搜档网
当前位置:搜档网 › DOS下面的内存管理和优化

DOS下面的内存管理和优化

DOS下面的内存管理和优化
DOS下面的内存管理和优化

DOS下面的内存管理和优化

一、DOS下内存的分类和分配

1.常规内存(ConventionalMemory)

DOS为了保持对X86软件向前及向后的兼容性,始终维持着640KB的内存限制。这640KB勿需借助内存管理程序即可直接寻址的内存称为常规内存。这也是DOS系统下所有应用软件都可利用的区域。

2.上位内存区(UMAUpperMemoryArea)和上层内存块(UMBUpperMemoryBlock)

紧邻常规内存上端的区域即UMA,其中包含ROM,一般留作系统硬件(如BIOS、视频等)使用,故称系统区域,最大384KB,在1M之内。8086/8088以上的系统的地址线寻址都能达到1M或更高,故也有将1M以内的内存叫常规内存的。其中的剩余空间即UMB。在386以上的系统中,通过在config.sys中设置:DEVICE=EMM386.EXE和DOS=UMB,即可使用UMB存放设备驱动、command等常驻内存程序。

3.扩充内存(ExtendedMemory)

随着CPU性能的提高以及程序对内存要求的增大,DOS对内存管理需要突破640KB的限制,但又要解决兼容性的矛盾,因此出现了扩充内存和扩展内存的概念。在286以上的系统中,采取线性的内存寻址方式直接存取1M以上的新增的内存称ExtendedMemory。通常,DOS是通过在config.sys中设置DEVICE=C:\DOS\HIMEM.SYS来使用ExtendedMemory,该驱动程序执行Lotus/Intel/microsoft/AST等公司共同制定的XMSExtendedMemorySpecification规范,以防止两个程序同时存取相同内存位置的情况。它主要用于Windows环境下系统和用户程序。在XMS中起始位置的64K称为高内存区(HMAHighMemoryArea)。可以通过在config.sys中设置DOS=HIGH,将MS-DOS的大部分程序从UMA中移至HMA中,以便用户有更多可用的常规内存。

4.扩展内存(ExpandedMemory)

在早期的8086/8088计算机中,超出由地址线直接寻址的,而由系统区域中的"页框"(Pageframe)间接存取的附加内存称ExpandedMemory。

286以上的计算机都能够使用ExtendedMeory,且它比ExpandedMemory速度快,故当前的机种大部分是以增加ExtendedMemory的方式增加内存容量。但在286以上的计算机中运行一些老程序(如lotus1-2-3)时,需要ExpandedMemory。这时只要在config.sys中设置DEVICE=EMM386.SYS,利用ExtendedMemory模拟ExpandedMemory。DOS6.0以上的版本还可让扩展内存和扩充内存设置共享的内存,以增加使用上的便利和弹性。当程序需要ExpandedMemory中的数据时,EMM386.SYS先将数据由ExpandedMemory存入"页框",将"页框"中不再需要的数据回写到ExpandedMemory。

二、DOS下内存的优化

优化内存主要要达到两个目的,一是将常驻程序从常规内存移出,以便为其他DOS应用程序

留出更多空间;二是提供扩展内存、扩充内存,供磁盘高速缓存、Windows及其它使用1M 以上的程序使用。

1.增加常规内存

在DOS环境下发生"内存不足",大部分是因为常规内存不够用造成的。增加常规内存的措施,可以在config.sys中设置:

DOS=HIGH将MS-DOS的大部分程序从UMA移至HMA

DEVICE=C:\DOS\HIMEM.SYS使用ExtendedMemory

LASTDRIVE=F减小最大驱动器符号(一个驱动器约占100B的空间)等。

2.增加ExtendedMemory

在Windows3.X环境下发生"内存不足"提示,大部分是因为ExtendedMemory不足造成的。增加ExtendedMemory的措施有:

(1)将autoexec.bat中的SMARTDRV命令后的参数改小,即减少分配给磁盘高速缓存器的空间;

(2)在config.sys中设置EMM386.EXE MIN=0,即不保留模拟ExpandedMemory的ExtendedMemory,但在需要时仍能提供ExpandedMemory;或设置EMM386.EXENOEMS,即不使用ExtendedMemory模拟ExpandedMemory,只负责到UMB存取数据;

