搜档网
当前位置:搜档网 › 聚合物的性质

聚合物的性质

常用高分子聚合物名称缩写 中英文对照

常用高分子聚合物名称缩写 塑料原料名称中英文对照表(无忧塑料网https://www.sodocs.net/doc/6d4935509.html,版权所有) 塑料类别俗称中文学名英文学名英文简称主要用途 热 塑 性 塑 料 聚苯乙烯类硬胶通用聚苯乙烯General Purpose Polystyrene PS灯罩、仪器壳罩、玩具等 不脆胶高冲击聚苯乙烯High Impact Polystyrene HIPS日用品、电器零件、玩具等 改性聚苯乙烯类ABS料丙烯腈-丁二烯-苯乙烯Acrylonitrile Butadiene Styrene ABS电器用品外壳,日用品,高级玩具,运动用品 AS料(SAN料)丙烯腈-苯乙烯Acrylonitrile Styrene AS(SAN)日用透明器皿,透明家庭电器用品等 BS(BDS)K料丁二烯-苯乙烯Butadiene Styrene BS(BDS)特种包装,食品容器,笔杆等 ASA料丙烯酸-苯乙烯-丙烯睛Acrylonitrile Styrene acrylate copolymer ASA适于制作一般建筑领域、户外家具、汽车外侧视镜壳体 聚丙烯类PP(百折胶)聚丙烯Polypropylene PP包装袋,拉丝,包装物,日用品,玩具等 PPC氯化聚丙烯Chlorinated Polypropylene PPC日用品,电器等 聚乙烯类LDPE(花料,筒料)低密度聚乙烯Low Density Polyethylene LDPE包装胶袋,胶花,胶瓶电线,包装物等 HDPE(孖力士)高密度聚乙烯High Density Polyethylene HDPE包装,建材,水桶,玩具等 改性聚乙烯类EVA(橡皮胶)乙烯-醋酸乙烯脂Ethylene-Vinyl Acetate EVA鞋底,薄膜,板片,通管,日用品等 CPE氯化聚乙烯Chlorinated Polyethylene CPE建材,管材,电缆绝缘层,重包装材料 聚酰胺尼龙单6聚酰胺-6Polyamide-6PA-6轴承,齿轮,油管,容器,日用品 尼龙孖6聚酰胺-66Polyamide-66PA-66机械,汽车,化工,电器装置等 尼龙9聚酰胺-9Polyamide-9PA-9机械零件,泵,电缆护套 尼龙1010聚酰胺-1010Polyamide-1010PA-1010绳缆,管材,齿轮,机械零件 丙烯酸脂类亚加力聚甲基丙烯酸甲脂Polymethyl Methacrylate PMMA透明装饰材料,灯罩,挡风玻璃,仪器表壳 丙烯酸脂共聚物改性有机玻璃372#,373#甲基丙烯酸甲脂-苯乙烯Polymethyl Methacrylate-Styrene MMS高抗冲要求的透明制品 甲基丙烯酸甲脂-乙二烯Methyl Methacrylate-Butadiene MMB机器架壳,框及日用品等

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

高分子的溶液性质

第三章高分子的溶液性质 §1 引言 ?为什么研究?高分子溶液是科学研究和生产实践经常接触的对象;?研究高分子溶液的性质将加强我们对高分子结构与性能规律的认识。?对指导生产和发展高分子的基本理论有重要意义。 高聚物溶液从广义上包括稀溶液(1%)、浓溶液(纺丝液、油漆等)、冻胶、凝胶、增塑高分子、共混高分子等 粘合剂涂料溶液纺丝 增塑共混 一、对高分子溶液性质研究的二个方面:

(1)在应用上,主要用高分子浓溶液(15%以上), 对这方面的研究着重于: 高分子溶液的流变性能和成型工艺的关系; (2)在基本理论上,主要用稀溶液(1%或5%以下), 研究着重于: ●高分子间的相互作用 (高分子链段间及链段与溶剂分子间); ●高分子在溶液中的形态与尺寸; ●高分子溶液的热力学性质 包括溶解过程体系的焓、熵和体积变化(高分子-溶剂体系的混和热、 混合熵、混合自有能),溶液渗透压等; ●高分子溶液的流体力学性质 (高分子溶液的沉降、扩散、粘度) ●高聚物相对分子质量及其分布 二、高分子溶液性质的特点 (1)溶液性质受浓度的影响(动态接触浓度C s,接触浓度C*, C s< C*);(2)高分子溶液的粘度一般比小分子纯溶剂要大的多; (3)高分子溶液是处于热力学平衡状态的真溶液; (4)高聚物的溶解、沉淀是热力学可逆过程; (5)高分子溶液是分子分散的,

