搜档网
当前位置:搜档网 › 用二次函数解决几何问题(选讲)

用二次函数解决几何问题(选讲)

用二次函数解决几何问题(选讲)
用二次函数解决几何问题(选讲)

【用二次函数解决几何问题】第1页 共4页

二次函数复习3

用二次函数解决几何问题(选讲)

1、学习目标:

①认知目标:分析几何图形,获得y 与x 的关系;

②能力目标:能根据解析式的特性解决几何问题;

③情感目标:感受数形结合的思想,体验探索难题、收获成功的喜悦.

2、学习重点:根据几何图形列出二次函数关系式.

学习难点:运用所学二次函数的知识,解决几何问题.

3、广州《评价标准》要求:会根据条件确定二次函数的表达式,通过图像和性质体验数形结合研究函数的方法;

会运用二次函数的最值解决简单的实际问题.

4、中考要求:能在理解二次函数的特征和性质的基础上,运用到实际情境中,在具体情境中认识二次函数的特征.

5、学习过程:

一、例题引入

例1:一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12,用这块废料剪出一个长方形CEDF ,

点D 在斜边AB 上,设DE=x ,长方形CEDF 的面积为S ,求:

(1)用x 的函数关系表示S ;

(2)要使剪出的长方形CEDF 的面积最大,点D 应该选在何处?

二、同类训练

练1:用长为6m 的铝合金条制成如图所示的矩形窗框,若要使窗户的透光面积最大,应做成长、宽

分别是多少的矩形窗框,才能满足要求。此时最大透光面积是多少?

三、思路点拨

1、读懂题意,筛选信息.

2、联系旧知,建立函数.

3、根据要求,求得范围.

4、数形结合,确定答案.

【用二次函数解决几何问题】第2页 共4页

四、能力训练

例2:如图:有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道

篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2.

(1)求S 与x 的函数关系式,并求出x 的取值范围;

(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米?

(3)能围成面积比45 m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;

如果不能,请说明理由.

例3:如图,等腰梯形ABCD 中,AB =4,CD =8,∠C =60°,动点P 从点C 出发沿CD 方向向点D 运动,

动点Q 同时以相同速度从点D 出发沿DA 方向向终点A 运动,其中一个动点到达端点时,另一个动点也随之停止运动.

(1)求AD 的长;

(2)设CP=x ,问当x 为何值时△PD Q 的面积达到最大,并求出最大值;

(3)探究:在BC 边上是否存在点M 使得四边形PD Q M 请找出点M ,并求出BM 的长;若不存在,请说明理由.

【用二次函数解决几何问题】第3页 共4页

五、总结回顾

通过本节课的学习,你掌握了用二次函数解决几何问题的方法和技巧了吗?

六、巩固训练

练2:如图:某养猪场要盖一排三间长方形的猪圈,打算利用一面8m 的旧墙,其余各面用木材围成

栅栏,计划用木材围成的栅栏总长为24m.设每间猪圈垂直于墙的一边长为x (m ),三间猪圈

的总面积为S (m 2),求:

(1)用x 的函数关系式表示S ,并求出x 的取值范围.

(2)当x 取什么值的时候,S 取得最大值?最大值是多少?

练3:如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,

在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x 米.

(1)用含x 的式子表示横向甬道的面积;

(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;

(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度

成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?

练4:一座拱桥的轮廓是抛物线型(如图所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中,

求抛物线的解析式;

x (2)求支柱EF的长度;

(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.

练5:如图:在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.

(1)求∠DAB的度数及A、D、C三点的坐标;

(2)求过A、D、C三点的抛物线的解析式及其对称轴L.