(3)在config.sys中删除DOS=HIGH,将MS-DOS从HMA送回UMA。

3.增加ExpandedMemory

(1)用EMM386.EXE RAM使ExtendedMemory模拟ExpandedMemory。

(2)尽可能减少分配给RAM盘之类程序的ExpandedMemory。

4、将设备驱动程序装入上位内存

为了提供更多的常规内存给其它应用程序使用,需将一些外部设备的驱动程序(如

cdrom.sys)安装到上位内存区块(UMB),在Config.sys中可做如下配置:

device=HIMEM.SYS

device=EMM386.SYS NOEMS

DOS=HIGH,umb

DeviceHIGH=cdrom.sys

5、将内存驱留程序装入上位内存

将一些常用的内存驱留程序用loadhigh(LH)命令装入UMB,亦可节约基本内存,例如在Auoexec.bat文件中加入命令行:LH C:\DOS\DOSkey

即可将用户普遍使用的DOSkey(键盘命令运行增强程序)加载到上位内存,可节省约3KB的基本内存。

6、建立RAM盘

由于从内存中读取数据比硬盘中读取得快,对于频繁读取磁盘的应用程序及文件如字库文件、图形图像程序文件、字处理程序等,可用RAM盘加快运行。

在Config.sys中设置RAM盘方法如下:

DEVICE=C:\DOS\RAMDRIVE.sys/E1024

其中使用/E参数,将RAM盘建立在扩充内存中,若加/A参数,则将RAM盘建在扩展内存中。因为访问扩充内存比访问扩展内存快,所以应尽量使用/E参数。

从以上各类优化方法可以看出,在DOS下对内存优化,总是"拆东墙补西墙"以牺牲某一类内存的空间,给另一类内存腾出较多的空间。如要增加UMB的空间,是以减少ExtendedMemory 的空间和将一些程序从UMB移至ExtendedMemory而实现的。所以,关键是根据自己的系统及使用情况灵活调整。

从WIN95开始,操作系统全面接管了对内存的控制,操作系统对内存的使用自动进行优化,但这种优化并不是完美的,仍然可以采用其他方法进一步优化。

三、优化"虚拟内存"

随着软件技术的发展,软件对内存的需求大为增加,在运行大程序时,若机器中的物理内存不够用,系统会自动在硬盘上划出一个空间来建立一个虚拟内存文件,以弥补物理内存的不足,Windows操作系统在硬盘上创建的交换文件(Win386.swp),即通常所说的"虚拟内存"。虽然可用硬盘来代替内存运行更多的程序,但硬盘的速度毕竟比真正的物理内存慢得多,其实质是"以时间换取空间"。

关于交换文件的设置,Windows98(95)为用户提供了两种选择,即"让Windows管理虚拟内存设置"和"用户自己指定虚拟内存设置"。若选择前者(默认选择),则交换文件的大小是不固定的,从而造成它在C盘上呈碎片状存放。即使运行"磁盘碎片整理程序"也不能消除碎片,因为Windows98(95)启动后,交换文件始终是在用文件,所以不能进行整理。

CPU与硬盘交换数据的速度本来就比与物理内存交换数据的速度要慢,如果交换文件在硬盘上不连续存放,速度将进一步降低,必然会影响整机的运行速度。因此,可以选择"用户自己指定虚拟内存设置",通过将交换文件设置成大小固定,且在硬盘上连续存放的文件,达到优化虚拟内存,提高整机运行速度的目的。具体步骤如下:

1.用鼠标右键单击桌面上的"我的电脑"图标,然后单击"属性"选项,在"系统属性"对话框的"性能"选项卡上,单击"虚拟内存"。

2.在"虚拟内存"对话框上,选中"用户自己指定虚拟内存设置";在"硬盘"框中,选定为D 盘,然后单击"确定"。

3.重新启动电脑,交换文件已移到D盘上。启动"磁盘碎片整理"程序,整理C盘。

4.在上述的"性能"选项卡上,在"硬盘"框中,选定为C盘;在"最大值"和"最小值"框上键入自定的交换文件大小值(约为物理内存的4倍),然后单击"确定"。

5.重新启动电脑,设置即告完成。一个固定大小的交换文件连续存放在C盘上。文件名为Win386.swp,存放在根目录中。

但是,这样手工设置虚拟内存后,电脑有可能出现异常。因此,应慎用此法。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

