搜档网
当前位置:搜档网 › 用二次函数解决问题2.doc

用二次函数解决问题2.doc

用二次函数解决问题2.doc
用二次函数解决问题2.doc

5.5用二次函数解决问题(2)

■、问题探究

练习:有座抛物线形拱桥,正常水位时桥下河面宽

20m,河面距拱顶 4m,为了保证过往 船只顺利航行,桥下水面的宽度不得小于

18m,求水面在正常水位基础上上涨多少米时,

就会影响过往船只航行。 二、例题讲解

例:平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在 甩绳的甲、乙两名学生拿绳的手间距为 4米,距地面均为 1米,学生丙、丁分别站在距

甲拿绳的手水平距离 1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学 生丙的身高是1?5米,请你算一算学生丁的身高。

如图的抛物线形拱桥,

拱桥顶离水面 3m,水面宽 6 m, 1 m, 水

面宽度多少? 思考:

一艘装满防汛器材的船,露出水面部分的高为

下通过吗? 0.5 m >宽为 4m ?暴雨后, 这艘船能从桥 因降暴雨水面上升

【随堂练刃

1. 足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,

2. 如图,一单杠高 2.2米,两立柱之间的距离为 铁杠结合处,绳子自然下垂呈抛物线凝 0.7米的小孩站在离立柱 0.4米处,其头 部刚好触上绳子,求绳子最低点到地面的距离。

3.

如图,某公路隧道横截面为抛物线,其最大高度为

6米,底部宽度 OM 为12米.现

以O 点为原点,OM 所在直线为x 轴建立直角坐标系. (1) 直接写出点M 及抛物线;1 P 的坐标;

(2) 求这条抛物线的解析式

(3) 若要搭建一个矩形“支撑架” AD- DC- CB,使C 、D 点在抛物线上,A 、B 点在地面 OM 上,则这个“支撑架”总长的最大籠姿

t

0 1 2 3 4 5 6 7 ? ■ ■ h 0 8 14 18 20 20 18 14 ? ? ■

下列结论:①足球距离地面的最大高度为

③足球被踢出9s 时落地;④足球被踢出 其中正确结论的个数是( ) B ?2 C ?3 D

1.5s 时, 距离地面的高度是 11m.

9 t =_ 2

A. 1 1.6米,将一根绳子的两端栓于立柱与 20m ; ②足球飞行路线的对釉是直线

不1.考虑空气阻力,足球距离地面的高度 h (单位:m )与足球被踢出后经迪时间 t (单 位:s)之间的关系如下表:

1.6 B

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

用二次函数解决问题优秀教案

用二次函数解决问题 【教学目标】 1.会运用二次函数的有关知识求实际问题中的最大值或最小值; 2.能根据具体问题中的数量关系,用相关的二次函数知识解决实际问题。【教学重点】 运用二次函数求实际问题中的最大值或最小值。 【教学难点】 如何根据实际情况把现实生活中的相关问题转化为二次函数问题。 【教学过程】 一、温习旧知: 二次函数图像与性质 二、示标导学:

三、反馈练习: 四、拓展练习 (2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数)。 (1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于 1200元,问该商家共有几种进货方案? (2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完。在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润。 【作业布置】 1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降低多少元时,商场平均每天盈利最多?

2. 3.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间。市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱。 (1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围); (2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价) (3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图; (4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少? 4.(2014?武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销量的相关信息如下表: 时间x(天)1≤x<5050≤x≤90 售价(元/件)x+4090

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数与实际问题

实际问题与二次函数 一、利用函数求图形面积的最值问题 一、 围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为 米),面积为y (平方米),求y 关 于x 的函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0180<x<x >x >∴? ??- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为( 250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 2521)250(2+-=-=中,a=2 1-<0,∴y 有最大值, 即当25)21(2252=-?-=-=a b x 时,2625)2 1(42504422max =-?-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2 625平方米。 3、 围成正方形的面积最值 例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. (1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x ) cm

实际问题与二次函数练习题及答案

12999数学网 https://www.sodocs.net/doc/7112892568.html, 26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

