搜档网
当前位置:搜档网 › 机械原理重要概念总结

机械原理重要概念总结

机械原理重要概念总结
机械原理重要概念总结

机械原理重要概念总结

零件:独立的制造单元 \ 构件:机器中每一个独立的运动单元体 \ 运动副:由两个构件直接接触而组成的可动的连接 \ 运动副元素:把两构件上能够参加接触而构成的运动副表面高副:凡两构件通过单一点或线接触而构成的运动副称为高副。

低副:通过面接触而构成的运动副统称为低副。

4. 空间自由运动有6歌自由度,平面运动的构件有3个自由度。

构件的自由度:构件的独立运动数目 \ 运动链:构件通过运动副的连接而构成的可相对运动系统 \ 机架:固定的构件 \原动件:机构中做独立运动的构件

从动件:机构中除原动件外其余的活动构件

运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构

2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。

示意图:只为了表明机械的结构,不按比例来绘制简图

3约束和自由度的关系:增加一个约束,构件就失去一个自由度

4机构具有确定运动的条件:机构自由度等于机构的原动件数

5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心

绝对瞬心:运动构件上瞬时绝对速度为零的点

相对瞬心:两运动构件上瞬时绝对速度相等的重合点

9连杆机构(低副机构):若干个构件通过低副联接所组成的机构

10平面四杆机构基本形式:铰链四杆机构

11曲柄:在两连杆中能做整周回转机构

摇杆:只能在一定角度范围内摆动的构件

周转副:将两构件能做360°相对转动的转动副

摆动副:不能将两构件能做360°相对转动的转动副

12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆

13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构;

14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构

无急回运动:对心曲柄滑块机构和双摇杆机构

15死点位置:压力角为90°,传动角为0°。曲柄滑块机构,当滑块为原动件时,存在死点位置。

平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副

机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成

高副:两构件通过点线接触而构成的运动副

低副:两构件通过面接触而构成的运动副

由M个构件组成的复合铰链应包括M-1个转动副

平面自由度计算公式:F=3n-(2Pl+Ph)

局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动

虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用

虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利

基本杆组:不能在拆的最简单的自由度为零的构件组

速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心

相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是

三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上

速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形

驱动力:驱动机械运动的力阻抗力:阻止机械运动的力

质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化

质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变

机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动自锁条件:η≤0 机械发生自锁

机械自锁的实质:驱动力所做功总是小于或等于克服由其可能引起最大摩擦阻力所需要的功

提高机械效率的途径:尽量简化机械传动系统;选择合适的运动副形式;尽量减少构件尺寸;铰链四杆机构有曲柄的条件:

1、最短杆与最长杆长度之和小于或等于其他两杆长度之和

2、连架杆与机架中必有一杆为最短杆

在曲

柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构

在曲柄滑块机构中改变回转副半径而形成偏心轮机构

曲柄摇杆中只有取摇杆为主动件时才可能出现死点位置,处于死点位置时机构的传动角为0 急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度

极为夹角机构在两个极位时原动件AB所在的两个位置之间的夹角θθ=180°(K-1)/(K+1) 压力角:力F与C点速度正向之间的夹角α传动角:与压力角互余的角(锐角)

行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值

K=V2/V1=180°+θ/(180°—θ)

平面四杆机构中有无急回特性取决于极为夹角的大小

试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)

曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构

机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法

刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击

柔性冲击:加速度突变为有限值,因而引起的冲击较小

在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击

在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动

凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小

凸轮机构(高副机构):是凸轮、从动件、机架及附属装置组成的一种高副机构17齿轮作用:传递空间任意两轴间的运动和动力齿轮特点:传动功率大,效

率高,传动比精确,使用寿命长,工作安全可靠,要求制造安装精度高且成本高齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,被其啮合齿廓在接触点处的公法线所分成的两线段长成反比

渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK

渐开线的性质:

1、发生线上BK线段长度等于基圆上被滚过的弧长AB

2、渐开线上任一一点的发线恒于其基圆相切

3、渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零

4、渐开线的形状取决于基圆的大小

5、基圆以内无渐开线

6、同一基圆上任意弧长对应的任意两条公法线相等

渐开线函数:invαK=θk=tanαk-αk

渐开线齿廓的啮合特点:

1、

2、

3、能保证定传动比传动且具有可分性

传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比

I12=ω1/ω2=O2P/O1P=rb2/rb1

4、

5、渐开线齿廓之间的正压力方向不变

渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)

一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等

一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2

渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角

渐开线齿廓上任意一点的法线与基圆相切

根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1

一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等

齿轮传动的连续条件:重合度大于或等于许用值

20啮合节点:两齿廓接触点处公法线与两轮连心线的交点

21一对渐开线圆柱齿轮的重合度定义:实际啮合线段与齿轮法向齿距之比。

增大重合度对提高齿轮传动的承载能力具有重要意义。

重合度随齿数增大而增大。

22

一对渐开线标准直齿圆柱齿轮非标准安装时,节圆与分度圆不重合,分度圆的大小取决于模数齿数,节圆大小取决于中心距。

23渐开线齿廓啮合的定传动比性:两齿轮在任意点K啮合,其公法线nn必为定

直线,其与O1O2线交点必为定点,则两轮传动比为常数。

24渐开线齿轮传动间的可分性:渐开线齿轮的传动比又与两轮基圆半径成反比,渐开线齿廓加工完成后,其基圆大小是不变的。当两轮的实际中心距与设计中心距发生变化时,两轮的传动比不变。

