搜档网
当前位置:搜档网 › 大学物理学机械振动练习题

大学物理学机械振动练习题

大学物理学机械振动练习题
大学物理学机械振动练习题

大学物理学》机械振动自主学习材

旋转矢量转法判断初相位的方法必须掌握】

、选择题

9-1 .一个质点作简谐运动,振幅

A,在起始时质点的位移

A,且向x 轴正方向运动,

2

代表此简谐运动的旋转矢量

9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动的运动

方程的单位为s)为()

x 的单位为cm,t

A) x 2cos( 2

3

B) x 2cos( 2

3

C) x 2cos( 4

3

2

3

2

3

2

x(cm)

D) x42

2cos( t ) 。

33

,有4】

考虑在 1 秒时间内旋转矢量转过

33

9-3 .两个同周期简谐运动的振动曲线如图所

示,x

1的相位比x2 的相位()

A)落后;(B)超前;

22

C)落后;(D)超前。

显然x1的振动曲线在x2曲线的前面,超前了1/4 周期,即超前

9-4 .当质点以频

/2

作简谐运动时,它的动能变化的频率为

(A);(B);(C)2 ;(D)4 。

2

【考虑到动能的表达式为

E k

1

mv

2 1

kA

2

sin

2

( t

22

9-5 .图中是两个简谐振动的曲线,若这两个简谐振动

可叠加,则合成的余弦振动的初相位为()3

(A);(B);

22

(C);(D)0。

),出现平方项】

【由图可见,两个简谐振动同频率,相位相差,

是大的那一个】

9--1 .一物体悬挂在一质量可忽略的弹簧下

端,测得其振动周期为T,然后将弹簧分割

为两半,一物体,再使物体略有位移,测得

其振动周期为

所以,则合成的余弦振动的振幅应该是大

减小

使物体略有位

移,并联地悬挂

同T ' ,则

,初相

T'/T 为( ) A ) 2; (B ) 1; C ) 弹簧串联的弹性系数公式为 1

2; 1 1 ,弹簧对半分割后,其中一根的弹性系数为

D ) 1 。

2 2k ,两弹簧并联后 k 1 k 2 形成新的弹簧整体,弹性系数为 4k ,公式为 k 并

k 1 k 2 ,利用 ,考虑到 T 2 ,所以, T' 2

9--2 A ) T 】 2 .一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的(

3; 2 12 ;(B ) 考虑到动 2 ;( C )

能 的 表 达 式 D ) E k 1 mv 2

3 。

4 2 1 2 2 2 kA 2 sin 2

( t 2 ), 2 ,那么, E k 2 12

kA 2】 位移为振幅的一半时,有 9--3 .两个同方向, 相位差为( 同频率的简谐运动,振幅均为 A ,若合成振幅也为 A ,则两分振动的

A )6;

B )

C )23

D ) 2】

3 9-10 .如图所示,两个轻弹簧的劲度系数分别为 ) 可用旋转矢量考虑,两矢量的夹角应

k 1和 k 2 ,物体在光滑平面上作简谐振

动,

B ) D )

k 1 k 2

m( k 1 k 2)

m(k 1 k 2 ) 。 k 1 k

2

】 提示:弹簧串联的弹性系数公式为 1 而简谐振动的频率为 k 串 9-15 .一个质点作简谐振动,周期为 置到二分之一最大位移这段路程所需要的最短时间为: (A )T/4; (B )T/6; (C )T/8 ; 【提示:由旋转矢

量考察,平衡位置时旋转矢量在 k 1 T , k 2 当质点由平衡位置向 1 2 x 轴正方向运动时,由平衡位 )

(D )T /12。 处,最短时间到 2 T 】

12 1 最大位移处为 ,那么,旋转 23 矢量转过 的角度,由比例式: :2 t :T ,有 t

66

9-17 .两质点作同频率同振幅的简谐运动, M 质点的运动方程为

) ,当 M 质点自振动正方向回到平衡位置时, N 质点的运动方程为: ( x 1 A cos ( t N 质点恰在振动正方向的端点。则

A ) x 2 A cos( t C )

x 2 A cos( t D ) x 2 Acos( t ) 。

B ) x 2 A cos( t ) ; 2 O N x

提示:由旋转矢量知 N 落后 M 质点 相位】

2

3cos

(50 ) );