可以用热力学函数来描述的稳定体系; (6)高分子溶液的行为与理想溶液有很大偏差; (7)高分子溶液的性质有分子量依赖性, 而分子量有多分散性,因而增加了研究的复杂性。 §2 高聚物的溶解过程 一、溶解过程 (1)溶解过程的复杂性: 高聚物的溶解存在热力学复杂和动力学缓慢两个特点。 ●分子量大且具有多分散性,导致溶解速度缓慢; ●分子的形状有线形、支化和交联; ●高分子的聚集态又有非晶态和晶态之分。 (2)非晶态聚合物的溶解: 分子堆砌松弛,分子间相互作用弱, 溶剂分子易于渗入内部溶胀和溶解 ●具有先溶胀后溶解的特有现象 (溶剂化由表及里的过程,因分子量大且分子链纠缠,溶剂小分子很快进入大分子使链段运动,但整链运动需要很长的时间); ●有限溶胀,在交联结构或不良溶剂下,则只溶胀到一定程度。

7.高聚物熔体的流变性质

第一章 高聚物熔体的流变性质 主要内容:(1)液体的流动类型 (2)高分子熔体的流动特征 (3)影响高聚物熔体粘度的因素 (4)高聚物熔体弹性效应的表现 (5)高聚物熔体粘度的测量方法 难点内容:弹性效应的理解 掌握内容:(1)牛顿流体和非牛顿流体的流动特征 (2)高聚物熔体的流动特征及影响流动温度的因素 (3)影响切粘度的结构因素及外在因素 理解内容:(1)高聚物熔体的流动机理 (2)高聚物熔体弹性效应的机理、现象及影响因素 了解内容:(1)高聚物熔体粘度的测量方法 (2)拉伸粘度的基本情况 §8 高聚物的基本流变性质 §8、1流变学的基本概念简介 一、流动的方式 1、速度方向 2、速度梯度方向 剪切流动 a 库爱特(拖流动) b 泊肃叶(压力流) 拉伸流动 速度方向平行速度梯度方向 二.流体的基本类型 γγ ? ==?=?=dt d dt dy dx dy dt dx dY dv 11 (1) 牛顿流体 στ=η·γ (η为常数) 熔体结构不变 (2) 非牛顿流体 表观粘度ηa = γ τ σ?

a. 胀塑流体 n k a γ γηστ? ? ==? γ↑ ηa b. 假塑性流体 στ=ηa γn (n<1) γ↑.ηa ↓ (剪切变稀) c. στ=σb + k γn 三.假塑性流体的基本特性 习题 1.名词解释 牛顿流体 非牛顿流体 假塑性流体 胀塑性流体 Bingham 流体 零切粘度 表观粘度 熔融指数 第一法向应力差 挤出胀大 真实粘度 2.大分子流动是如何实现的? 3.大分子流动的基本特征是什么? 4.流体流动的基本类型有哪些?分别用τ-γ、η-γ、lg τ-lg γ、lg η-lg γ曲线示意图。 5.分析假塑性流体流动的η-γ曲线,并从分子运动论的角度给予解释。

聚合物溶解性质

7.1 聚合物的溶液性质 高分子溶液在高分子工业和科学研究中占有很重要的地位。一般将浓度低于5%的称为稀溶液。如用于测定分子量及其分布的溶液、高分子絮凝剂、高分子减阻剂等都是稀溶液;而纺丝用的溶液(>15%)、涂料与胶粘剂(>60%)等都是浓溶液。对于稀溶液,人们的研究已经比较深入,已能定量或半定量地描述其性质;但对浓溶液,限于它的复杂性,人们的研究着重于应用方面,至今还没有很成熟的理论。 7.1.1分子间相互作用和溶度参数 聚合物溶解在溶剂中形成溶液的过程,实质上是溶剂分子进入聚合物,拆散聚合物分子间作用力(称为溶剂化)并将其拉入溶剂中的过程。聚合物分子间、溶剂分子间以及聚合物与溶剂分子间这三种分子间作用力的相对大小是影响溶解过程的关键的内在因素。所以首先要讨论这些分子间作用力。分子间作用力包括取向力、诱导力、色散力和氢键力,前三者又称为范德华力。取向力是极性分子的永久偶极之间的引力,诱导力是极性分子的永久偶极与它在其他分子上引起的诱导偶极之间的相互作用力,色散力是分子瞬间偶极之间的相互作用力。氢键力是极性很强的原子上的氢原子(带正电性),与另一电负性很大的原子上的孤对电子相互吸引而形成的一种键,例如: 范德华力对一切分子都存在,没有方向性和饱和性,作用力约比化学键小1~2个数量级。氢键力则具有方向性和饱和性,键能虽也比化学键小,但比范德华力大,因而氢键力的存在对于高分子的性质起很大的作用。以尼龙为例,当氨基酸单元为奇数碳时,每个酰胺基都能形成氢键;当氨基酸单元为偶数时,只有一半酰胺基可以形成氢键。因而奇数尼龙的熔点高于偶数尼龙,呈现所谓“奇偶规律”(图7-1)。 分子间作用力的强弱可以用内聚能的大小来衡量。内聚能定义为消除1mol物质全部分子间作用力时内能的增加。对于小分子,它相当于汽化热(或升华热),然而高分子不能汽化,只能用间接的方法测定。单位体积内的内聚能称为内聚能密度CED,它可用于比较不同种高分子内分子间作用力的大小。从表7-1可见,一般来说橡胶的分子间作用力较弱,因为