内存管理模型的设计与实现

操作系统课程实验报告 学生姓名:尹朋 班学号:111131 指导教师:袁国斌 中国地质大学信息工程学院 2015年1月4日

实习题目:内存管理模型的设计与实现 【需求规格说明】 对内存的可变分区申请采用链表法管理进行模拟实现。要求: 1.对于给定的一个存储空间自己设计数据结构进行管理,可以使用单个链 表,也可以使用多个链表,自己负责存储空间的所有管理组织,要求采用分页方式(指定单元大小为页,如4K,2K,进程申请以页为单位)来组织基本内容; 2.当进程对内存进行空间申请操作时,模型采用一定的策略(如:首先利用 可用的内存进行分配,如果空间不够时,进行内存紧缩或其他方案进行处理)对进程给予指定的内存分配; 3.从系统开始启动到多个进程参与申请和运行时,进程最少要有3个以上, 每个执行申请的时候都要能够对系统当前的内存情况进行查看的接口; 4.对内存的申请进行内存分配,对使用过的空间进行回收,对给定的某种页 面调度进行合理的页面分配。 5.利用不同的颜色代表不同的进程对内存的占用情况,动态更新这些信息。 【算法设计】 (1)设计思想: 通过建立一个链表,来描述已分配和空闲的内存分区。对于每一个分区,它可能存放了某个进程,也可能是两个进程间的空闲区。链表中的每一个结点,分别描述了一个内存分区,包括它的起始地址、长度、指向下一个结点的指针以及分区的当前状态。 在基于链表的存储管理中,当一个新的进程到来时,需要为它分配内存空间,即为它寻找某个空闲分区,该分区的大小必须大于或等于进程的大小. 最先匹配法:假设新进程的大小为M,那么从链表的首节点开始,将每一个空闲节点的大小与M相比较,直到找到合适的节点.这种算法查找的节点很少,因而速度很快. 最佳匹配算法:搜索整个链表,将能够装得下该进程的最小空闲区分配出去. 最坏匹配法:在每次分配的时候,总是将最大的那个空闲区切去一部分,分配给请求者.它的依据是当一个很大的空闲区被切割成一部分后,可能仍然是一个比较大的空闲区,从而避免了空闲区越分越小的问题. (2)设计表示: 分区结点设计: template class ChainNode { friend Chain; public:

linux内存管理子系统 笔记

4-4 linux内存管理子系统 4-4-1 linux内存管理(参考课件) 物理地址:cpu地址总线上寻址物理内存的地址信号,是地址变换的最终结果 逻辑地址:程序代码经过编译后,出现在汇编程序中的地址(程序设计时使用的地址) 线性地址:又名虚拟地址,32位cpu架构下4G地址空间 CPU要将一个逻辑地址转换为物理地址,需要两步: 1、首先CPU利用段式内存管理单元,将逻辑地址转换成线性地址; 2、再利用页式内存管理单元,把线性地址最终转换为物理地址 相关公式: 逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)(通用的) 16位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值×16+逻辑地址的偏移部分 物理地址=线性地址(没有页式管理) 32位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值+逻辑地址的偏移部分 物理地址<——>线性地址(mapping转换) ARM32位:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 逻辑地址=段内偏移量(段基地址为0) 线性地址=逻辑地址=段内偏移量(32位不用乘以32) 物理地址<——>线性地址(mapping转换) ************************!!以下都是x86模式下!!********************************* 一、段式管理 1.1、16位CPU:(没有页式管理) 1.1.1、段式管理的由来: 16位CPU内部有20位地址总线,可寻址2的20次方即1M的内存空间,但16位CPU 只有16位的寄存器,因此只能访问2的16次方即64K。因此就采用了内存分段的管理模式,在CPU内部加入了段寄存器,这样1M被分成若干个逻辑段,每个逻辑段的要求如下: 1、逻辑段的起始地址(段地址)必须是16的整数倍,即最后4个二进制位须全是0 (因此不必保存)。 2、逻辑段的最大容量为64K。 1.1.2、物理地址的形成方式: 段地址:将段寄存器中的数值左移4位补4个0(乘以16),得到实际的段地址。 段偏移:在段偏移寄存器中。 1)逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 2)由逻辑地址得到物理地址的公式为:(因为没有页式管理,所以这一步就得到了物理地址)物理地址PA=段寄存器的值×16+逻辑地址的偏移部分(注意!!)(段与段可能会重叠)