(3)若P是抛物线的对称轴L上的点,那么使 PDB为等腰

三角形的点P有几个?(不必求点P的坐标,只需说明理由)

【用二次函数解决几何问题】第4页共4页

二次函数的应用(几何问题)

二次函数的应用(几何问题) 一、选择题 1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2 +bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】 A .k <-3 B .k >-3 C .k <3 D .k >3 【答案】 D 。 【考点】二次函数的图象和性质。 【分析】根据题意得:y =|ax 2+bx +c|的图象如右图, ∵|ax 2+bx +c|=k(k≠0)有两个不相等的实数根, ∴k>3。故选D 。 二、填空题 三、解答题 1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上. (Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求A B C y y y -的值; (Ⅱ)当y 0≥0恒成立时,求A B C y y y -的最小值. 【答案】解:(Ⅰ)若a=1,b=4,c=10,此时抛物线的解析式为y=x 2+4x+10。 ①∵y=x 2+4x+10=(x+2)2+6,∴抛物线的顶点坐标为P (-2,6)。 ②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y=x 2+4x+10上, ∴y A =15,y B =10,y C =7。∴A B C y 15==5y y 107 --。 (Ⅱ)由0<2a <b ,得0b x 12a <=--。

由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。 连接BC ,过点C 作CD⊥y 轴于点D , 则BD=y B -y C ,CD=1。 过点A 作AF∥BC,交抛物线于点E (x 1,y E ),交x 轴于点 F (x 2,0)。 则∠FAA 1=∠CBD。∴Rt△AFA 1∽Rt△BCD。 ∴11 AA FA BD CD = ,即2 21x yA 1x yB yC 1-==--。 过点E 作EG⊥AA 1于点G ,易得△AEG∽△BCD。 ∴AG EG BD CD =,即A E 1B C y y 1x y y -=--。 ∵点A (1,y A )、B (0,y B )、C (-1,y C )、E (x 1,y E )在抛物线y=ax 2 +bx+c 上, ∴y A =a+b+c ,y B =c ,y C =a -b+c ,y E =ax 12 +bx 1+c , ∴()()()211a b c ax bx c 1x1c a b c ++-++=---+,化简,得x 12 +x 1-2=0, 解得x 1=-2(x 1=1舍去)。 ∵y 0≥0恒成立,根据题意,有x 2≤x 1<-1。 则1-x 2≥1-x 1,即1-x 2≥3。 ∴yA yB yC -的最小值为3。 【考点】二次函数综合题,二次函数的性质,曲线上点的坐标与方程的关系,相似三角形的判定和性质。 【分析】(Ⅰ)将a=1,b=4,c=10代入解析式,即可得到二次函数解析式。 ①将二次函数化为顶点式,即可得到得到抛物线顶点坐标。 ②将A (1,y A )、B (0,y B )、C (-1,y C )分别代入解析式,即可求出y A 、 y B 、y C 的值,然后计算A B C y y y -的值即可。

二次函数图像与几何变换-练习

二次函数图像与几何变换 1 求某点的平移、对称点的坐标: 一个点A(-2,-5)作如下变化: (1)把点A先向右平移2 个单位,再向下平移3 个单位; (2)把点A沿x轴翻折; (3)把点A绕坐标系原点旋转180?; (4)把点A绕点P(1,0)旋转180?; 分别求出点的坐标. 2:已知;抛物线y =-x 2 + 2x + 3,回答下列问题: (1)分别写出此抛物线的顶点P,与x轴的两个交点A、B ( A点在B点的左侧),与y轴的交 点C的坐标.,并画出函数图像。 (2)若将抛物线y =-x 2 + 2x + 3 向左平移2 个单位长度,且向下平移3 个单 位长度,求所得抛物线的解析式. (3)求抛物线y =-x 2 + 2x + 3 关于y轴对称的抛物线的解析式. (4)求抛物线y =-x 2 + 2x + 3 关于x轴对称的抛物线的解析式. (5)求抛物线y =-x 2 + 2x + 3关于原点O对称的抛物线的解析式. 思考:对比以上几问,你能总结出: 图象变换背景下,求函数解析式的一般方法吗? 一、二次函数图象的平移变换 【例1】函数y = 3(x + 2)2 -1的图象可由函数y = 3x2 的图象平移得到,那么平移的步骤是:() A.右移两个单位,下移一个单位 B. 右移两个单位,上移一个单位 C. 左移两个单位,下移一个单位 D. 左移两个单位,上移一个单位 【例2】函数y =-2(x - 1)2 - 1 的图象可由函数y =-2(x + 2)2 + 3 的图象平移得到,那么平移的步骤 是() A. 右移三个单位,下移四个单位 B. 右移三个单位,上移四个单位 C. 左移三个单位,下移四个单位 D. 左移四个单位,上移四个单位