1

4

9-28 .分振动方程分别为 则它们的合振动表达式为: ( ( A ) x 2cos (50 t 0.25 x

1

0.25 ) 和 x 2 4cos(50

B ) x 5cos(50 t) ;

C ) x 5cos (50 t tan 1

) ;

43 提示:见图,由于 x 1

和 x 2

相位相差 /2,所以

合振动振幅可用勾股定理求出;

D ) x 7 。

t 0.75 ) ( SI 制)

x

x 2

4

合振动的相位为 /4 ,而 arctan 】

3

13.一弹簧振子,当把它竖直放置时,作振动周期为 方向成 θ 角的光滑斜面上时,试判断下列情况正确的是: (A )

(B ) (C ) T 0 的简谐振

动。 () 若把它放置在与竖直

D ) 在光滑斜面上不作简谐振动; 在光滑斜面上作简谐振动, 在光滑斜面上作简谐振动, 在光滑斜面上作简谐振动, 振动周期仍

振动周期为 振动周期为 提示:由题意弹簧振子竖直放置时的周期为 T 0 T 0; T 0 / cos T 0 / cos 。

2 m/ k ,但此弹簧水平放置时周期仍为 2

m/ k ,

所以弹簧振子的 T 0 是固有周期】

14.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分

别为

l 1=2 l 2 ,两弹簧振子的周期之比 T 1:T 2为:

(A )2; (B ) 2 ; (C ) 1 ; (D )1/ 2 。

2

l 1和 (

l 2,且

提示:可由弹簧的伸长量求出相应的劲度系数 k ,再利用

判定】

二、填空题

9--4 .一质点在

Ox 轴上的 A 、B 之间作简谐运

动,

x 1

x

2

1 cm

1 cm

O 为平衡位置,质点每秒往返三次,若分别以 2 cm

x 1、x 2为起始位置,则它们的振动方程为:

1)

;(2)

提示: O 为平衡位置, A 、B 之间振动,振幅为 2cm ;每秒往返三次,说明 3 ,有 6 ,x 1

为起

始位置时,初相位的旋转矢量在第

三象限与水平轴成 60o 的位置,所以

4

,则

3

x

1 0.02cos (6 t 4 ) ;同理, x 2为起始位置时,初相位的旋转矢量在第

4 象限与水平轴成 60o 角

的位置,所以

,则

x 2

0.02cos(6 t )

9--5 .由图示写出质点作简谐运动的振动方程:

x 1 45

o

提示:图中可见振幅为,周期为 8 秒,旋转矢量初相位在 1 秒后(即 T /8 后)达最大,则初相位在第 4

加速度为

6.有两个相同的弹簧,其倔强系数均为 k ,(1)把它们串联起来,下面挂一个质量为 m 的

重物, 此系统作简谐振动的周期为 ;( 2)把它们并联起来,下面挂一质量为 m 的重

物,此系统作简谐振动的周期为 提示:(1)弹簧串联公式为 1 1 1 ,得 k 串

k ,而周期公式为 T k 串 k 1 k 2 2 2)并联公式为 k 并 k 1 k 2,可得 k 并 2k ,有T 并 2 m 】 2k 7.一弹簧振子作简谐振动,其振动曲线如图所示。 则它的周期 T

,其余弦函数描述时初相位

m)

4

2 2

2m

,有

T 串 2 k

t(s)