基于可重定位分区分配算法的内存管理的设计与实现

组号成绩 计算机操作系统 课程设计报告 题目基于可重定位分区分配算法的内存管理的设计与实现 专业:计算机科学与技术 班级: 学号+: 指导教师: 2016年12月23 日

一.设计目的 掌握内存的连续分配方式的各种分配算法 二.设计内容 基于可重定位分区分配算法的内存管理的设计与实现。本系统模拟操作系统内存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程内存起始地址和进程状态。内存分区表采用空闲分区表的形式来模拟实现。要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。 三.设计原理 可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对内存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息 四.详细设计及编码 1.模块分析 (1)分配模块 这里采用首次适应(FF)算法。设用户请求的分区大小为u.size,内存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。空闲分区按地址递增的顺序排列;在分配内存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且 m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块内存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

全面介绍Windows内存管理机制

全面介绍Windows内存管理机制及C++内存分配实例 文章整理: https://www.sodocs.net/doc/6d183991.html, 文章来源: 网络- - 本文背景: 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。本文内容: 本文一共有六节,由于篇幅较多,故按节发表。 1.进程地址空间 1.1地址空间 ?32|64位的系统|CPU 操作系统运行在硬件CPU上,32位操作系统运行于32位CPU 上,64位操作系统运行于64位CPU上;目前没有真正的64位CPU。 32位CPU一次只能操作32位二进制数;位数多CPU设计越复杂,软件设计越简单。 软件的进程运行于32位系统上,其寻址位也是32位,能表示的空间是232=4G,范围从0x0000 0000~0xFFFF FFFF。 ?NULL指针分区 范围:0x0000 0000~0x0000 FFFF 作用:保护内存非法访问 例子:分配内存时,如果由于某种原因分配不成功,则返回空指针0x0000 0000;当用户继续使用比如改写数据时,系统将因为发生访问违规而退出。 那么,为什么需要那么大的区域呢,一个地址值不就行了吗?我在想,是不是因为不让8或16位的程序运行于32位的系统上呢?!因为NULL分区刚好范围是16的进程空间。 ?独享用户分区 范围:0x0001 0000~0x7FFE FFFF 作用:进程只能读取或访问这个范围的虚拟地址;超越这个范围的行为都 会产生违规退出。 例子: 程序的二进制代码中所用的地址大部分将在这个范围,所有exe 和dll文件都加载到这个。每个进程将近2G的空间是独享的。 注意:如果在boot.ini上设置了/3G,这个区域的范围从2G扩大为3G: 0x0001 0000~0xBFFE FFFF。 ?共享内核分区 范围:0x8000 0000~0xFFFF FFFF 作用:这个空间是供操作系统内核代码、设备驱动程序、设备I/O高速缓存、非页面内存池的分配、进程目表和页表等。 例子: 这段地址各进程是可以共享的。

Solaris 8内存管理机制研究

Solaris 8内存管理机制研究 吴海燕 戚丽 冯珂 摘 要:寻找性能瓶颈是性能分析中的一项重要任务,内存瓶颈的表现并不像CPU或磁盘那样直接,本文通过对Solaris 8内存管理机制的研究,给出了寻找Solaris 8系统内存瓶颈的方法。 关键词:Solaris 8,内存管理,性能优化 一、问题的提出 清华大学计算机与信息管理中心数据中心现有服务器近百台,其中包括了SUN Fire 15000、SUN Enterprise 5500、SUN Enterprise 5000等大型SUN服务器,Solaris 8是主流操作系统。为了对服务器的资源(如CPU、内存、磁盘、网络)的使用情况进行长期监控,建立性能优化(performance tuning)的基准值,我们开发了一套脚本程序定时采集系统运行参数。在长期的监控中,我们发现Solaris 8系统的空闲内存(freemem)呈现一个有趣的变化规律,如图1所示: 图1 空闲内存(freemem)变化图 图1是某Solaris 8系统(在下文中我们称之为15k-a)自2003年2月份以来的freemem 变化情况,横坐标是时间,纵坐标是freemem的数量,以8K字节为单位。15k-a配置是10路Super SPARCIII CPU,10GB物理内存。从上图可以看到在正常运行时,freemem应该是比较稳定的,15k-a主要是运行数据库,数据库在运行时会占用2G内存作为SGA区使用,因此在通常的负载下,freemem保持在6~7G之间是比较正常的。稳定一段时间后,