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 高分子聚合物结构形貌的表征方法及设备包括: 1.偏光显微镜(PLM) 利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。 2.金相显微镜 金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。 3、体视显微镜 使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。 4.X射线衍射 利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。 5.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。 6.透射电镜(TEM) 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,

聚合物的流变性能讲解

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

高分子溶液性质及其的应用

第八章高分子溶液性质及其应用 第一部分内容简介 §8.1 高分子的溶解 一.溶解的过程: 非交联高聚物:溶胀溶解; 结晶高聚物:晶区破坏→再溶解 交联高聚物:只溶胀 特点:(1) 溶胀→溶解,对结晶高聚物则是先 (2) 溶解时间长 二.溶剂的选择原则 1. 极性相近原则: 非极性体系PS :苯甲苯丁酮 2. 溶度参数相近原则: δ=(ΔE/V)1/2 △Fm=△Hm-T△Sm<0 T>0,△Sm>0,则△Hm

CH 2NH 2>C 6H 6NH 2>—CO —N(CH 3)2>—CO —NH> PO 4 >—CH 2—CO —CH 2>CH 2—O —CO —CH 2>—CH 2—O —CH 2— 亲电(酸) 基团有: —SO 2OH>—COOH>—C 6H 4OH>—CH(CN)—>—C(NO 2)—>—C(Cl)—Cl> —C(Cl)— §8.2 高分子稀溶液热力学 理想溶液性质 △S mi =-R(N 1lnx 1+N 2lnx 2) △H mi =o △F mi =RT(n 1lnx 1+n 2lnx 2) 高分子稀溶液(Flory-Huggin 理论) 假设(1) 每个溶剂分子和链段占有格子的几率相同 (2)高分子链是柔性的,所有构象能相同 思路: △μ→△F →△S m =? △H m =? 一、△S m 的求法 设溶剂分子数为N 1链,大分子数为N 2 每个链段数为x 则格子总数为N=N 1+xN 2 若已放入i 个链,则i +1个链的放法数为w i +1 第1个链段放法为 N-iN 2 第2个链段放法为 N iN N z 1 2-- 第3个链段放法为 N xj N z 2 ) 1(---

各类高分子聚合物的缩写

PA 聚酰胺(尼龙) PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11) PA-12 聚十二酰胺(尼龙12) PA-6 聚己内酰胺(尼龙6) PA-610 聚癸二酰乙二胺(尼龙610) PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66) PA-8 聚辛酰胺(尼龙8) PA-9 聚9-氨基壬酸(尼龙9) PAA 聚丙烯酸 PAAS 水质稳定剂 PABM 聚氨基双马来酰亚胺 PAC 聚氯化铝 PAEK 聚芳基醚酮 PAI 聚酰胺-酰亚胺 PAM 聚丙烯酰胺 PAMBA 抗血纤溶芳酸 PAMS 聚α-甲基苯乙烯 PAN 聚丙烯腈 PAP 对氨基苯酚 PAPA 聚壬二酐