提示:由旋转矢量图,考虑在 2 秒时间内旋转矢量转

3 32 11 2

4 有 ,可算出周期 T s ,图中可见初相位 12 11 A

2

8.两个同方向同频率的简谐振动,其合振动的振幅为

m ,合振动的位相与第一个简谐振动

的位相差为 π/6 ,若第一个简谐振动的振幅为

3/10 m ,则第二个简谐振动的振幅

9-20 .如果地球上的秒摆在月球上的周期为秒, 地球表面的重力加速度取

2

s

2

月球上的重力

秒摆在地球上的周期为 2 秒,由单摆的周期公式: T

2

g

知g

T 2

,可见 g 月 2

1.63 m / s 2】

5.一单摆的悬线长 l ,在顶端固定点的铅直下方 l /2 处有一小钉,

如图所示。则单摆的左右两方振动周期之比

l

2

l

2】

提示:图中可见 A 落后 B , A B 应为负值,

知左边

T 1

由单摆的周期公式: T 2

2】 2

为 ,第一、二两个简谐振动的位相差为

提示:∵合振动的振幅与第一个简谐振动的振幅恰满足 cos 3 ,可知第二个简谐振动与合振动的位 2 相差为 π/3,由勾股定理知第二个简谐振动的振幅为 0.1 m ;第一、二两个简谐振动的位相差为 / 2】 9.若两个同方向不同频率的谐振动的表达式分别为 x 1 A cos10 t 和 x 2 A cos12 t , 则它们的合振动频率为 ,每秒的拍数为 。 【提示:由和差化积公式,有 x 1 x 2 2 A cos 10 12 t cos 10 12 t 2Acos 11 t cos t 22 所以,合振动频率为 5.5Hz ,合振动变化频率(即拍频)为 1Hz ,即1拍/秒 】 10.质量为 m 的物体和一轻弹簧组成弹簧振子其固有振动周期为 T ,当它作振幅为 A 的自由

提示:振动能量的公式为 E 1 m 2A 2 1k A 2,而 2 ,有 E 2 2 T

简谐振动时,其振动能量 E 11.李萨如图形常用来对于未知频率和相位的测定,如图所示的两个 不同频率、相互垂直的简谐振动合成图像,选水平方向为 x 振动, 竖直方向为 y 振动,则该李萨如图形表明 T x :T y 2 2mT 2 A 2】 提示:李萨如图形与 x 的水平方向有 2 个切点,与 y 的竖直方向有 3 个切点,表明 T x :T y 2 :3 】 三、计算题 9-14 .某振动质点的 x-t 曲线如图所示,试求: (1)运动方程; (2)点 P 对应的相位; (3)到达 P 点相应位置所需的时间。 v/cms 1

9-18 .如图为一简谐运动质点的速度与时间的 关系图,振幅为 2cm ,求 (1)振动周期; (2)加速度的最大值; (3)运动方程。 9-23 .一质量为 M 的盘子系于竖直悬挂的轻弹簧下端, 弹簧的劲度系数为 k 。现有一质量为 m 的物体自离盘 h 高处自由下落,掉在盘上没有反弹,以物体掉在盘上 的瞬时作为计时起点,求盘子的振动表达式。 (取物体 掉入盘子后的平衡位置为坐标原点,位移以向下为正。 s -2,求:(1)振动周

期; 9-25 .质量 m =的物体以 A =的振幅作简谐振动,其最大加速度为·

2)物体通过平衡位置时的总能量与动能; ( 3)当动能和势能相等时,物体的位移是多

少 4)当物体的位移为振幅的一半时,动能、势能各占总能量的多少

9-27 .质量 m =10g 的小球与轻弹簧组成的振动系统运动方程为 x 0.5cos (8 t )cm ,求

3

(1)振动的角频率、周期、振幅和初相位; (2)振动的能量; ( 3)一个周期内的平均动能 和平均势能。

9-28 .有两个同方向、同频率的简谐振动,它们的振动表式为:

31

x 1 0.05cos 10t

, x 2 0.06cos 10t (SI 制)

44

(1)求它们合成振动的振幅和初相位。

(2)若另有一振动 x 3 0.07cos (10t 3) ,问 3 为何值时, x 1 x 3 的振幅为最大; 3 为 何值时, x 2 x 3 的振幅为最小。

9-35 .在一个 LC 振荡电路中,若电容器上的电容

自感;(3)电路中电流随时间变化的规律。

答案 、选择题: B D B C D D D C B D C C B B 、计算题 .解:先做出旋转矢量图: 4 秒的时间旋转矢量

9-14 可见 转过 5

; ;

24

3 2 的角度,因此, 32 ), x-t t 1)简谐运动方程的标准式为:

矢量图可见 3 ,∴ x 2)旋转矢量图可见 P x Acos( t 5 0.1cos( t ) m ; 0; 3)旋转矢量图可见,到达 P 点相应位置转过 9-18 .解:首先注意到所给的图像是 简谐运动的速度表达式为 v 注

意到题设条件“简谐运动振幅为

v max / A ;

1) 利用 T 2 / 有 T 4 /3 ; 2) 由 a max A 有 a max 4.5cm/s 2 ; 3) 简谐运动的速度表达式为 v Asin( 做一个 sin 的旋转矢量图与 v -t 图对应,考虑到与 v 方程