渐开线齿轮传动间的平稳性:传动过程中,两啮合齿廓间的正压力方向始终不变

25压力角决定渐开线齿廓形状,模数、齿数、压力角决定渐开线形状,模数决定齿轮的几何尺寸

26渐开线齿轮的正确啮合条件:两轮的模数和压力角应分别相等

27 在齿轮传动中,为避免一轮的齿顶与另一轮齿根的过渡曲线相抵触,故在一轮齿顶圆与另一轮齿根圆之间应留有一定的间隙,称为顶隙。

28 无侧隙啮合条件:一个齿轮节圆上的等于另一个齿轮节圆上的齿槽宽,即

S1’=e2’或S2’=e1’

29支持圆锥齿轮机构可以传递两相交轴之间的运动和动力。

30 标准中心距:两轮的中心距a等于两轮分度圆半径之和,按标准中心距进行安装的称为标准安装

31标准安装:当齿轮分度圆与齿条分度线相切,节圆与分度圆重合

32 根切:用展成法加工齿轮时,有时轮齿根部间的渐开线齿廓被刀具顶切去一部分,若刀具的齿顶线超过啮合极限N,则被切齿轮必发生轮齿根切。

避免根切:应用道具的齿顶线不超过啮合极限点N1。

若改用正变为修正法,齿轮分度圆直径不变、基圆直径不变、齿距不变,齿厚变大、齿槽宽减少、齿顶高增大、齿根高减少、齿顶圆增大、齿根圆减少。33 变位修正法:改变刀具与轮胚相对位置加工齿轮的方法称为变位修正法,用这种方法加工出的齿轮称为变位齿轮

34 当量齿轮的应用:1 用来选取齿轮铣刀的刀号 2 用来计算齿轮的强度3 用来确定斜齿轮不根切的最小齿数

35 斜齿轮传动的正确啮合条件:螺旋角匹配,两齿轮的模数和压力角分别相等。

36 斜齿轮传动特点:1 啮合性能好 2 重合度大 3 结构紧凑

37设计斜齿轮传动时,可用改变螺旋角的方法,来调整中心距的大小,以满足对中心距的设计要求,而不一定用变位的方法。

38 涡轮蜗杆机构是用来传动空间的运动和动力的结构,最常用的是轴交角

39 涡轮蜗杆的传动特点:1 传动比大 2 传动平稳 3 传动效率高 4 传动的自锁性

40 蜗轮蜗杆的正确啮合条件:中间平面内蜗杆与蜗轮的模数和压力角分别相等或蜗杆的轴向模数和轴向压力角分别等于涡轮的端面模数和端面压力角且为标准值

47机械平衡的目的:设法使惯性力和惯性力偶距消除或减小,从而改善机械的

工作性能,并延长其使用寿命。

48飞轮是一个转动惯量很大的回转构件,用以调节机械的周期速度波动,飞轮最好安装在高速轴上,飞轮之所以能调速,利用了它的储能作用。

定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的

周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转

复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成

定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值

中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用

曲柄:在连杆架中,能作整周回转的称为曲柄

摇杆:只能在一定范围内摆动的称为摇杆

曲柄摇杆机构:在铰链四杆机构中,若两个连杆架中一个为曲柄,另一个为摇杆,则此四杆机构称为曲柄摇杆机构

双曲柄机构:在铰链四杆机构中,若两个连杆架都是曲柄,则称为双曲柄机构

双摇杆机构:若铰链四杆机构的两个连杆架都是摇杆,则称为双摇杆机构

平面四杆机构有曲柄的条件:1)杆长条件:最短杆与最长杆的长度和应小于或等于其他两杆的长度和

2)组成该周转副的两杆中必有一杆为四杆中的最短杆

若最短杆为连架杆时,该四杆机构将成为双曲柄机构

若最短杆为连杆则该四杆机构成为双摇杆机构

急回特性:当曲柄摇杆机构在运动过程中出现极位夹角θ时,机构便具有急回特性。θ角越大K越大,急回运动性质越显著。

凸轮:凸轮是一个具有曲线轮廓或凹槽的构件

推杆:被凸轮直接推动的构件称为推杆(或从动件)

齿顶圆:以齿轮的轴心为圆心,过齿轮各轮齿顶端所作的圆称为齿顶圆。其直径和半径分别以da和ra表示

齿根圆:以齿轮的轴心为圆心,过齿轮各各齿槽底部所作的圆称为齿根圆。其直径和半径分别以df和rf表示

齿厚:沿任意圆周所量得的轮齿的弧线厚度称为该圆周上的齿厚,以sk表示

齿槽宽:相邻两轮齿之间的齿槽沿任意圆周所量的弧线宽度,称为该圆周上的齿槽宽,以ek表示

齿距:沿任意圆周所量得的相邻两齿上同侧齿廓之间的弧长称为该圆上的齿距,以pk表示在同一圆周上,齿距等于齿厚与齿槽宽之和,即

分度圆:为了便于齿轮各部分尺寸的计算,在齿轮上选择一个圆作为计算的基准,称该圆为齿轮的分度圆。其直径、半径、齿厚、齿槽宽、齿距分别以d、r、s、e和p表示,且p=s+e 齿顶高:介于分度圆与齿顶圆之间的轮齿部分称为齿顶,其径向高度称为齿顶高以ha表示齿根圆:介于分度圆与齿根圆之间的轮齿部分称为齿根,其径向高度称为齿根高以hf表示齿全高:齿顶圆与齿根圆之间的径向距离,即齿顶高与齿根高之和称为齿全高,以h表示。

则齿数:在齿轮整个圆周上轮齿的总数称为齿数,用z表示

模数:齿数相同的齿轮,模数大,则其尺寸也大

渐开线齿轮正确啮合的条件:两齿轮的模数和压力角应分别相等

锥齿轮:当量齿轮的模数和压力角与锥齿轮断面的模数和压力角相等。

蜗轮蜗杆:Mx1=Mt2=M Dx1=Dt2=D

当蜗杆和涡轮的轴线交错角为90°时,还需保证蜗杆的导程角等于涡轮的螺旋角,即使

y1=B2,并且螺旋线的方向相等。

根切现象:用范成法切制齿轮时,有时刀具会过多的切入齿轮的底部,因而将齿轮的渐开线切除一部分的现象。

重合度:重合度的大小与齿数Z,模数M,压力角D齿顶高系数ha,顶隙系数 C 及中心局之间的关系

一对渐开线齿轮正确啮合的条件:

直齿轮:两齿轮的模数和压力角应分别相等,m1=m2=m ,d1=d2=d

斜齿轮:两齿轮的模数和压力角应分别相等,还有他们的螺旋角必须满足:外啮合B1=-B2, 内啮合B1=B2.