15k-a的freemem会持续走低,直到最低值,约为18893×8KMB,然后系统开始回收内存,我们就会看到freemem数量急剧上升。freemem的陡降都发生在凌晨1:00之后,检查系统作业发现每天1:00都会有一个数据库备份脚本开始运行:首先是用“exp”命令给数据库做逻辑备份,然后用“cp”命令把备份出来的文件拷贝到后备存储上。这两个命令都是正常退出,没有任何报错。开始时我们曾怀疑是有内存泄漏,当某一天freemem大幅攀升时,此怀疑被解除了,因为如果有内存泄漏,系统是无法将内存回收回来的。 对于一个物理内存为10GB的系统来说,如果空闲内存(freemem)真的减少到不到二百兆,那将存在着严重的问题。但奇怪的是系统的CPU使用率一直很低,所有进程的反应也很快,系统没有任何资源匮乏的迹象。如何解释这些问题呢,为此我们对Solaris 2.x 的内存管理机制进行了研究。 二、Solaris的内存管理机制 Solaris 8的内存管理为虚拟内存管理。[1]简单地说,虚拟内存就是进程看到比它实际使用的物理内存多得多的内存空间,对于64位的Solaris 8操作系统,进程可以通过8K 大小的段寻址访问2的64次方字节的内存空间,这种8K的段被称为页(page)。传统的UNIX通过进程(pagedaemon)完成虚拟地址和物理地址间的转换,在Solaris中这些是通过一个硬件-MMU(Memory Management Unit)-来实现的。在多处理器系统中,每个CPU 都有自己的MMU。Solaris 8的虚拟存储体系由系统寄存器、CPU CACHE、主存(RAM,物理内存)、外存(磁盘、磁带等)构成。 有两个基本的虚拟内存系统管理模型[2]:交换(swapping)和按需换页(demand paged)模型。交换模型的内存管理粒度是用户进程,当内存不足时,最不活跃的进程被交换出内存(swapping out)。按需换页模型的内存管理粒度是页(page),当内存匮乏时,只有最不经常使用的页被换出。Solaris 8结合使用了这两种内存管理模型,在通常情况下使用按需换页模型,当内存严重不足时,使用交换模型来进行内存释放。 与传统UNIX系统相比,Solaris虚拟内存系统的功能要丰富得多,它负责管理所有与I/O和内存相关的对象,包括内核、用户应用程序、共享库和文件系统。传统的UNIX系统V(System V)使用一个单独的缓冲区来加速文件系统的I/O, Solaris 8则使用虚拟内存系统来管理文件系统的缓存,系统的所有空闲内存都可以被用来做为文件I/O缓存,因为RAM的访问速度比磁盘快得多,所以这样做带来的性能提高是可观的。这也意味着在存在大量文件系统I/O的系统上,空闲内存的数量几乎是0。 了解系统内存被分配到了什么地方,系统在什么情况下进行内存整理是系统管理的重

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

操作系统内存管理系统

操作系统存管理 1. 存管理方法 存管理主要包括虚地址、地址变换、存分配和回收、存扩充、存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求存空间少的程序,造成存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的存。

2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行存分区的共享。 分区式存储管理引人了两个新的问题:碎片和外碎片。 碎片是占用分区未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是存紧缩(compaction)。

2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要

JVM原理以及JVM内存管理机制

一、 JVM简介 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成, 首先来说一下JVM工作原理中的jdk这个东西, .JVM 在整个jdk中处于最底层,负责于操作系统的交互,用来屏蔽操作系统环境,提供一个完整的Java运行环境,因此也就虚拟计算机. 操作系统装入JVM是通过jdk中Java.exe来完成。 通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类。 对于JVM自身的物理结构,我们可以从下图了解:

JVM的一个重要的特征就是它的自动内存管理机制,在执行一段Java代码的时候,会把它所管理的内存划分 成几个不同的数据区域,其中包括: 1. 程序计数器,众所周知,JVM的多线程是通过线程轮流切换并 分配CPU执行时间的方式来实现的,那么每一个线程在切换 后都必须记住它所执行的字节码的行号,以便线程在得到CPU 时间时进行恢复,这个计数器用于记录正在执行的字节码指令的地址,这里要强调的是“字节码”,如果执行的是Native方法,那么这个计数器应该为null; 2.