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数与几何综合——面积问题

“P+S自能发展教育”数学教学课案 学科:数学年级:九年级备课人:李龙 课题:二次函数与几何综合——面积问题课型:专题课课时数:1课时 教学目标1、掌握常见的面积问题模型及处理方法 2、灵活运用数形结合思想解决相关问题 教学重难点重点:面积问题的转化方法难点:数形结合思想的运用 教学辅工具多媒体、小白板 教学流程师生活动设计意图 课前预 习 一、课前预习,自能感知 1:已知A(-1,0),B(3,0),P(4,2),求PAB S ? . 2:已知C(1,-3),D(1,1),P(4,2),求PCD S ? . 3:已知抛物线223 y x x =--与x轴交于A、B两点(A左B右), P为x轴上方抛物线上一点,若6 PAB S ? =,求P点坐标. 变式1:若P为抛物线上一点,6 PAB S ? =,求P点坐标. 变式2:C(m,1),D(n,1)(m

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

一次函数的应用、二次函数与几何知识的综合应用练习题

2012届一次函数的应用、二次函数与几何知识的综合应用练习题 1、某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是 会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书, 若每月租书数量为x 册. (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系 式; (2)写出会员卡租书方式应付金额y 2(元 )与租书数量x (册)之间的函数关 系式; (3)小军选取哪种租书方式更合算? 2、某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知 大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购 车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最 省的方案,并求出该方案所需费用. 3、如图,抛物线y = 2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 4、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物 线交x 轴于另一点C (3,0). 第3题图

⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求 出符合条件的Q 点坐标;若不存在,请说明理由. 5、已知双曲线x k y 与抛物线y=ax 2+bx+c 交于A(2,3)、B(m,2)、c(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积, 6、已知函数y=mx 2-6x +1(m 是常数). ⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 7、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一 个交点为B ,且与y 轴交于点C . 第5题图

二次函数与几何分类总结

二次函数与几何综合 1, 二次函数图像问题 1.(2010湖北十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、 F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ) 2.(2010 重庆江津)如图,等腰Rt △ABC (∠ACB =90o)的直角边与正方形DEFG 的边 长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( ) (第10题) C D E F A B O x y 4 4 O x y 4 4 B . O x y 4 4 C . O x y 4 4 D . (第10题分析图) C D E F A B P

3.(2010广西南宁)如图3,从地面竖立向上抛出一个小球,小球的高度h (单位:m )与 小球运动时间t (单位:s )之间的关系式为2 530t t h -=,那么小球从抛出至回落到地面所需要的时间是: (A )6s (B )4s (C )3s (D )2s 4.(2010山东日照)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米 .已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距83米. (1)求出点A 的坐标及直线OA 的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点 .

二次函数与几何综合运用精品教案

二次函数与几何综合运用 能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型. 重点 应用二次函数解决几何图形中有关的最值问题. 难点 函数特征与几何特征的相互转化以及讨论最值在何处取得. 一、引入新课 上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程 问题1:教材第49页探究1. 用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l 为多少米时,场地的面积S最大? 分析: 提问1:矩形面积公式是什么? 提问2:如何用l表示另一边? 提问3:面积S的函数关系式是什么? 问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 分析: 提问1:问题2与问题1有什么不同? 提问2:我们可以设面积为S,如何设自变量? 提问3:面积S的函数关系式是什么? 答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x. 提问4:如何求解自变量x的取值范围?墙长32 m对此题有什么作用? 答案:0<60-2x≤32,即14≤x<30. 提问5:如何求最值? 答案:x=-b 2a=- 60 2×(-2) =15时,S max=450. 问题3:将问题2中“墙长为32 m”改为“墙长为18 m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 提问1:问题3与问题2有什么异同? 提问2:可否模仿问题2设未知数、列函数关系式? 提问3:可否试设与墙平行的一边为x米?则如何表示另一边?