渐开线的特性:1发生线上的BK线段等于基圆上被滚过的弧长AB,即BK=AB, 2渐开线上的任意一点的法线恒切与基圆3渐开线愈接近基圆部分的曲率半径愈小,在基圆上其曲率半

径为零, 4渐开线的形状取决与基圆的大小。5基本以内无渐开线。

1. 什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系

机械是机器和机构的总称

机器是一种用来变换和传递能量、物料与信息的机构的组合。

讲运动链的某一构件固定机架,当它一个或少数几个原动件独立运动时,其余从动件随之做确定的运动,这种运动链便成为机构。

零件→构件→机构→机器(后两个简称机械)

2. 在计算平面机构的自由度时,应注意那些事项?

1. 要正确计算运动副的数目

2.要除去局部自由度

3.要除去虚约束

3.N个构件(含机架)组成的机构的瞬心总数K=N(N-1)/2

4.三心定理即3个彼此做平面平行运动飞构件的3个瞬心必位于同一直线上。对于不通过运动服直接相连的两构件的瞬心位置,可可借助三心定理来确定。

5.机械平衡的目的:设法将构件的不平衡惯性力加以平衡,以消除或减小其不良影响。

6.机械运转的三个阶段:起动阶段、稳定运转阶段、停车阶段

7.四杆机构的基本形式:①曲柄摇杆机构②双曲柄机构③双摇杆机构

8.四杆机构中有周转副的条件是

①最长杆与最短杆的长度之和≤其余两杆的长度之和

②构成该转动副的两杆之一为四杆中的最短杆

9.四杆机构中有曲柄的条件:

①各杆的长度应满足杆长条件

②其最短杆为连架或机架

当最短杆为连架时,则为曲柄摇杆机构

当最短杆为机架时,则为双曲柄机构

当最短杆为连杆时,则为双摇杆机构

10.压力角和传动角互余

压力角d:从动件受力的方向与受力点的速度之间所夹的锐角

传动角:压力角的余角

11..死点位置→往复运动机械构件作主动件时d=90°,y=0°→Ft=0

F无论多大都不能使机构运动

12.凸轮机构的最大优点是只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律。

13.按凸轮的形状分:盘形凸轮、圆柱凸轮。按推杆的形状分:尖顶推杆、滚子推杆、平底推杆。按从动件的运动形式:摆动从动件、移动从动件。按从动件形式:尖顶从动件、滚子从动件、平底从动件。

14.什么叫刚性冲击和柔性冲击?

推杆在运动开始和终止的瞬间,因速度有突变,所以这是推杆在理论上将出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击,称为刚性冲击,a →∞=>惯性力→∞=>极大的冲击力,三点加速度有突变,不过这一突变为有限值,引起的冲击较小,称为柔性冲击。

15.用于平行轴间的传动的齿轮机构——直齿轮

用于相交轴间的传动的齿轮机构——锥齿轮

用于交错轴间的传动的齿轮机构——斜齿轮

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

第十二章简单机械知识点总结教学提纲

第十二章简单机械知 识点总结

收集于网络,如有侵权请联系管理员删除 O 第十二章 简单机械 一、杠杆 (1)定义:在力的作用下绕着固定点转动的硬棒叫杠杆。 说明:①杠杆可直可曲,形状任意。 ②有些情况下,可将杠杆实际转一下,来帮助确定支点。如:鱼杆、铁锹。 (2)五要素──组成杠杆示意图。 ①支点:杠杆绕着转动的点。用字母O 表示。 ②动力:使杠杆转动的力。用字母F 1表示。 ③阻力:阻碍杠杆转动的力。用字母F 2表示。 说明:动力、阻力都是杠杆的受力,所以作用点在杠杆上。 动力、阻力的方向不一定相反,但它们使杠杆的转动的方向相反。 ④动力臂:从支点到动力作用线的距离。用字母L 1表示。 ⑤阻力臂:从支点到阻力作用线的距离。用字母L 2表示。 (3)画力臂方法:一找支点、二画线、三连距离、四标签。 ⑴找支点O ;⑵画力的作用线(虚线); ⑶画力臂(虚线,过支点垂直力的作用线作垂线); ⑷标力臂(大括号)。 (4)研究杠杆的平衡条件: 杠杆平衡是指:杠杆静止或匀速转动。 实验前:应调节杠杆两端的螺母,使杠杆在水平位置平衡。 这样做的目的是:可以方便的从杠杆上量出力臂。 结论:杠杆的平衡条件(或杠杆原理)是: 动力×动力臂=阻力×阻力臂。写成公式F 1L 1=F 2L 2也可写成:F 1/F 2=L 2/L 1。 解题指导:分析解决有关杠杆平衡条件问题,必须要画出杠杆示意图;弄清受 力与方向和力臂大小;然后根据具体的情况具体分析,确定如何使用平衡条件解决有关问题。(如:杠杆转动时施加的动力如何变化,沿什么方向施力最小等。) 解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大,要使动力臂最大需要做到:①在杠杆上找一点,使这点到支点的距离最远;②动力方向应该是过该点且和该连线垂直的方向。 【习题】1.下列测量工具没有利用杠杆原理的是( ) A.弹簧测力计 B.杆秤 C. 台秤 D. 托盘天平 2.如图是小龙探究“杠杆平衡条件”的实验装置,用弹簧测力计在C 处竖直向上拉,杠杆保持平衡。若弹簧测力计逐渐向右倾斜,仍然使杠杆保持平衡,拉力F 的变化情况是( ) A . 变小 B . 变大 C. 不变 D.无法确定 3.(1)人要顺时针翻转木箱,请画出用力最小时力臂的大小。 (2)如图人曲臂将重物端起, 前臂可以看作一个杠杆。在示意图上画出F 1和F 2的力臂。 4. 如图所示,要使杠杆处于平衡状态,在A 点分别作用的四个力中,最小的是( ) A .F 1 B .F 2 C .F 3 D .F 4 5. 如图所示是某同学做俯卧撑时的示意图,他的质量为56kg 。身体可视为杠杆,O 点为支点.A 点为重心。每次俯卧撑他肩膀向上撑起40cm .( g 10N/ kg ) (1) 该同学所受重力是多少? (2) 在图中画出该同学所受重力的示意图,并画出重力的力臂L 1