3. Java计算栈,可以说整个Java程序的执行就是一个出栈入栈 的过程,JVM会为每一个线程创建一个计算栈,用于记录线程中方法的调用和变量的创建,由于在计算栈里分配的内存出栈后立即被抛弃,因此在计算栈里不存在垃圾回收,如果线程请求的栈深度大于JVM允许的深度,会抛出StackOverflowError 异常,在内存耗尽时会抛出OutOfMemoryError异常; 4. Native方法栈,JVM在调用操作系统本地方法的时候会使用到 这个栈; 5. Java堆,由于每个线程分配到的计算栈容量有限,对于可能会 占据大量内存的对象,则会被分配到Java堆中,在栈中包含了指向该对象内存的地址;对于一个Java程序来说,只有一个Java堆,也就是说,所有线程共享一个堆中的对象;由于Java堆不受线程的控制,如果在一个方法结束之后立即回收这个方法使用到的对象,并不能保证其他线程是否正在使用该对象;因此堆中对象的回收由JVM的垃圾收集器统一管理,和某一个线程无关;在HotSpot虚拟机中Java堆被划分为三代:o新生代,正常情况下新创建的对象会被分配到新生代,但如果对象占据的内存足够大以致超过了新生代的容量限 制,也可能被分配到老年代;新生代对象的一个特点是最 新、且生命周期不长,被回收的可能性高;

windows操作系统内存管理方式综述

一页式管理 1 页式管理的基本原理将各进程的虚拟空间划分成若干个长度相等的页(page),页式管理把内存空间按页的大小划分成片或者页面(page frame),然后把页式虚拟地址与内存地址建立一一对应页表,并用相应的硬件地址变换机构,来解决离散地址变换问题。页式管理采用请求调页或预调页技术实现了内外存存储器的统一管理。 它分为 1 静态页式管理。静态分页管理的第一步是为要求内存的作业或进程分配足够的页面。系统通过存储页面表、请求表以及页表来完成内存的分配工作。静态页式管理解决了分区管理时的碎片问题。但是,由于静态页式管理要求进程或作业在执行前全部装入内存,如果可用页面数小于用户要求时,该作业或进程只好等待。而且作业和进程的大小仍受内存可用页面数的限制。 2 动态页式管理。动态页式管理是在静态页式管理的基础上发展起来的。它分为请求页式管理和预调入页式管理。 优点:没有外碎片,每个内碎片不超过页大小。一个程序不必连续存放。便于改变程序占用空间的大小(主要指随着程序运行而动态生成的数据增多,要求地址空间相应增长,通常由系统调用完成而不是操作系统自动完成)。 缺点:程序全部装入内存。 要求有相应的硬件支持。例如地址变换机构,缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。这增加了机器成本。增加了系统开销,例如缺页中断处理机,请求调页的算法如选择不当,有可能产生抖动现象。虽然消除了碎片,但每个作业或进程的最后一页内总有一部分空间得不到利用果页面较大,则这一部分的损失仍然较大。 二段式管理的基本思想 把程序按内容或过程(函数)关系分成段,每段有自己的名字。一个用户作业或进程所包含的段对应一个二维线形虚拟空间,也就是一个二维虚拟存储器。段式管理程序以段为单位分配内存,然后通过地址影射机构把段式虚拟地址转换为实际内存物理地址。 程序通过分段(segmentation)划分为多个模块,如代码段、数据段、共享段。其优点是:可以分别编写和编译。可以针对不同类型的段采取不同的保护。可以按段为单位来进行共享,包括通过动态链接进行代码共享。 三段页式管理的实现原理 1 虚地址的构成 一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。 2 段表和页表

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

内存管理(操作系统)操作系统课程设计

河南城建学院 《操作系统》课程设计说明书 设计题目:存储管理 专业:计算机科学与技术 指导教师:邵国金 班级:0814121 学号:081412112 姓名: 同组人: 计算机科学与工程学院 2015 年1 月9日