PAPI 多亚甲基多苯基异氰酸酯 PAR 聚芳酰胺 PAR 聚芳酯(双酚A型) PAS 聚芳砜(聚芳基硫醚) PB 聚丁二烯-[1,3] PBAN 聚(丁二烯-丙烯腈) PBI 聚苯并咪唑 PBMA 聚甲基丙烯酸正丁酯 PBN 聚萘二酸丁醇酯 PBR 丙烯-丁二烯橡胶 PBS 聚(丁二烯-苯乙烯) PBS 聚(丁二烯-苯乙烯) PBT 聚对苯二甲酸丁二酯 PC 聚碳酸酯 PC/ABS 聚碳酸酯/ABS树脂共混合金 PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺 PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯) PCE 四氯乙烯 PCMX 对氯间二甲酚 PCT 聚对苯二甲酸环己烷对二甲醇酯 PCT 聚己内酰胺

PCTEE 聚三氟氯乙烯 PD 二羟基聚醚 PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷 PE 聚乙烯 PEA 聚丙烯酸酯 PEAM 苯乙烯型聚乙烯均相离子交换膜PEC 氯化聚乙烯 PECM 苯乙烯型聚乙烯均相阳离子交换膜PEE 聚醚酯纤维 PEEK 聚醚醚酮 PEG 聚乙二醇 PEHA 五乙撑六胺 PEN 聚萘二酸乙二醇酯 PEO 聚环氧乙烷 PEOK 聚氧化乙烯 PEP 对-乙基苯酚聚全氟乙丙烯薄膜PES 聚苯醚砜 PET 聚对苯二甲酸乙二酯 PETE 涤纶长丝 PETP 聚对苯二甲酸乙二醇酯

聚合物成型加工部分题库及答案

一.填空题 2. 热固性塑料的注射过程包括___________、______________和______________三个大阶段。 3. 挤出机的_______________ 和____________是管材挤出的关键部件。 6. 聚合物粘度主要由两方面内部因素来决定,聚合物熔体内的自由体积和大分子长链之间的缠结。 7. _______________ 型压延机在用于生产薄而透明薄膜的压延成型过程中,显示出明显优于__________型压延机的功能。 8. 双辊式压延机通常用于________ 和压片,目前以三辊式和四辊式压延机用得最为普遍。一般 _______ 压延用三辊式压延机较多,而_______压延较多用四辊式压延机进行压延。 9. 化学纤维制造可以概括为四个工序: 。 10.橡胶制品成型前的准备工艺包括: 、 、 、__________等工艺过程,在这些工艺过程中, 和 ________ 是最主要的两个工序。 11.随着高分子化合物相对分子质量的增加,高分子材料的 黏度 增加, 加工流动性 下降, 成型_困难。 ○12.橡胶在开炼机中混炼时,配合剂是靠 堆积胶_夹带混入胶料中的。(机械作用、辊筒) 14.橡胶加工过程中的主要配合剂有 硫化剂、补强填充剂、软化剂、增塑剂、防老剂 等。 15.高分子材料制品生产中,聚合物与其它物料混合进行配料后才能进行成型加工。混合设备是完成混合操作工序必不可少的工具。混合设备品种很多,主要有: 间歇式、连续式、分布式、分散式、高强度、中强度和低强度混合设备_等。 ○19.冷拉伸是指_室温至Tg 附近,热拉伸取向在___Tg-Tf 或Tm_范围内进行。 31. 高聚物的结构包括高分子_链_结构(它包括_高分子链的近程结构_和_高分子链的远程结构_)及高分子的_聚集态_结构,它由_晶态结构、非晶态结构、取向态结构、液晶态结构_和织态结构。 32. _热塑_性高分子能在适当的溶剂中溶解,加热时也能熔融,它的几何形态有 线型 和_支链型_;热固_性高分子既不能在溶剂中溶解,受热也不熔化,它的几何形态是_体型_。 33.高聚物在力学性能上表现出来的最大特点是:在一定条件下呈_粘_弹性;具有突出的_高_弹性。 34.高聚物只有在_张应力_作用下才能产生银纹,且其方向总是与银纹面_垂直_。 ○35.高聚物熔体是一种高弹性流体,它在流动时存在三种基本变形即__能量耗散形变、可恢复弹性形变、破裂。 36.在研究聚合物液的流动规律时,为简化计算,有如下四点假设: 液体不可压缩、等温流动、管壁处无滑移、粘度不随时间变化。 50.制备性能良好的高分材料的三个关键因素:适宜的材料组成 、正确的成型加工方法和合理的成型机械及模具。 塑化 注射充模 固化 机头口模 定型装置 倒L 斜Z 原料的塑炼 橡胶 塑料 原料制备 纺丝流体的制备 化学纤维的纺丝成型 化学纤维的后加工 原材料处理 生胶的塑炼 配料 胶料的混炼 生料的塑炼 胶料的混炼