机械设计知识点(经典)总结..

机械设计知识点总结(一) 1.螺纹联接的防松的原因和措施是什么? 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。 2.提高螺栓联接强度的措施 答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。 3.轮齿的失效形式 答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合,(4)齿面磨损,(5)齿面塑性变形。 4.齿轮传动的润滑。 答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。 5.为什么蜗杆传动要进行热平衡计算及冷却措施 答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。

机械原理重要概念

机械原理重要概念 零件:独立的制造单元 构件:机器中每一个独立的运动单元体 运动副:由两个构件直接接触而组成的可动的连接 运动副元素:把两构件上能够参加接触而构成的运动副表面 运动副的自由度和约束数的关系f=6-s 运动链:构件通过运动副的连接而构成的可相对运动系统 平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副 机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成 高副:两构件通过点线接触而构成的运动副 低副:两构件通过面接触而构成的运动副 由M个构件组成的复合铰链应包括M-1个转动副 平面自由度计算公式:F=3n-(2Pl+Ph) 局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动 虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用 虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利 基本杆组:不能在拆的最简单的自由度为零的构件组 速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心 相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同

点:后者绝对速度为零,前者不是

三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上 速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形 驱动力:驱动机械运动的力 阻抗力:阻止机械运动的力 矩形螺纹螺旋副: 拧紧:M=Qd2tan(α+φ)/2 放松:M’=Qd2tan(α-φ)/2 三角螺纹螺旋副: 拧紧:M=Qd2tan(α+φv)/2 放松:M=Qd2tan(α-φv)/2 质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化 质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变 机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动 判断自锁的方法: 1、根据运动副的自锁条件,判定运动副是否自锁 移动副的自锁条件:传动角小于摩擦角或当量摩擦角 转动副的自锁条件:外力作用线与摩擦圆相交或者相切

中考考点_简单机械知识点汇总(全)

中考考点_简单机械知识点汇总(全) 一、简单机械选择题 1.如图所示的滑轮组上:挂两个质量相等的钩码A B,放手后将出现的现象是(忽略滑轮重,绳重及摩擦)() A.A下降 B.B下降 C.保持静止 D.无法确定 【答案】A 【解析】分析:利用动滑轮、定滑轮的省力特点分析解答此题。定滑轮只能改变力的方向,不能省力,动滑轮可以省一半的力。 解答:B所在的滑轮为动滑轮,动滑轮省一半的力,A所在的滑轮为定滑轮,定滑轮不省力;A与B质量相等,重力相等,将B拉起只需A重力的一半即可,所以A下降,B上升。 故选:A。 【点睛】此题考查了动滑轮、定滑轮的省力特点,难点是判断动滑轮和定滑轮,属于基础题目。 2.如图所示,用滑轮组在4s内将重为140N的物体匀速提升2m,若动滑轮重10N,石计滑轮与轴之间的摩擦及绳重。则在此过程中,下列说法正确的是 A.拉力F为75N B.绳子自由端向上移动了4m C.滑轮组的机械效率约为93.3% D.提升200N重物时,滑轮组机械效率不变 【答案】C 【解析】 【详解】 A.由图可知,n=3,不计摩擦及绳重,拉力: F=1 3 (G+G动)= 1 3 ×(140N+10N)=50N,故A错误;

B.则绳端移动的距离:s=3h=3×2m=6m,故B错误;C.拉力做功:W总=Fs=50N×6m=300J, 有用功:W有用=Gh=140N×2m=280J, 滑轮组的机械效率:η=W W 有用 总 ×100%= 280J 300J ×100%≈93.3%,故C正确。 D.提升200N重物时,重物重力增加,据η=W W 有用 总 = Gh Gh G h + 动 = G G G + 动 可知滑轮组机 械效率变大,故D错误。 3.物体做匀速直线运动,拉力F=60N,不计滑轮间的摩擦和动滑轮的自重,则物体受到的摩擦力是 A.60 N B.120 N C.20 N D.180 N 【答案】D 【解析】 【分析】 分析滑轮组的动滑轮绕绳子的段数,不计滑轮间的摩擦和动滑轮的自重,根据得到物体受到的摩擦力。 【详解】 从图中得到动滑轮上的绳子段数为3,不计滑轮间的摩擦和动滑轮的自重,物体受到的摩擦力:f=3F=3×60N=180N。 故选D。 【点睛】 本题考查滑轮组的特点,解决本题的关键要明确缠绕在动滑轮上的绳子的段数。 4.用图中装置匀速提升重为100N的物体,手的拉力为60N,滑轮的机械效率为() A.16.7% B.20% C.83.3% D.100% 【答案】C 【解析】 【详解】 由图可知,提升重物时滑轮的位置跟被拉动的物体一起运动,则该滑轮为动滑轮; ∴拉力移动的距离s=2h,