中考专题 二次函数图象的几何变换 考点分析 例题 变式 解析

内容 基本要求 略高要求 较高要求 二次函数 能结合实际问题情境了解二次函 数的意义;会用描点法画出二次函数的图象 能通过分析实际问题的情境确定二次函数的表达式;能从图象上 认识二次函数的性质;会根据二次函数的解析式求其图象与坐标轴的交点坐标,会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解 能用二次函数解决简单的实际问题;能解决二次函数与其他知识综结合的有关问题 1. 理解各个解析式图象之间的联系及性质; 2. 掌握二次函数平移的性质; 3. 理解平移前后的解析式与平移变换之间的关系; 4. 掌握二次函数的对称变换的性质; 5. 会写出二次函数关于直线对称后的解析式; 6. 会写出二次函数关于点成中心对称后的解析式; 7. 掌握函数图象旋转前后的性质。 你知道“函数”的来历吗? 现行数学教科书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成函数的. 课前预习 重难点 中考要求 二次函数图象的几何变换

中国古代“函”字与“含”字通用,都有着“包含”的意思,李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思. 模块一二次函数的平移 1.几种二次函数解析式之间的平移关系: ①函数2 y ax k =+的图象可以看做是由函数2 ax y=的图象向上或向下平移||k个单位得到的; k>时,向上平移;0 k<时,向下平移。 ②函数()2 y a x h =-的图象可以看做是由函数2 ax y=的图象向左或向右平移||h个单位得到的; h>时,向右平移;0 h<时,向左平移。 ③函数()2 y a x h k =-+的图象可以看做是由函数2 ax y=的图象先向左或向右平移||h个单位,再向上或向下平移||k个单位得到的;当0 h>时,向右平移,当0 h<时,向左平移;0 k>时,向上平移,0 k<时,向下平移。 2.将二次函数2 y ax bx c =++,向左平移m个单位,函数解析式变为()() 2 y a x m b x m c =++++;向右平移m个单位,函数解析式变为()() 2 y a x m b x m c =-+-+。 3.将二次函数2 y ax bx c =++,向上平移n个单位,函数解析式变为2 y ax bx c n =+++;向下平移n个单位,函数解析式变为2 y ax bx c n =++-。 4.通常,将平移前的函数2 y ax bx c =++化成()2 y a x h k =-+的形式,在根据顶点的平移情况确定函数的平移情况,再将顶点式整理成一般式。 5.平移前后的的函数的开口方向与开口大小不改变,即a不变。 例题精讲

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

初三数学一元二次函数几何变换及应用

二次函数几何变换及应用中考要求 重难点 1.能从函数图像上认识函数的性质; 2.会确定图像的顶点、对称轴和开口方向; 3..能用二次函数解决简单的实际问题. 例题精讲 模块一.二次函数的几何变换 二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称 2 y ax bx c =++关于x轴对称后,得到的解析式是2 y ax bx c =---; ()2 y a x h k =-+关于x轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y轴对称 2 y ax bx c =++关于y轴对称后,得到的解析式是2 y ax bx c =-+; ()2 y a x h k =-+关于y轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y ax bx c =++关于原点对称后,得到的解析式是2 y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是 2 2 2 b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+.

