则 sinA=_______ ,cosA=______ , tanB=______ . 7 .如图 3 ,在 Rt △ABC 中,∠C=90 °,b=20 , c=20 2 ,则∠B 的度数为 _______. 8 .如图 4 ,在△CDE 中,∠E=90 °,DE=6 , CD=10 ,求∠D 的三个三角函数值. 9 7 .已知:α是锐角, tan α=,则sinα=_____,cosα=_______. 24 10 .在 Rt △ABC 中,两边的长分别为 3 和 4 ,求最小角的正弦值为 10 .如图 5 ,角α的顶点在直角坐标系的原点,一边在x 轴上, ?另一边经过点 P( 2 ,2 3),求角α的三个三角 函数值. 12 .如图,在△ ABC 中,∠ABC=90 °,BD ⊥ AC 于 D,∠CBD= α,AB=3 ,?BC=4 ,?求 sin α,cos α,tan α的值. 解直角三角形 一、填空题 3 1.已知 cosA=,且∠B=900-∠A,则sinB=__________. 2

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

(完整版)新人教版九年级下数学锐角三角函数测试题

人教版九年级数学下册《锐角三角函数》测试题 (满分120分,时间120分钟) 一、选择题:(每小题3分,共30分) 1、等腰三角形底边长为10cm ,周长为36cm ,则底角的正弦值为( )。 A 、 185 B 、165 C 、1513 D 、13 12 2、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 也扩大3倍 B 缩小为原来的 3 1 C 都不变 D 有的扩大,有的缩小 3、以直角坐标系的原点O 为圆心,以1为半径作圆。若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为 ( ) A (cosα,1) B (1,sinα) C (sinα,cosα) D (cosα,sinα) 4、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=5 3,则BC 的长是 ( ) A 、4cm B 、6cm C 、8cm D 、10cm 5、已知a 为锐角,sina=cos500则a 等于( ) A 20° B 30° C 40° D 50° 6、若tan(a+10°)=3,则锐角a 的度数是( ) A 、20° B 、30° C 、35° D 、50° 7、在△ABC 中,∠C=90°,则下列关系成立的是( ) A. AC=ABsinA B. BC=ACsinB C. AC=ABsinB D. AC=BCtanA 8、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30o角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .()37+米 D.() 3214+米 9、已知sin α= 2 3,且α为锐角,则α=( )。 A 、75° B 、60° C 、45° D 、30° 10、如果∠A 是等边三角形的一个内角,那么cosA 的值等于( )。 A 、2 1 B 、 2 2 C 、 2 3 D 、1 二、填空题:(30分) 11、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = .,sinB = ,tanB = . 12、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = . 13、已知tan α= 12 5,α是锐角,则sin α= . 14、cos 2(50°+α)+cos 2(40°-α)-tan(30°-α)tan(60°+α)= . 15、如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察 到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号). 16、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 17、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。 18、如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。 19、在△ABC 中,∠ACB =90°,cosA= 3 ,AB =8cm ,则△ABC 的面积为 . x O A y B

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数经典总结

锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做 A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

锐角三角函数的经典测试题

锐角三角函数的经典测试题 一、选择题 1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( ) A .asinα+asinβ B .acosα+acosβ C .atanα+atanβ D .tan tan a a αβ + 【答案】C 【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】 在Rt △ABD 和Rt △ABC 中,AB =a ,tanα= BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】 本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】

根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD=DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.在半径为1的O e 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:AD=32AE =, . sin ∠AOD= 32,∴∠AOD=60°; sin ∠AOE=22 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C . 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 4.菱形ABCD 的周长为20cm,DE ⊥AB,垂足为E,sinA=35 ,则下列结论正确的个数有( ) ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm 210cm .

锐角三角函数知识点总结及单元测试题

锐角三角函数知识点总结及 单元测试题 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

初三下学期锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90B 90∠-?=∠?=∠+∠得由B A 邻边 A C A 90B 90∠-?=∠?=∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当 0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而 减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 :i h l =h l α

相关主题