机械原理概念题及答案

第2章机构的结构分析 一、选择题 1.机构中的构件是由一个或多个零件所组成,这些零件间 B 产生任何相对运动。 A.可以 B.不能 2.基本杆组的自由度应为 C 。 A.-1 B.+1 C.0 3.有两个平面机构的自由度都等于1,现用一个带有两铰链的运动构件将它们串成一个平面机构,则其自由度等于 B 。 A.0 B.1 C.2 4.平面运动副提供约束为 C 。 A.1 B.2 C.1或2 5.由4个构件组成的复合铰链,共有 B 个转动副。 A.2 B.3 C.4 6.计算机构自由度时,若计入虚约束,则机构自由度就会 C 。 A.不变 B.增多 C.减少 二、填空题 1.机器中每一个制造单元体称为零件。 2.局部自由度虽不影响机构的运动,却减小了高副元素的磨损,所以机构中常出现局部自由度。 3.机器中每一个独立的运动单元体称为构件。 4.平面运动副的最大约束数为 2 ,最小约束数为 1 。 5.两构件通过面接触而构成的运动副称为低副;通过点、线接触而构成的运动副称为高副。 6.两构件之间以线接触所组成的平面运动副,称为高副,它产生 1 个约束。 三、判断题

1.在平面机构中一个高副有两个自由度,引入一个约束。(√) 2.在杆组并接时可将同一杆组上的各个外接运动副连接在同一构件上。(×) 3.若两个构件之间组成了两个导路平行的移动副,在计算自由度时应算作两个移动副。(×) 4.六个构件组成同一回转轴线的转动副,则该处共有6个转动副。(×) 5.在平面机构中一个高副引入二个约束。(×) 6.任何具有确定运动的机构都是由机架加原动件再加自由度为零的杆组组成的。(√) 7.任何机构都是由机架加原动件再加自由度为零的基本杆组组成。因此基本杆组是自由度为零的运动链。(√) 8.平面低副具有2个自由度,1个约束。(×) 9.当机构自由度F>0,且等于原动件数时,该机构具有确定运动。(√) 第3章平面机构的运动分析 一、选择题 1.平面六杆机构有共有 A 个瞬心。 A.15 B.12 C.6 二、填空题

机械原理基础知识点总结,复习重点

机械原理知识点总结 第一章平面机构的结构分析 (3) 一. 基本概念 (3) 1. 机械: 机器与机构的总称。 (3) 2. 构件与零件 (3) 3. 运动副 (3) 4. 运动副的分类 (3) 5. 运动链 (3) 6. 机构 (3) 二. 基本知识和技能 (3) 1. 机构运动简图的绘制与识别图 (3) 2.平面机构的自由度的计算及机构运动确定性的判别 (3) 3. 机构的结构分析 (4) 第二章平面机构的运动分析 (6) 一. 基本概念: (6) 二. 基本知识和基本技能 (6) 第三章平面连杆机构 (7) 一. 基本概念 (7) (一)平面四杆机构类型与演化 (7) 二)平面四杆机构的性质 (7) 二. 基本知识和基本技能 (8) 第四章凸轮机构 (8) 一.基本知识 (8) (一)名词术语 (8) (二)从动件常用运动规律的特性及选用原则 (8) 三)凸轮机构基本尺寸的确定 (8) 二. 基本技能 (9) (一)根据反转原理作凸轮廓线的图解设计 (9) (二)根据反转原理作凸轮廓线的解析设计 (10) (三)其他 (10) 第五章齿轮机构 (10) 一. 基本知识 (10) (一)啮合原理 (10) (二)渐开线齿轮——直齿圆柱齿轮 (11) (三)其它齿轮机构,应知道: (12) 第六章轮系 (14) 一. 定轴轮系的传动比 (14) 二.基本周转(差动)轮系的传动比 (14)

三.复合轮系的传动比 (15) 第七章其它机构 (15) 1.万向联轴节: (15) 2.螺旋机构 (16) 3.棘轮机构 (16) 4. 槽轮机构 (16) 6. 不完全齿轮机构、凸轮式间歇运动机构 (17) 7. 组合机构 (17) 第九章平面机构的力分析 (17) 一. 基本概念 (17) (一)作用在机械上的力 (17) (二)构件的惯性力 (17) (三)运动副中的摩擦力(摩擦力矩)与总反力的作用线 (17) 二. 基本技能 (18) 第十章平面机构的平衡 (18) 一、基本概念 (18) (一)刚性转子的静平衡条件 (18) (二)刚性转子的动平衡条件 (18) (三)许用不平衡量及平衡精度 (18) (四)机构的平衡(机架上的平衡) (18) 二. 基本技能 (18) (一)刚性转子的静平衡计算 (18) (二)刚性转子的动平衡计算 (18) 第十一章机器的机械效率 (18) 一、基本知识 (19) (一)机械的效率 (19) (二)机械的自锁 (19) 二. 基本技能 (20) 第十二章机械的运转及调速 (20) 一. 基本知识 (20) (一)机器的等效动力学模型 (20) (二)机器周期性速度波动的调节 (20) (三)机器非周期性速度波动的调节 (20) 二. 基本技能 (20) (一)等效量的计算 (20) (二)飞轮转动惯量的计算 (20)