聚合物之一般性质与分类

何谓聚合物? 聚合物依其来源分为天然聚合物和合成聚合物: 天然聚合物 合成聚合物 天然聚合物大部分存在于生物体中,而且是生命所必须的。这些天然聚合物有的是重要营养素,例如蛋白质、淀粉;有的是可应用于日常用品,例如天然橡胶、纤维素;有的在生物体 内能支配我们的遗传,例如核酸 合成聚合物通常为高分子量有机化 合物,其结构较天然聚合物简单,通常最多含两个不同单元。如耐纶、聚氯乙烯(PVC )、新平橡胶等 聚合物均由许多小单元连接构成,有的成为很长的链状,也有由链状构成网状,比较如下:

常见塑料的性质和用途 塑料制品是目前在我们的日常生活中,最常使用的聚合高分子有机化合物,主要含有C、H、O三种元素。一般的塑料容器材质分为以下几类,分别是:

塑料由于不易在自然情况下分解,常被称为千年公害。有些被人随意丢弃在路边,造成景观的破坏;有些被人露天燃烧,造成空气的污染。塑料的回收工作是当务之急。 塑料种类很多,一般并不易分辨。因而在容器上标明号码,就是便用户做回收分类之用。如美国塑料工业协会(SPI)提倡一种顺时针三角形的号码标识(如图),在塑料回收的三角图形中有1至7的阿拉伯数字,显示塑料材质。不过目前国内只有1号中的保特瓶和6号中的保丽龙餐具在做回收。 保鲜膜 虽然保鲜膜的特性:(1)水蒸气不容易穿透保鲜膜,因此食物如果以保鲜膜包裹,比较不会因水分散失而干燥变硬。(2)高温时会熔化。(3)不溶于水但容易溶于丙酮等有机溶剂;而且只要轻轻一撕,就能为料理食物带来极大的便利,只是愈来愈多的研究发现,便利之下所带来的代价可能超乎你我的想象唷……。为了全家人的健康,千万不可用保鲜膜包着食物,进微波炉加热烹煮!因为有些塑料膜含有干扰内分泌的物质,会扰乱人体内的荷尔蒙,引起妇女乳癌、新生儿先天缺陷、男性精虫数减低,甚至精神疾病。 根据《纽约时报》的报导,美国的环保署已开始过滤几千种化学物质,试图把可能会造成内分泌失调的凶手找出来,再进一步深入研究。荷尔蒙随血液运送到人体各部,牵制人体新陈代谢、生长、生育等功能,过多时会扳动破坏已调整好的内分泌系统。最有名的人造荷尔蒙包括戴奥辛、DDT杀虫剂及多氯联苯。动物实验证明有害数据显示,有些聚氯乙烯塑料包装产品,含有

聚合物的流变性

第9章聚合物的流变性 流变学是研究材料流动和变形规律的一门科学。聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。 9.1牛顿流体与非牛顿流体 9.1.1非牛顿流体 描述液体层流行为最简单的定律是牛顿流动定律。凡流动行为符合牛顿流动定律的流体,称为牛顿流体。牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。 式中:——剪切应力,单位:牛顿/米2(N/㎡); ——剪切速率,单位:s-1; ——剪切粘度,单位:牛顿?秒/米2(N?s/㎡),即帕斯卡?秒(Pa?s)。 非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。包括: 1、假塑性流体(切力变稀体) η随的↗而↙例:大多数聚合物熔体 2、膨胀性流体(切力变稠体) η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。 3、宾汉流体。τ<τy,不流动;τ>τy,发生流动。 按η与时间的关系,非牛顿流体还可分为: (1)触变体:维持恒定应变速率所需的应力随时间延长而减小。 (2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。 牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述: 式中:K为稠度系数 n:流动指数或非牛顿指数

n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。 定义表观粘度 9.2聚合物的粘性流动 9.2.1聚合物流动曲线 聚合物的流动曲线可分为三个主要区域: 图9-1 聚合物流动曲线 1、第一牛顿区 低切变速率,曲线的斜率n=1,符合牛顿流动定律。 该区的粘度通常称为零切粘度,即的粘度。 2、假塑性区(非牛顿区) 流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。 通常聚合物流体加工成型时所经受的切变速率正在这一范围内。 3、第二牛顿区 在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。该区的粘度称为无穷切粘度或极限粘度η∞。 从聚合物流动曲线,可求得ηo、η∞和ηa。 聚合物流体假塑性行为通常可作下列解释: 1、从大分子构象发生变化解释; 2、从柔性长链分子之间的缠结解释; 9.2.2聚合物流体流变性质的测定方法 测定粘度主要方法:落球粘度计法、毛细管粘度计法、同轴圆筒转动粘度计法和锥板转动粘度计法。