前言 本课程设计是编制页面置换算法FIFO、LRU、LFU、NUR和OPT的模拟程序,并模拟其在内存的分配过程。同时根据页面走向,分别采用FIFO、LRU、LFU、NUR和OPT算法进行页面置换,统计命中率;同时系统可以随意设置当前分配给作业的物理块数。 系统运行时,任意输入一个页面访问序列,可以设定不同的页面置换算法和物理块数,输出其页面淘汰的情况,计算其缺页次数和缺页率。系统结束后,比较同一个页面访问序列,可以得出在不同的页面置换算法和物理块数的情况下,其产生的缺页次数和缺页率。 使用FIFO算法,由于测试数据相同的页面比较少,所以采用FIFO算法时,需要置换的页面多,比较繁琐,没有优化效果,所以FIFO算法性能不好。使用LRU的算法,此组数据显示LRU的算法使用比较繁琐,总的来说,NUR、LFU、LRU 算法介于FIFO和OPT之间。通过系统模拟得出,OPT算法的性能高,LRU、NUR、LRU算法的性能次之,FIFO的算法性能最差,较少应用;由于OPT算法在实际上难于实现,所以实际应用一般用LRU算法。 本程序实现了操作系统中页式虚拟存储管理中缺页中断理想型淘汰算法,该算法在访问串中将来再也不出现的或是在离当前最远的位置上出现的页淘汰掉。这样,淘汰掉该页将不会造成因需要访问该页又立即把它调入的现象。该程序能按要求随机确定内存大小,随机产生页面数,进程数,每个进程的页数,给进程分配的页数等,然后运用理想型淘汰算法对每个进程进行计算缺页数,缺页率,被淘汰的序列等功能。

操作系统 内存管理实验报告

同组同学学号: 同组同学姓名: 实验日期:交报告日期: 实验(No. 4 )题目:编程与调试:内存管理 实验目的及要求: 实验目的: 操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管理的过程是完全透明不可见的。因此,程序员开发时从不关心系统如何为自己分配内存,而且永远认为系统可以分配给程序所需的内存。在程序开发时,程序员真正需要做的就是:申请内存、使用内存、释放内存。其它一概无需过问。本章的3个实验程序帮助同学们更好地理解从程序员的角度应如何使用内存。 实验要求: 练习一:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果,分析遇到的问题和解决方法。 练习二:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 练习三:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 改编实验中的程序,并运行出结果。 实验设备:多媒体电脑 实验内容以及步骤: 在虚拟机中编写好以下程序: #include #include #include int main(void) { char *str; /* 为字符串申请分配一块内存*/ if ((str = (char *) malloc(10)) == NULL) { printf("Not enough memory to allocate buffer\n"); return(1); /* 若失败则结束程序*/ } /* 拷贝字符串“Hello”到已分配的内存空间*/ strcpy(str, "Hello"); /* 显示该字符串*/ printf("String is %s\n", str); /* 内存使用完毕,释放它*/ free(str); return 0; } 调试过后得出的结果截图如下:(由图可看出我将此程序以aa.c为文件名保存,调试后出现aa1文件,调试结果出现语句“String is Hello”)

计算机操作系统试题库new

计算机操作系统试题 一填空: 1.操作系统为用户提供三种类型的使用接口,它们是命令方式和系统调用和图形用户界面。 2.主存储器与外围设备之间的数据传送控制方式有程序直接控制、中断驱动方式、DMA方式和通道控制方式。 3.在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,运行时间短的作业将得到优先调度;当各个作业要求运行的时间相同时,等待时间长的作业得到优先调度。 4.当一个进程独占处理器顺序执行时,具有两个特性:封闭性和可再现性。 5.程序经编译或汇编以后形成目标程序,其指令的顺序都是以零作为参考地址,这些地址称为逻辑地址。 6.文件的逻辑结构分流式文件和记录式文件二种。 7.进程由程度、数据和FCB组成。 9.操作系统是运行在计算机裸机系统上的最基本的系统软件。11.文件系统中,用于文件的描述和控制并与文件一一对应的是文件控制块。 12.段式管理中,以段为单位,每段分配一个连续区。由于各段长度不同,所以这些存储区的大小不一,而且同一进程的各段之间不要求连续。 13.逻辑设备表(LUT)的主要功能是实现设备独立性。

17.文件的物理结构分为顺序文件、索引文件和索引顺序文件。18.所谓设备控制器,是一块能控制一台或多台外围设备与CPU并行工作的硬件。 20分页管理储管理方式能使存储碎片尽可能少,而且使存利用率较高,管理开销小。 20.计算机操作系统是方便用户、管理和控制计算机软硬件资源的系统软件。 21.操作系统目前有五大类型:批处理操作系统、分时操作系统、实时操作系统、网络操作系统和分布式操作系统。 22.按文件的逻辑存储结构分,文件分为有结构文件,又称为记录式文件和无结构文件,又称流式文件。 23.主存储器与外围设备之间的信息传送操作称为输入输出操作。 24、在设备管理中,为了克服独占设备速度较慢、降低设备资源利用率的缺点,引入了虚拟分配技术,即用共享设备模拟独占设备。 25、常用的存管理方法有分区管理、页式管理、段式管理和段页 式管理。 26、动态存储分配时,要靠硬件地址变换机构实现重定位。 27、在存储管理中常用虚拟存储器方式来摆脱主存容量的限制。 28、在请求页式管理中,当硬件变换机构发现所需的页不在存时,产生缺页中断信号,中断处理程序作相应的处理。 30、在段页式存储管理系统中,面向用户的地址空间是段式划分,面向物理实现的地址空间是页式划分。