[机械制造行业]机械原理考试大纲

(机械制造行业)机械原 理考试大纲

机械原理考试大纲 1、绪论 ⑴内容 ①机械原理的研究对象及基本概念 ②机械原理课程的内容及在教学中的地位、任务和作用 ③机械原理学科的的发展趋势 ⑵基本要求 ①明确本课程的研究对象和内容。 ②明确本课程的地位、任务和作用。 ③对本学科的发展趋势有所了解。 ⑶重点、难点 本章重点是“本课程研究的对象和内容”。对零件、构件、机器、机构、机械等名词和概念要弄得很清楚,对机器与机构的特征和区别要清楚。比如:零件与构件的不同之处在于零件是机器有制造单元而构件是机器的运动单元,这些都应熟练掌握。 2、平面机构的结构分析 ⑴内容 ①研究机构结构的目的 ②运动副、运动链和机构 ③平面机构运动简图 ④平面机构的组成原理和结构分析 ⑵基本要求 ①能计算平面运动链的自由度并判断其具有确定运动的条件。 ②能绘制机构运动简图。 ③能进行机构的组成原理和结构分析。 ⑶重点、难点 何谓约束?约束数与自由度数的关系如何?平面低副(转动副和移动副)和高副各具有几个约束,其自由度为多少? 平面机构自由度F=。要注意式中n为活动构件数而不是所有构件数,为平面低副数,为平面高副数。为使F计算正确,必须正确判断n、、的数目,因此要注意该机构中有无复合铰链、局部自由度和虚约束等。对于复合铰链,只要注意到,

计算运动副数目时不弄错就行了;局部自由度常出现在有滚子的部分;而虚约束的出现较难掌握,应认真领会课堂讲解中所列可能出现虚约束的几种情况。 能正确分析机构的组成原理,平面连杆机构的高副低代,杆组级别判断。 3、平面机构的运动分析 ⑴内容 ①研究机构运动分析的目的和方法 ②用相对运动图解法求机构的速度和加速度 ③用解析法机构的位置、速度和加速度 ⑵基本要求 ①能用图解法对机构进行运动分析。 ②能用解析法对机构进行运动分析。 ⑶重点、难点 相对运动图解法(又称向量多边形法)为本章的重点内容。所讨论的问题有两类。一类是在同一构件上两点间的速度和加速度的关系;一类是组成移动副两构件的重合点间的速度和加速度的关系。这两类问题都可以通过建立矢量方程式,作速度多边形和加速度多边形来解题。要注意一个矢量方程只能解两个未知数,若超过两个则要通过与其它点之间新的矢量方程式来联立求解。在解题时要充分利用速度、加速度影像原理,以期达到简捷、准确的目的。 关于后一类问题,是否存在哥氏加速度是其中的关键,判断方法如下: 1)两构件组成移动副,但只有相对移动,而无共同转动时,重合点间加速度关系中无哥氏加速度。 2)若两构件组成移动副,即有相对移动又有共同转动时,重合点间加速度关系中必存在哥氏加速度。 4、平面机构的力分析和机器的机械效率 ⑴内容 ①研究机构力分析的目的和方法 ②构件惯性力的确定 ③运动副中摩擦力的确定

简单机械知识点梳理及经典练习(超详细)1

简单机械知识点梳理及经典练习(超详细)1 一、简单机械选择题 1.如图所示,工人用250N 的力F 将重为400N 的物体在10s 内匀速提升2m ,则此过程中 A .工人做的有用功为800J B .工人做的总功为500J C .滑轮组的机械效率为60% D .拉力做功的功率为20W 【答案】A 【解析】 【详解】 A .工人做的有用功: 400N 2m 800J Gh W ==?=有 , A 选项正确。 B .绳子的自由端移动的距离是4m ,工人做的总功: 250N 4m 1000J W Fs ==?=总 , B 选项错误。 C .滑轮组的机械效率: 800J 80%1000J W W = = =有总 η, C 选项错误。 D .拉力做功的功率: 1000J 100W t 10s W P = ==, D 选项错误。 2.山区里的挑夫挑着物体上山时,行走的路线呈“S”形,目的是 A .加快上山时的速度 B .省力 C .减小对物体的做功 D .工作中养成的生活习惯 【答案】B

【解析】 斜面也是一种简单机械,使用斜面的好处是可以省力. 挑物体上山,其实就是斜面的应用,走S形的路线,增加了斜面的长,而斜面越长,越省力,所以是为了省力. 故选B. 3.某商店有一不等臂天平(砝码准确),一顾客要买2kg白糖,营业员先在左盘放一包白糖右盘加1Kg砝码,待天平平衡后;接着又在右盘放一包白糖左盘加1kg砝码,待天平平衡后.然后把两包白糖交给顾客.则两包白糖的总质量 A.等于2Kg B.小于2Kg C.大于2Kg D.无法知道 【答案】C 【解析】 解答:由于天平的两臂不相等,故可设天平左臂长为a,右臂长为b(不妨设a>b),先称得的白糖的实际质量为m1,后称得的白糖的实际质量为m2 由杠杆的平衡原理:bm1=a×1,am2=b×1,解得m1=,m2= 则m1m2=因为(m1+m2)2=因为a≠b,所以(m1+m2)-2>0,即m1+m2>2这样可知称出的白糖质量大于2kg.故选C. 点睛:此题要根据天平的有关知识来解答,即在此题中天平的臂长不等,这是此题的关键. 4.在生产和生活中经常使用各种机械,在使用机械时,下列说法中正确的是 A.可以省力或省距离,但不能省功 B.可以省力,同时也可以省功 C.可以省距离,同时也可以省功 D.只有在费力情况时才能省功 【答案】A 【解析】 【详解】 使用机械可以省力、省距离或改变力的方向,但都不能省功,故A选项正确; 使用任何机械都不能省功,故B、C、D选项错误; 5.用如图所示滑轮组提起重G=320N的物体,整个装置静止时,作用在绳自由端的拉力 F=200N,则动滑轮自身重力是(绳重及摩擦不计)