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

高聚物成型加工原理-练习题

《高聚物成型加工原理》练习题 第一章 1.聚合物具有一些特有的加工性质是什么?分别说明之。 2.何为应力硬化、应力软化? 3.熔融指数的定义。 4.螺旋流动试验的意义是什么? 第二章 1.聚合物流变学的含义是什么? 2.塑料在加工过程中所受外力的类型及由此产生的流动方式有哪三种? 3.什么是非依时性非牛顿流体,包括哪些流体,各有什么特点? 4.何为层流?何为湍流? 5.一维流动、二维流动、三维流动的特点。 6.影响聚合物流变行为的主要因素有哪些?分别讨论之。

第三章 1.塑料流体在圆形流道和狭缝形流道中流动时的流速分布如何。 2.什么是拖曳运动和收敛运动?举例说明。 3.什么是端末效应?产生端末效应的原因何在? 4.影响出口膨胀效应的因素是什么? 第四章 1.聚合物加工过程中可能出现的物理和化学变化有哪些? 2.说明塑料薄膜的拉伸取向要在聚合物的玻璃化温度和熔点之间进行?影响聚合物取向的因素有哪些? 3.加工过程中影响聚合物结晶的因素有哪些? 4.简述聚合物的降解及其实质。简述加工过程中聚合物交联反应的机理及影响因素。 第五章成型用的物料及其配制 1.什么是增塑剂?简述其增塑机理。PVC常用的增塑剂有哪些 (至少三种)

2.什么是稳定剂?为什么要在物料中加入稳定剂?稳定剂包括 哪些类型? 3.在配制物料的过程中添加填充剂目的是什么?列出至少三中 常用填充剂。 4.什么是混合,说明配制物料过程的混合机理。常用的混合设 备有哪些(至少三种)。 5.在配制粒料时为何要先进行塑炼,常用的塑炼设备有几种? 第六章挤出成型 1.什么是挤出成型?常见制品有哪些? 2.单螺杆挤出机由哪些部分组成?各部分有什么作用? 3.什么是螺杆的压缩比?生产PVC时宜采用哪种螺槽深度(浅或 深),为什么? 4.什么是螺杆的长径比?长径比大小对混炼过程有何影响? 5.根据物料的变化特征,可以将螺杆分成哪三段,每段的作用 是什么?物料的状态如何? 6.在成型过程中机头和口模的作用是什么?

高分子聚合物的详细介绍

高分子聚合物又称高分子化合物,是天然高分子和合成高分子化合物的总称,是由一种(均聚物)或几种(共聚物)结构单元用共价键连接在一起的、分子量很高的、比较规则的连续序列所构成的化合物。 高分子聚合物或其预聚体均称为合成树脂,高分子聚合物是通过聚合反应而制得的,且大多数是由人工合成制得的,故人们又称其为高分子合成材料。 高分子聚合物可以抽丝做成合成纤维,做成高弹性的合成橡胶,也可以通过加工成型形成刚性材料—塑料,这就是所谓的三大合成材料,高分子聚合物还可以用来生产涂料、胶黏剂和密封材料。 (一)高分子聚合物的分类 高分子聚合物根据其来源,可分为天然聚合物、人工合成聚合物、半合成聚合物等几类;根据其使用性能,可分为纤维、橡胶、塑料、涂料和胶黏剂等几类;根据分子量大小的不同,可以把聚合物分为齐聚物、低聚物和高聚物;其重复单元的种类仅为一种的称为均聚物,可分为线型聚合物、接枝共聚物、嵌段共聚物(又称镶嵌共聚物)、网状聚合物等;从高分子化学角度着眼,一般以有机化合物分类为基础,根据其主链结构,可分为热塑性聚合物和热固性聚合物二类。 (二)高分子聚合物的特性 合成高分子聚合物的化学组成比较简单,许多小分子化合物如果它们带有两个以上的可反应基团(功能基),则这类小分子化合物即可发生聚合反应,生成高分子聚合物(这类小分子化合物称为单位)。例如聚氯乙烯则是由氯乙烯结构单元重复而成,若聚合物的分子量已经很高,再增加几个机构单元并不显著影响其物理机械性能者,称高聚物;泛指的聚合物多是单体通过聚合形成的高聚物;若聚合物的聚合度很低(几至几十),再增加几个结构单元对其性能有明显影响者,则称为低聚物或齐聚物。 聚合物通常是由分子量不等的许多大分子链组成,这是在单体进行聚合的过程中,由于许多因素的影响,而使生成的聚合物是许多结构和性质相类似而聚合度不完全相等的混合物所致。这些聚合物称为同系聚合物,因此高分子聚合物是不同分子量的同系聚合物,这种特点称为多分散性,多异高分子聚合物的分子量也只能用平均分子量来表示,这是聚合物的又一特征。 潍坊市凯鑫防水材料有限公司