曲线图中可见 A 0.1 m ,旋转

85

(s)。

5

)

v -t 图, Asin( t 2cm ”,有: /3, t

u 50cos 104

t 伏特,若电路中的电阻忽略不计, 求:

1)振荡的周期; ( 2)电路的

10 7 F ,两极板上的交变电压为

中有负号,可见, 7

6

5

v 3sin (1.5 t

) cm / s ,

6 由简谐运动方程的标准式 x A cos( t ) 有: x 2cos(1.5 t 5

) cm 。

6

9-23 . 解:与 M 碰撞前,物体 m 的速度为 v 0m 2gh 由动量守恒定律: mv 0m (m M )v 0 ,有碰撞后的速度为: mm

v 0 m M v 0m m M 2gh 碰撞点离开平衡位置距离为 x

0 mg k k

h

M

碰撞后,物体系统作简谐振动,振动角频率

为 k mM 由简谐振动的初始条件, x 0 Acos 0 , v 0 A sin 0 得: x 02 ( v 0 )2

( mg )2 k ( m 2gh )2

m M mg 1 k k 1

mM 2kh (m M )g tan 0

v 0 x 0 m

2gh mM k mM mg k

2kh (m M )g ∴振动表达式为: x A cos( t

0) mg 1 2kh cos k t k (m M )g m M

tan

2kh (m M ) g 9-25 .解:( 1) 由 a max A 2有

a max /A 20,

10

1 2) E 总 1

2m 2A 2

3

1

2 10

3 J ,再利用 E k

m 2

2

A 2 sin 2(

) ,取振动在平

位置的相位,即 ( t 3)动能和势能相等→ ) 时,有 E k

2

1 2 1 2 mv k x , 22

2 10

3 J ;

而简谐振动特征,

12 mv 2

1

kx 2 2

12kA 2,

得:

2

1 2

k x 2 k A 2 → x 2

A

0.707 A

3 7.07 10 3

m ;

1

4)当

x

A 时,利用简谐振动方程 2

x Acos( t ) 求出相

位:

cos( t)

1

2

∴ i 5 10 2 sin 104 t A (或为 i 0.157sin 104 t A )

9-27

.解: (1) 由运动 方程可见:

23

8 , T 0.25 s , A 5 10 m ,

3

(2) 利用 E 总 1 m 2

2A 2 ,有 E 总 8 2 10 6 J ;

(3) 利用 E k 1

m 2A 2 sin 2(

t ) ,有:

2

22

可得: E k m 4A 4 2 10 6 J ;

有( t)

2 ,4

,

5 (一个周期内) ,则 sin 2( t 3 33

3

利用 1 E k m 2 A 2

sin 2

( t

1

2 2 2 ) ,E P m 2 A 2 cos 2

( t

k

2

P 2

有:

E k /E 总

3

E P /E

1 。

4

4

3 2 1

) , cos ( t ) , 44 1 2 2

) ,考虑到 E

m 2A 2 2

同理 : 1 2

1 2 2

E P m A 2 0

2

cos 2( 可得 22 : E P m A 4 2 P 4 10 6

J 9-28

. 解:根据题意,画出旋转矢量图

A 1) t tan

A 1

A

2

39.8 39 48 ,

2)

x 1 x 2振幅最大 9-35 )d( t

3

4 )时 , x 2

4 .解:(1)振荡的周期可由交变电压的角频率求出: 2)再由 T 2 LC ,有 L

T 2 4 2C ,可得:

3)由 i

),

E P

m 2A 2

2 1 cos2

2

0.078(m)

x 3振幅最小 。

104

,有

T 4

2 10 4 s ;

10 1 H ;

d d q t ,C q

u 有i C d d t [50cos 104 t ]

44

50C 104

sin 104 t

E k

2

1

m 2

2 2 2

2A 2 sin 2

( t

)d( t ) ,有 E k

m 2A

2

4

2

1 cos2

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课 后习题及答案质点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

题1.1:已知质点沿x 轴作直线运动,其运动方程为 3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小; (2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--= t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有