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

八年级物理简单机械知识点及练习

第十二章简单机械 —、杠杆 —、杠杆 (一)杠杆 1. 定义:在力的作用下绕固定点转动的彳 杆。 2. 杠杆五要素: 3. 要点透析 (1) 杠杆的支点一定要在杠杆上,可以在杠杆的一端,也可以 在杠杆的其他位置; (2) 动力和阻力是相对而言的,不论动力还是阻力,杠杆都是 受力物体,跟杠杆发生相互作用的物体都是施力物体; (3) 动力作用点:动力在杠杆上的作用点; 五要 素 物理含义 支点 杠杆绕着转动的点,用“ O'表示 动力 使杠杆转动的力,用“ F l ”表示 阻力 阻碍杠杆转动的力,用“ F 2 ”表示 动力 臂 从支点0到动力F i 作用线的距离, 用“ 1 1”表示 阻力 臂 从支点0到阻力F 2作用线的距离, 用“ 1 2”表示

(4)阻力作用点:阻力在杠杆上的作用点; (5)力臂是支点到力的作用线的距离,不是支点到力的作用点的距离,它是点到线的距离而不是点到点的距离; (6)力臂有时在杠杆上,有时不在杠杆 上,如果力的作用线恰好通过支点,则力臂为 零; (7)力臂的表示与画法:过支点作力的作用线的垂线; (8)力臂的三种表示:根据个人习惯而定 【例1】下列关于杠杆的一些说法中,正确的是() A. 杠杆必须是一根直棒B .杠杆一定 要有支点 C.动力臂就是支点到动力作用点的距离 D .当力的作 用线通过支点时,力臂最大 (二)杠杆的平衡条件 1. 杠杆平衡:杠杆静止或匀速转动都叫做杠杆平衡 2. 实验探究:杠杆的平衡条件 实动动力动力x动力阻阻力阻力x阻力 验力臂臂力臂臂 序F i l i N-F2l 2N-

探究归纳:只有动力X 动力臂 =阻力X 阻力臂,杠杆才平 衡。 3. 杠杆平衡条件表达式:动力X 动力臂 =阻力X 阻力臂, 公式时单位要统一。 M 丄I I 川 【例2】图2是研究杠杆平衡条件的实验装置,要使杠杆 占 在图示位置平衡,在A 处钩码应挂 A. 6个 B . 3个 C . 2个 D . 1个 【例3】二个和尚挑水吃的故事相信大家耳熟能详,如图所示, 甲图中和尚们商量出新的挑水方案: 胖和尚一人挑两小桶,瘦和 尚和小和尚两人合抬一大桶.以下说法中不正确的是( ) A. 乙图中水桶B 向下沉,为保持水平平衡,胖和尚可以将 他的肩往后移动一点距离 B. 乙图中水桶B 向下沉,为保持水平平衡,胖和尚可以将 后面水桶B 往前移动一点距离 C. 丙图中小和尚为减轻瘦和尚的负担,可以将水桶往前移 动力 阻力 阻力臂. 动力臂. 公式表示为:

机械原理总复习题-重点题目

00绪论 一、简答题 1、机器应具有什么特征?机器通常由哪三部分组成?各部分的功能是什么? 二、填空题 5、从运动的角度看,机构的主要功用在于运动或运动的形式。(传递转换) 9、构件之间具有的相对运动,并能完成的机械功或实现能量转换 的的组合,叫机器。(确定有用构件) 三、判断题 4、只从运动方面讲,机构是具有确定相对运动构件的组合。(√) 6、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。(√) 03平面机构的自由度和速度分析 一、简答题 1、什么是运动副?运动副的作用是什么?什么是高副?什么是低副? 3、机构自由度数和原动件数之间具有什么关系? 5、计算平面机构自由度时,应注意什么问题? 二、填空题 4、两构件之间作接触的运动副,叫低副。(面) 5、两构件之间作或接触的运动副,叫高副。(点、线) 6、回转副的两构件之间,在接触处只允许孔的轴心线作相对转动。(绕) 7、移动副的两构件之间,在接触处只允许按方向作相对移动。(给定) 13、房门的开关运动,是副在接触处所允许的相对转动。(回转) 15、火车车轮在铁轨上的滚动,属于副。(高)

三、判断题 1、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。(√) 2、凡两构件直接接触,而又相互联接的都叫运动副。(×) 3、运动副是联接,联接也是运动副。(×) 4、运动副的作用,是用来限制或约束构件的自由运动的。(√) 6、两构件通过内表面和外表面直接接触而组成的低副,都是回转副。(×) 9、运动副中,两构件联接形式有点、线和面三种。(×) 10、由于两构件间的联接形式不同,运动副分为低副和高副。(×) 11、点或线接触的运动副称为低副。(×) 14、若机构的自由度数为2,那么该机构共需2个原动件。(√) 15、机构的自由度数应小于原动件数,否则机构不能成立。(×) 16、机构的自由度数应等于原动件数,否则机构不能成立。(√) 四、选择题 1、两个构件直接接触而形成的,称为运动副。(A) a.可动联接; b.联接; c.接触 2、变压器是。(C) a.机器; b.机构; c.既不是机器也不是机构 3、机构具有确定运动的条件是。(C) a.自由度数目>原动件数目; b.自由度数目<原动件数目; c.自由度数目= 原动件数目 4.图示机构中有_(A)_虚约束。 (A)1个(B)2个(C)3个(D)没有