高分子聚合物

高分子聚合物聚丙烯酰胺 1、有机高分子 高分子化合物即高分子量化合物(又称高聚物),一般常把分子量上万者称为高分子化合物。而高分子化合物的分子量相差较大,从几万、几十万、几百万到上千万不等。一般常见的高分子化合物其分子量虽高,但其组成元素的种类一般很少,以PAM为例。无论其分子高达几百万、上千万,其组成元素只有碳(C)、氢(H)、氧(O)、氮(N)四种。所以,高分子从其结构上大多是由几种相同的元素按同一比例构成,组成完全相同的简单结构单元以共价键重复结合而成的大分子。它的结构尤如一根链条,其简单结构单元好比链节,共价键好比销子,形成的链条就好比高分子化合物。所以高分子化合物的分子常称为高分子链,而其简单结构单元称之为链节(m)。链节数目(n)称之为高分子聚合度。链节数目的多少决定了其分子量的大小。显然,聚合度愈大,高分子的相对分子质量(M)也愈大。分子量的大小代表聚合度的高低或分子链的长短。因此: 高分子的相对分子质量=聚合度×链节数即M = n × m。 2、聚丙烯酰胺(PAM)的结构 聚丙烯酰胺在聚合过程中所得的产品分子量并不完全一样,它一般是分子大小不同的同系物的混合物,即每个分子都是由同种链节组成,但各个分子中所含链节数并不都相等。即每个分子的聚合度并不一定相同。故常说的分子量(或聚合度)系指其平均值。

若高分子链没有分支链者称为直链型高分子,若有分支则称为支链型高分子。若高分子链之间有支链连接而形成网状结构者称为体型高分子。 应该注意的是线型和体型之间并无明显的界限。例如含支链很多的线型其性质就接近于体型;而线型在某些低分子(如高价金属盐、甲醛……等)的作用下也可变为体型,这个变化过程称之为交联。 对于线型高分子而言,其平均分子量愈大(或平均聚合度愈大)则其分子链愈长。 在PAM的分子中决定其链节特性的是酰胺基(参见图四),它是亲水的极性基,但由于它不电离,故其亲水性有限。因此,PAM分子中它的数目的多少,即聚合度(链节数)是决定PAM性质,如溶解于水的能力,在水溶液中的状态等的关键因素,也将严重影响其絮凝能力。国内使用的PAM一般含有50 ~70万个链节(即聚合度为50 ~70万,分子量350 ~500万)。 3、部分水解聚丙烯酰胺(PHP)的结构 将PAM与碱共热,则其链节上的酰胺基将发生水解而生成羧钠基(参见图五),这种反应称为PAM的水解,生成产物叫水解聚丙烯酰胺。在水解过程中聚合度不变。 随着水解反应的条件(一般为碱量多少,水解温度,反应时间……)的不同,则PAM中发生水解的酰胺基数目(即其链节数)也不相同。一般情况下是使部分链节上的酰胺基发生水解,得到的产物称为部分

常用聚合物名称缩写

常用高分子聚合物名称缩写 PA 聚酰胺(尼龙) PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11) PA-12 聚十二酰胺(尼龙12) PA-6 聚己酰胺(尼龙6) PA-610 聚癸二酰乙二胺(尼龙610) PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66) PA-8 聚辛酰胺(尼龙8) PA-9 聚9-氨基壬酸(尼龙9) PAA 聚丙烯酸 PAAS 水质稳定剂 PABM 聚氨基双马来酰亚胺 PAC 聚氯化铝 PAEK 聚芳基醚酮 PAI 聚酰胺-酰亚胺 PAM 聚丙烯酰胺 PAMBA 抗血纤溶芳酸 PAMS 聚α-甲基苯乙烯 PAN 聚丙烯腈 PAP 对氨基苯酚 PAPA 聚壬二酐 PAPI 多亚甲基多苯基异氰酸酯 PAR 聚芳酰胺 PAR 聚芳酯(双酚A型) PAS 聚芳砜(聚芳基硫醚) PB 聚丁二烯-[1,3]