5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不 变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 【例1】 函数2 y x =与2 y x =-的图象关于______________对称,也可以认为2 y x =是函数2 y x =-的图 象绕__________旋转得到. 【难度】3星 【解析】考察函数的对称性. 【答案】x 轴;原点旋转180°.2y x =与2y x =-关于x 轴对称,也可以看成是2 y x =-绕原点旋转180° 得到2 y x =. 【例2】 已知二次函数221y x x =--,求:(1)关于x 轴对称的二次函数解析式;(2)关于y 轴对称的二 次函数解析式;(3)关于原点对称的二次函数解析式. 【难度】3星 【解析】二次函数图象的几何变换 【答案】二次函数解析式转化为顶点式为()2 12y x =--,顶点坐标为()12-, ,关于x 轴对称后顶点坐标为()12,,开口大小不变,方向该变,则对称后的解析式是()2 12y x =--+,即221y x x =-++; 关于y 轴对称后顶点坐标为()12--, ,开口大小和方向不变,则对称后的解析式是()2 12y x =+-,即221y x x =+-;关于原点对称后顶点坐标为()12-, ,开口大小不变,方向改变,则对称后的解析式是()2 12y x =-++,即221x x --+. 【例3】 在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++ 【难度】3星 【解析】略 【答案】C

专题二次函数与几何图形

y A x B O C D 专题:二次函数与几何图形 一、二次函数与平行四边形 1.已知抛物线c bx ax y ++=2 )0(≠a 过点A (-3,0),B (1,0),C (0,3)三点 (1)求抛物线的解析式; (2) 若抛物线的顶点为P ,求∠PAC 正切值; (3)若以A 、P 、C 、M 为顶点的四边形是平行四边形, 求点M 的坐标. 2.已知一次函数1y x =+的图像和二次函数2 y x bx c =++的图像 都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式; (2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点 的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、 DF 与y 轴平行,当CF ∥ED 时,求C 点坐标. 二、二次函数与相似三角形 3.如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A 、C 两点的抛物线y =ax 2 +bx +c 与x 轴的负半轴上另一交点为B ,且tan ∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D 的坐标; (2)若点P 是射线BD 上一点,且以点P 、A 、B 为顶点的 三角形与△ABC 相似,求P 点坐标.【2014徐汇区】 1 2345 -1 -1-2 123456 x y O 图8

x y O O N C M B A 4.已知:在直角坐标系中,直线y=x+1与x 轴交与点A ,与y 轴交与点B ,抛物线 21 ()2 y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。 (1)若点C (非顶点)与点B 重合,求抛物线的表达式;(2015杨浦区) (2)若抛物线的对称轴在y 轴的右侧,且CD ⊥AB ,求∠CAD 的正切值; (3)在第(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称 轴于点P ,使得∠DCP=∠CAD ,求点P 的坐标。 三、二次函数与特殊三角形(Rt △ 等腰△ 等腰Rt △) 5.如图,已知二次函数y=-x 2 +bx+c (c>0)的图像与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C ,且OB=OC=3,顶点为M 。 (1)求二次函数的解析式。 (2)线段BM 上是否存在点N ,使得△NMC 为等腰三角形? 若存在,求出点N 的坐标,若不存在,请说理。 6.已知二次函数y=ax 2 +bx+c (a ≠0)的图像经过点 (1)求此函数的解析式和对称轴. (2)试探索该抛物线在x 轴下方的对称轴上存在几个点P, 使△PAB 是直角三角形,并求出这些点的坐标.

北师大版二次函数的应用教案

第二章二次函数 2.4 二次函数的应用(1) 一、知识点 1.利用二次函数求几何图形面积最大值的基本思路. 2.求几何图形面积的常见方法. 二、教学目标 知识与技能: 能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值. 过程与方法: 1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力. 2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力. 情感与态度: 1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值. 2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格. 3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力. 三、重点与难点 重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题. 难点:把实际问题转化成函数模型.