苏教版简单机械和功》知识点归纳

第十一章、简单机械和功 (一)杠杆 1、杠杆:在力的作用下可以绕一固定点转动的硬棒叫做杠杆。 2、杠杆的5个要素: ①支点:杠杆绕着转动的点,用O 点表示; ②动力:使杠杆转动的动力,用1F 表示; ③阻力:阻碍杠杆转动的力,用2F 表示; ④动力臂:从支点到动力作用线的距离,用1l 表示; ⑤阻力臂:从支点到阻力作用线的距离,用2l 表示。 3、杠杆平衡的条件(杠杆原理): 动力×动力臂 = 阻力×阻力臂,即2211l F l F ?=? 杠杆静止或绕支点匀速转动时,说明杠杆处于平衡状态。 、杠杆的应用 名称 结构特征 特点 应用举例 省力杠杆 动力臂 > 阻力臂 省力、费距 扳手、动滑轮、钢丝钳 费力杠杆 动力臂 < 阻力臂 费力、省距 理发剪刀、钓鱼竿、筷子、船桨 等臂杠杆 动力臂 = 阻力臂 不省力、不费距 天平、定滑轮 1、滑轮是周边有槽,能绕着轴转动的小轮。 2、滑轮是一种变形杠杆,所以它也属于杠杆机械。根据工作情况,可分为定滑轮与动滑轮。 3、轴固定不动的滑轮叫定滑轮。定滑轮可以看作是一个等臂杠杆。 使用定滑轮并不能省力,但可以改变力的方向。 4、轴随物体一起移动的滑轮叫做动滑轮。动滑轮可以看作是一个省力杠杆。 使用动滑轮可以省一半力,但却不能改变用力的方向。 5、滑轮组:动滑轮与定滑轮的组合。 优点:既可省力,又可改变用力方向。 用滑轮组吊起重物时,滑轮组用几段绳子(看滑轮组下半部分)吊起物体,提起物体的力就是物重的几分之一。 6、滑轮组的应用 ①一个定滑轮与一个动滑轮: ②一个定滑轮与两个动滑轮: ③两个定滑轮与一个动滑轮: (三)功 1、功W :一个力作用在物体上,且物体沿力的方向通过了一段距离,物理学上称这个力对物体做了机械功,简称做了功。 2、计算公式:S F W ?=。 单位:焦耳(焦); 符号:J ; 即:m N J ?=11 3、做功的两个必要条件:①对物体要有力的作用; ②物体要在力的方向上通过一定的距离。 (四)功率 1、功率:单位时间内所做的功。 物理意义:表征力做功快慢的物理量。 2、计算公式:t W P = ; 单位:瓦特(瓦); 符号:W ; 即s J W 11= 3、单位换算:W kW 3101=,W MW 6101= (五)机械效率 1、有用功、额外功、总功:额外有用总W W W += 2、机械效率:有用功与总功的比值。 %100?=总共有用功机械效率 即:%100?=总 有用W W η

微机原理与接口技术知识点总结整理

《微机原理与接口技术》复习参考资料 第一章概述 一、计算机中的数制 1、无符号数的表示方法: (1)十进制计数的表示法 特点:以十为底,逢十进一; 共有0-9十个数字符号。 (2)二进制计数表示方法: 特点:以2为底,逢2进位; 只有0和1两个符号。 (3)十六进制数的表示法: 特点:以16为底,逢16进位; 有0--9及A—F(表示10~15)共16个数字符号。 2、各种数制之间的转换 (1)非十进制数到十进制数的转换 按相应进位计数制的权表达式展开,再按十进制求和。(见书本1.2.3,1.2.4)(2)十进制数制转换为二进制数制 ●十进制→二进制的转换: 整数部分:除2取余; 小数部分:乘2取整。 ●十进制→十六进制的转换: 整数部分:除16取余; 小数部分:乘16取整。 以小数点为起点求得整数和小数的各个位。 (3)二进制与十六进制数之间的转换 用4位二进制数表示1位十六进制数 3、无符号数二进制的运算(见教材P5) 4、二进制数的逻辑运算 特点:按位运算,无进借位 (1)与运算 只有A、B变量皆为1时,与运算的结果就是1 (2)或运算 A、B变量中,只要有一个为1,或运算的结果就是1 (3)非运算 (4)异或运算 A、B两个变量只要不同,异或运算的结果就是1 二、计算机中的码制 1、对于符号数,机器数常用的表示方法有原码、反码和补码三种。数X的原码记作[X]原,反码记作[X]反,补码记作[X]补。

注意:对正数,三种表示法均相同。 它们的差别在于对负数的表示。 (1)原码 定义: 符号位:0表示正,1表示负; 数值位:真值的绝对值。 注意:数0的原码不唯一 (2)反码 定义: 若X>0 ,则[X]反=[X]原 若X<0,则[X]反= 对应原码的符号位不变,数值部分按位求反 注意:数0的反码也不唯一 (3)补码 定义: 若X>0,则[X]补= [X]反= [X]原 若X<0,则[X]补= [X]反+1 注意:机器字长为8时,数0的补码唯一,同为00000000 2、8位二进制的表示范围: 原码:-127~+127 反码:-127~+127 补码:-128~+127 3、特殊数10000000 ●该数在原码中定义为:-0 ●在反码中定义为:-127 ●在补码中定义为:-128 ●对无符号数:(10000000)2= 128 三、信息的编码 1、十进制数的二进制数编码 用4位二进制数表示一位十进制数。有两种表示法:压缩BCD码和非压缩BCD码。(1)压缩BCD码的每一位用4位二进制表示,0000~1001表示0~9,一个字节表示两位十进制数。 (2)非压缩BCD码用一个字节表示一位十进制数,高4位总是0000,低4位的0000~1001表示0~9 2、字符的编码 计算机采用7位二进制代码对字符进行编码 (1)数字0~9的编码是0110000~0111001,它们的高3位均是011,后4位正好与其对应的二进制代码(BCD码)相符。

机械原理基本概念

机械原理基本概念 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆

相关主题