PBAN 聚(丁二烯-丙烯腈) PBI 聚苯并咪唑 PBMA 聚甲基丙烯酸正丁酯 PBN 聚萘二酸丁醇酯 PBR 丙烯-丁二烯橡胶 PBS 聚(丁二烯-苯乙烯) PBS 聚(丁二烯-苯乙烯) PBT 聚对苯二甲酸丁二酯 PC 聚碳酸酯 PC/ABS 聚碳酸酯/ABS树脂共混合金 PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺 PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯) PCE 四氯乙烯 PCMX 对氯间二甲酚 PCT 聚对苯二甲酸环己烷对二甲醇酯 PCT 聚己酰胺 PCTEE 聚三氟氯乙烯 PD 二羟基聚醚 PDAIP 聚间苯二甲酸二烯丙酯 PDAP 聚对苯二甲酸二烯丙酯 PDMS 聚二甲基硅氧烷 PE 聚乙烯 PEA 聚丙烯酸酯 PEAM 苯乙烯型聚乙烯均相离子交换膜 PEC 氯化聚乙烯 PECM 苯乙烯型聚乙烯均相阳离子交换膜 PEE 聚醚酯纤维 PEEK 聚醚醚酮

5.高分子溶液的性质

高分子溶液的性质 1.高分子溶液的性质特点 (1)缓慢(溶胀—溶解<扩散>) (2)粘度大 (3)真溶液,单相均匀的分子分散体系,稳定 (4)与理想溶液的行为相比有很大偏离 (5)分子量依赖性 2.溶解过程的特点 (1)溶解过程的复杂性 分子量大并具有多分散性 线性、支化、交联 晶态、非晶态 (2)非晶态聚合物的溶解过程 A、三种运动单元①小分子:运动速率快,非晶态松散结构为其渗入提供条件 ②高分子链段:运动速率与小分子的差别不是很大,但受到 链段间的相互作用,因而不可能迅速地扩散或独自钻到小分 子中去 ③整个高分子链 B、过程:小分子扩散到聚合物中,撑开链段,为水分子的渗入提供可能,水分 子的渗入首先发生在聚合物表面分子链堆积较松散的区域。从第一个链段开始溶 剂化,溶胀现象开始,溶胀使这一区域及相邻区域链段间的相互作用削弱,为小 分子向相邻区域再渗入提供条件。小分子的扩散渗入,溶剂化由表及里,聚合物 体积逐渐长大。但是个别链段的溶剂化并不能使整个大分子摆脱链的相互作用, 且大分子扩散速度极慢,即使都溶剂化,也不会马上扩散到溶剂中去。当所有链 段摆脱了与相邻链段的相互作用,才发生溶解,分子链就可以扩散到小分子中去。 C、有限溶胀:聚合物吸收溶剂到一定限度后,不管与溶剂接触多大,溶剂的吸 收量不再增加(两相) 无限溶胀:聚合物无限制地吸收溶剂分子直至形成均相溶液为止。(溶解是无限溶胀的结果) (3)交联聚合物的溶胀平衡(有限溶胀) 虽然链段可以运动,小分子能进入聚合物中产生渗透压,但由于交联键的存在, 又产生高分子的反抗网链张开的张力,渗透压与张力相等时,就达到溶胀平衡。 (动态平衡,可测交联度) (4)破坏晶格 A、极性结晶聚合物溶于极性溶剂:室温溶解 原因:极性结晶聚合物中的非晶部分与极性溶剂发生强烈的相互作用,放出 大量能量使结晶区的部分晶格破坏,成为非晶区;形成的非晶区又与极性溶 剂发生作用,这一作用不断传递的结果使极性结晶聚合物在常温下就可以溶 解 B、非极性结晶聚合物:室温微小溶胀 非极性结晶聚合物中的非晶部分与非极性溶剂无强烈作用,没有能量破坏晶 格,只能微小溶胀(表层非晶区溶胀),需要加热到熔点附近才能溶解

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高分子聚合物的表征方法及常用设备 1.X射线衍射 x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。 主要部件包括4部分。 (1)高稳定度X射线源(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。(3)射线检测器(4)衍射图的处理分析系统 2.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 3.透射电镜(TEM) 透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。本节将分别对各系统中的主要结构和原理予以介绍。 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。 TEM系统由以下几部分组成 电子枪:聚光镜:样品室:物镜:中间镜:透射镜:此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。

相关主题