Windows虚拟内存管理

基本概念【摘录】 每个进程都被赋予它自己的虚拟地址空间。对于32位进程来说,这个地址空间是4GB,因为32位指针可以拥有从0x000000000至0xFFFFFFFF之间的任何一个值。这使得一个指针能够拥有4 294 967 296个值中的一个值,它覆盖了一个进程的4GB虚拟空间的范围。这是相当大的一个范围。由于每个进程可以接收它自己的私有的地址空间,因此当进程中的一个线程正在运行时,该线程可以访问只属于它的进程的内存。属于所有其他进程的内存则隐藏着,并且不能被正在运行的线程访问。 注意在Windows 2000中,属于操作系统本身的内存也是隐藏的,正在运行的线程无法访问。这意味着线程常常不能访问操作系统的数据。Windows 98中,属于操作系统的内存是不隐藏的,正在运行的线程可以访问。因此,正在运行的线程常常可以访问操作系统的数据,也可以破坏操作系统(从而有可能导致操作系统崩溃)。在Windows 98中,一个进程的线程不可能访问属于另一个进程的内存。 前面说过,每个进程有它自己的私有地址空间。进程A可能有一个存放在它的地址空间中的数据结构,地址是0x12345678,而进程B则有一个完全不同的数据结构存放在它的地址空间中,地址是0x12345678。当进程A中运行的线程访问地址为0x12345678的内存时,这些线程访问的是进程A的数据结构。当进程B中运行的线程访问地址为0x12345678的内存时,这些线程访问的是进程B的数据结构。进程A中运行的线程不能访问进程B的地址空间中的数据结构。反之亦然。 记住,这是个虚拟地址空间,不是物理地址空间。该地址空间只是内存地址的一个范围。在你能够成功地访问数据而不会出现违规访问之前,必须赋予物理存储器,或者将物理存储器映射到各个部分的地址空间。 每个进程的虚拟地址空间都要划分成各个分区。地址空间的分区是根据操作系统的基本实现方法来进行的。不同的Windows内核,其分区也略有不同。

Windows内存管理机制及C++内存分配实例(三):虚拟内存

本文背景: 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。 本文内容: 3. 内存管理机制--虚拟内存 (VM) · 虚拟内存使用场合 虚拟内存最适合用来管理大型对象或数据结构。比如说,电子表格程序,有很多单元格,但是也许大多数的单元格是没有数据的,用不着分配空间。也许,你会想到用动态链表,但是访问又没有数组快。定义二维数组,就会浪费很多空间。 它的优点是同时具有数组的快速和链表的小空间的优点。 · 分配虚拟内存 如果你程序需要大块内存,你可以先保留内存,需要的时候再提交物理存储器。在需要的时候再提交才能有效的利用内存。一般来说,如果需要内存大于1M,用虚拟内存比较好。 · 保留 用以下Windows 函数保留内存块

VirtualAlloc (PVOID 开始地址,SIZE_T 大小,DWORD 类型,DWORD 保护 属性) 一般情况下,你不需要指定“开始地址”,因为你不知道进程的那段空间 是不是已经被占用了;所以你可以用NULL。“大小”是你需要的内存字 节;“类型”有MEM_RESERVE(保留)、MEM_RELEASE(释放)和 MEM_COMMIT(提交)。“保护属性”在前面章节有详细介绍,只能用前 六种属性。 如果你要保留的是长久不会释放的内存区,就保留在较高的空间区域, 这样不会产生碎片。用这个类型标志可以达到: MEM_RESERVE|MEM_TOP_DOWN。 C++程序:保留1G的空间 LPVOID pV=VirtualAlloc(NULL,1000*1024*1024,MEM_RESERVE|MEM_TOP_DOWN,PAGE_READW if(pV==NULL) cout<<"没有那么多虚拟空间!"<