2002 1at t v x x + += 由此,可计算在0~2和4~6 s 时间间隔内各时刻的位置分别为 t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m 5.7- 10- 5.7- 0 40 48.7 55 58.7 60 用描数据点的作图方法,由表中数据可作0~2 s 和4~6 s 时间内的x -t 图。在2~4 s 时间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少? 题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为 ()i i i r v t r r h h r t t t x t d d 1d d d d d d 2 /12 2 2 2 -??? ? ? ?-=-= ==' 而收绳的速率t r v d d - =,且因vt l r -=0,故 ()i v 2 /12 021-??? ? ? ?-- -='vt l h v 题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v t r t r t r t r t θ+=+== ' r d d e t r 是船的径向速度,θd d e t r θ是船的横向速度,而 t r d d 是收绳的速率。由于船速v '与径向速度之间夹角位θ ,所以

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理第一章 习题

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m /s 102=g 。 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m /s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。 1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________。 1–7 下列各种情况中,说法错误的是[ ]。 A .一物体具有恒定的速率,但仍有变化的速度 B .一物体具有恒定的速度,但仍有变化的速率 C .一物体具有加速度,而其速度可以为零 D .一物体速率减小,但其加速度可以增大 1–8 一个质点作圆周运动时,下列说法中正确的是[ ]。 A .切向加速度一定改变,法向加速度也改变 B .切向加速度可能不变,法向加速度一定改变 C .切向加速度可能不变,法向加速度不变 D .切向加速度一定改变,法向加速度不变 1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: (1)t r d d (2)t d d r (3)t s d d (4)2 2d d d d ?? ? ??+??? ??t y t x 下述判断正确的是[ ]。 A .只有(1),(2)正确 B .只有(2),(3)正确 C .只有(3),(4)正确 D .只有(1),(3)正确 1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作[ ]。 A .匀速直线运动 B .变速直线运动 C .抛物线运动 D .一般曲线运动 1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2(SI ),则小球运动到最高点的时刻是[ ]。

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 ?r = 位移的方向沿东北方向,与 方向一致。 1-4 现有一矢量R是时间t的函数,问 与 在一般情况下是否相等?为什么? 解 与 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导, 表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m?s-1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = - 18 m?s-1; 用同样的方法可以求得第四秒末的速度,为 v4 = - 48 m?s-1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = - 24 m?s-2; 用同样的方法可以求得第四秒末的加速度,为 v4 = - 36 m?s-2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

大学物理(第四版)课后习题及答案 磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0?10-5 T 。如设想此地磁场是由地球赤道上 一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可 看成是均匀磁场的条件为x B d d = 0;0d d 22=x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

(完整版)大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+-r r r 由d /d v r t =r r 则速度: 28v i tj =+r r r 由d /d a v t =r r 则加速度: 8a j =r r 则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r r r r 当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r r r r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t v ,d d v t v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201()(h -)2 r t v t i gt j =+v v v (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)0d -gt d r v i j t =v v v 而落地所用时间 g h 2t = 所以 0d d r v i j t =v v d d v g j t =-v v 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理第四版下册课后题答案

习题11 11-1.直角三角形ABC的A点上,有电荷C 10 8.19 1 - ? = q,B点上有电荷 C 10 8.49 2 - ? - = q,试求C点的电场强度(设0.04m BC=,0.03m AC=)。 解:1q在C点产生的场强: 1 12 4 AC q E i r πε = , 2 q在C点产生的场强: 2 22 4 BC q E j r πε = , ∴C点的电场强度:44 12 2.710 1.810 E E E i j =+=?+?; C点的合场强:224 12 3.2410V E E E m =+=?, 方向如图: 1.8 arctan33.73342' 2.7 α=== 。 11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电 量为C 10 12 .39- ?的正电荷均匀分布在棒上,求圆心处电场强度的大小 和方向。 解:∵棒长为2 3.12 l r d m π =-=, ∴电荷线密度:91 1.010 q C m l λ-- ==?? 可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为 0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d02 .0 = 长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷 的塑料棒在O点产生的场强。 解法1:利用微元积分: 2 1 cos 4 O x Rd dE R λθ θ πε =? , ∴2 000 cos2sin2 444 O d E d R R R α α λλλ θθαα πεπεπε - ==?≈?= ?1 0.72V m- =?; 解法2:直接利用点电荷场强公式: 由于d r <<,该小段可看成点电荷:11 2.010 q d C λ- '==?, 则圆心处场强: 11 91 22 2.010 9.0100.72 4(0.5) O q E V m R πε - - '? ==??=? 。 方向由圆心指向缝隙处。 11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电 荷线密度为λ,四分之一圆弧AB的半径为R,试求圆 α j i 2cm O R x α α

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

相关主题