二次函数实际问题专题练习

二次函数实际应用问题 1、(1)该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg ; (2)由题意,得:14250402)10950)(5 5()10950(202 ++-=----=x x x x x y (3)14450)10(22 +--=x y ,又201≤≤x 且x 为整数,所以,当101≤≤x 时,y 随x 的增大而增大,当2010≤≤x 时,y 随x 的增大而减小;因此,当10=x 时,y 取得最大值,为14450元。 2、解:(1)由题意,得:w = (x -20)·y =(x -20)·(10500x -+)21070010000x x =-+- 352b x a =-=.答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:2 10700100002000x x -+-=,解这个方程得:x 1 = 30,x 2 = 40. 答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. (3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得:20(10500)P x =-+20010000x =-+ ∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600. 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元. 法二:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000. ∵10500y x =-+,100k =-<,∴y 随x 的增大而减小.∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600?=(元). 3、解:(1)4月份y 与x 满足的函数关系式为0.2 1.8y x =+. 把1x =, 2.8y =和2x =, 2.4y =分别代入2120y x bx c =-++,得1 2.8,20 142 2.4.20b c b c ?-++=????-?++=?? 解得 0.25, 3.1. b c =-??=?∴5月份y 与x 满足的函数关系式为20.050.25 3.1y x x =--+. (2)设4月份第x 周销售一千克此种蔬菜的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元.11 (0.2 1.8)( 1.2)4 W x x =+-+0.050.6x =-+.∵0.050-<,∴1W 随x 的增大而减小.∴当1x =时, 10.050.60.55W =-+=最大.221 (0.050.25 3.1)(2)5 W x x x =--+--+20.050.05 1.1x x =--+. ∵对称轴为0.05 0.52(0.05) x -=- =-?-,且0.050-<,∴当0.5x >-时,y 随x 的增大而减小. ∴当1x =时,21W =最大.所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;

九年级数学下册-利用二次函数解决抛物线形拱桥问题练习

利用二次函数解决抛物线形拱桥问题练习 知|识|目|标 1.通过对抛物线形的拱桥有关问题的分析,会建立合适的平面直角坐标系解决抛物线形拱桥的有关实际问题. 2.通过对抛物线形的隧道有关问题的分析,会建立合适的平面直角坐标系解决抛物线形隧道的有关实际问题. 目标一会利用二次函数解决拱桥问题 例1 教材问题3针对训练如图5-5-7,一座抛物线形拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3 m时,水面宽AB为6 m. (1)以拱桥的顶点为原点建立平面直角坐标系,求该抛物线相应的函数表达式; (2)连续几天的暴雨,使水位暴涨,测量知桥孔顶部到水面的距离为4 3 m,此时水面宽CD 为多少? 图5-5-7 【归纳总结】解决抛物线形拱桥问题的步骤 (1)建立合适的平面直角坐标系; (2)依据题意,求出函数表达式; (3)根据要求解决问题. 目标二会利用二次函数解决隧道问题 例2 教材补充例题如图5-5-8所示,一条内设双向道隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m,宽AB为 2 m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m. (1)求抛物线相应的函数表达式; (2)一辆货运卡车高4 m,宽2.4 m,它能通过该隧道吗? 图5-5-8

【归纳总结】解决能否通过隧道问题的关键点 车辆通过隧道问题一般情况是以抛物线的对称轴为车辆的对称轴进行解答. (1)当已知宽度时,将宽度转化为相应的自变量代入到二次函数表达式中,求出高度(函数值).若求得的高度小于车辆的高度,则车辆不能通过;若求得的高度大于车辆的高度,则车辆能通过. (2)当已知高度时,可以将车辆的高度(函数值)代入到二次函数表达式中,求解一元二次方程,得到两个根,若两个根之间的差的绝对值大于车辆的宽度,则车辆能通过;若两个根之间的差的绝对值小于车辆的宽度,则车辆不能通过. 知识点一建立适当坐标系,用二次函数知识解决 抛物线形拱桥的实际问题 此类问题往往以桥拱最高点为坐标原点,以水平线为x轴,铅垂线为y轴,建立平面直角坐标系,然后根据题意确定坐标系内特殊点的坐标,从而确定二次函数表达式,再根据实际问题求出相应的二次函数中的问题,注意要检验结果. 知识点二建立适当坐标系,用二次函数知识解决 抛物线形建筑物中的实际问题 日常生活中常见的抛物线形建筑物,如抛物线形大门、抛物线形隧道、抛物线形大棚等.建立的坐标系不同,得出的二次函数表达式也不同,但实际求得的结果是一致的.应注意选择便于解决问题的坐标系. 你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图5-5-9所示,甩绳的甲、乙两名学生拿绳的手之间的距离为4 m,距地面均为1 m,学生丁、丙分别站在与甲拿绳的手水平距离为2.5 m,1 m处,绳子在甩到最高处时刚好通过他们的头顶,已知学生丁的身高是1.625 m,求学生丙的身高. 图5-5-9 解:由抛物线的对称性可知,丙的身高与丁的身高相同,为1.625 m. 上述解答正确吗?若不正确,请说明理由,并写出正确的解答过程.

中考二次函数实际问题应用题

二次函数的实际应用 1. (2012重庆市10分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处 理,另一种是通过企业的自身设备进行处理. 某企业去年每月的污水量均为 12000吨,由于 污水厂处于调试阶段, 污水处理能力有限, 该企业投资自建设备处理污水, 两种处理方式同 时进行.1至6月,该企业向污水厂输送的污水量 y 1 (吨)与月份x (1

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值? 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式?当x为多长时,花园面积最大?