四、创设情境,引入新知(放幻灯片2、3、4) 1.(1)请用长20米的篱笆设计一个矩形的菜园. (2)怎样设计才能使矩形菜园的面积最大? 设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路. 2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米. (1)求S 与x 的函数关系式及自变量的取值范围; (2)当x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,求围成花圃的最大面积 . 设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程. 五、探究新知(放幻灯片5、6、7) 探究一:如图,在一个直角三角形的内部画一个矩形ABCD ,其中AB 和AD 分别在两直角边上,AN=40m ,AM=30m. (1)设矩形的一边AB=x m,那么AD 边的长度如何表示? (2)设矩形的面积为2ym ,当x 取何值时,y 的最大值是多少? 探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A 和点D 分别在两直角边上,BC 在斜边上.其它条件不变,那么矩形的最大面积是多少? 探究三:如图,已知△ABC 是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC 上截出一矩形零件DEFG,使得EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少? M N D C B A P M N D C B A F G E D C B A

二次函数与几何变换教案

二次函数与几何变换教案 课题课型知识和能力教学目标二次函数与几何变换专题课 1课时授课人授课时间李迎春 2021.12.7 会根据几何变换前后二次函数图象的特征量,求函数解析式. 能灵活的根据图象变化恰当地选取适当的方法求解析式,体会二次函数图象变化与解析式变化之间的关系。通过观察、分析、对比、概括等方法了解二次函数图象变换的基本类型,并掌握二次函数不同变换所对应解析式的相关确定方法,从而体会数形结合思想和转化思想在二次函数中的应用. 由简单题入手逐渐提升,从而消除学生的畏难情绪,让学生有兴趣和积极性参与数学活动. 加强学生之间的合作交流,提高学生的归纳总结能力,培养学生的问题意识. 重点:求二次函数图象经过几何变换后的解析式. 难点:选择用恰当的形式求解析式. 启发式、讨论式教学活动学生活动此部分为复习完成. 设计意图回顾二次函数回顾特殊变换前后点的坐标的变化规律. 过程和方法情感态度和价值观教学重点和难点教学方法课前复习: 1、二次函数的解析式 2、求某点的平移、对称点的坐标: ?5)作如下变化:一个点A(?2,内容,学生独立解析式特点;(1) 把点A先向右平移2个单位,再向下平移3个单位;(2)把点A沿x轴翻折;(3) 把点A绕坐标系原点旋转180?; 0)旋转180?;(4)

把点A绕点P(1,分别求出点的坐标. 教师活动提问:例 1:已知;抛物线y??x2?2x?3,学生活动设计意图复习巩 固,并为二次函数图回答下列问题,学生独立完成,象 几何变换准(1)分别写出此抛物线的顶点P,与x轴的两个备条件. 交点A、B (A点在B点的左侧),与y轴的交复习二次函数图像 上、下、左、右平移,练习求平移前后解析式. 点C的坐标. (2)若将抛物线 y??x2?2x?3 学生展示、交流向 左平移2个单位长度,且向下平移3个单位长度,求所得抛 物线的解析式. 学生积极思考、集体展示. 学生归纳 总结出函数解析式小组共同讨论、给学生展示的舞台,让学生 有发挥的空间. 主要让学生体会图象平移过程中的变化与不变的 关系,并总结对应解析式规律. 思考:如何根据图象平移,确定 函数解析式?中系数与图象问题:你们都有哪些方法? 的特征的 对应这些方法有何异同之处? 关系以及图象有优劣之分吗? 平移对解析式评价学生回答,并进行总结. 归纳出解决问题的核 心方法,之后再让学影响.激发学生的学生思考用到了什么数学 思想方法学生积极思考、习兴趣. (3)求抛物线 y??x2?2x?3 小组共同讨论、集体展示. 关于y轴对称的抛物线的解析式. 学生先独立思考,后小组交流使学生亲身经历规律产生的过 程. 提高学生归纳总结的能力. 思考:如何根据图象对称, 确定函数解析式?学生归纳总结

相关主题