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多? 设销售单价为x元,(0<x≤13.5)元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)所获利润可以表示为__________________; (4)当销售单价是________元时,可以获得最大利润,最大利润是__________。 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________. (4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

专训1 用二次函数解决问题的四种类型

专训1用二次函数解决问题的四种类型名师点金:利用二次函数解决实际问题时,要注意数形结合,巧妙地运用二次函数解析式实行建模,从而达到应用二次函数的某些性质来解决问题的目的. 建立平面直角坐标系解决实际问题 题型1拱桥(隧道)问题 1.如图是某地区一条公路上隧道入口在平面直角坐标系中的示意图,点A和A1、点B 和B1分别关于y轴对称.隧道拱部分BCB1为一段抛物线,最高点C离路面AA1的距离为8 m,点B离路面AA1的距离为6 m,隧道宽AA1为16 m. (1)求隧道拱部分BCB1对应的函数解析式. (2)现有一大型货车,装载某大型设备后,宽为4 m,装载设备的顶部离路面均为7 m,问:它能否安全通过这个隧道?并说明理由. (第1题) 题型2建筑物问题 2.某公园草坪的防护栏由100段形状相同的抛物线组成,为了牢固,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点到底部距离为0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度为() (第2题)

A.50 m B.100 m C.160 m D.200 m 题型3物体运动类问题 3.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上的落点为B.有人在直线AB上点C(靠点B一侧)处竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计). (1)如果竖直摆放5个圆柱形桶,网球能不能落入桶内? (2)当竖直摆放多少个圆柱形桶时,网球可以落入桶内? (第3题) 建立二次函数模型解决几何最值问题 题型1利用二次函数解决图形高度的最值问题 (第4题) 4.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的高度为________米.

实际问题与二次函数-详解与练习(含答案)

. 初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题 一、围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的 函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 分析:关键是用含x 的代数式表示出矩形的长与宽。 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0 180 <x<x >x >∴?? ?- (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(218 2=-?-=- =a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回扣问题实际时,一定注意不要遗漏了单位。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠 墙。问如何围,才能使养鸡场的面积最大? 分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(2 50x -)(米), 根据题意,得:x x x x y 252 1 )250( 2+-=-=; 又∵500,02 500 <x<>x x >∴??? ??- ∵x x x x y 2521)250( 2+-=-=中,a=2 1 -<0,∴y 有最大值, 即当25) 2 1(2252=-?- =-=a b x 时,2625) 2 1(42504422max =-?-=-=a b ac y

实际问题与二次函数

实际问题与二次函数(1) 学习目标: 1.会将生活中的实际问题转化为数学问题。 2.能体验二次函数在生活中的应用。 学习重难点: 重点:体会二次函数最值的应用及数形结合思想。 难点:理在转化、建模中,体验解决问题的方法。 学习过程: 一,创设情景,明确目标 请同学们观察以下两个题: 1.抛物线2)1(2 ++-=x y 中,当x =___________时,y 有_______值是__________. 2.抛物线15.0y 2+-=x x 中,当x =___________时,y 有_______值是__________. 3,某商品现在的售价是每件60元,每星期可卖出300件,已知商品的进价为每件40元,那么一周的利润是多少元? 二,自主学习,指向目标 自学导读 自学课本,思考回答下列问题 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢? 解:(1)设每件涨价x 元,则每星期少卖_________件,实际卖出_________件, 设商品的利润为y 元.则y 与x 的关系式为: (2)设每件降价x 元,则每星期多卖_________件,实际卖出__________件. 设商品的利润为y 元.则y 与x 的关系式为: 自我评价 1.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大? 三,合作探究,达成目标 探究主体1: 抛物线对称轴及顶点坐标 例1用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少时,场地的面积S 最大?

实际问题与二次函数(1)教学设计

《实际问题与二次函数》教学设计 【教学目标】 1.通过对实际问题情景的分析,能够建立二次函数的数学模型,并利用二次函数的知识求解;能根据具体问题的实际意义检验结果是否合理. 2.经历利用二次函数解决实际问题的过程,学会用数学的思想方法去观察、研究和解决日常生活中所遇到问题,体验数学建模的思想. 3.通过将二次函数的有关的知识灵活用于实际,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感. 【教学重点】 重点:探究利用二次函数的图象和性质解决实际问题的方法. 难点:如何将实际问题转化为二次函数的问题. 【教法学法】 1.教学方法 遵循“教师的主导作用与学生主体地位相统一的教学规律”,采用导学自主的教学模式,体现学生为主体的课前预习和小组合作学习. 2.教学手段 利用多媒体辅助教学,分散教学难点,增大教学容量,提高课堂教学效果. 3.学法指导 引导学生运用数形结合、转化、数学建模等重要数学思想方法,力求

使学生多思、多说、多练以达到最佳的双边活动效果. 【教学过程】 (一)创设情景,引入新课 以旅游为主线,将新乡市和谐公园修建喷泉时遇到的问题抛出,巧妙引出课题:《实际问题与二次函数》. 设计意图: 运用生活中常见的场景创设问题情境,目的是激发学生的兴趣和求知欲望,为新课的探究做好铺垫. (二)知识链接,复习提问 1.二次函数常见的形式有哪几种? 2.二次函数的顶点坐标是_____,对称轴是______. 当a>0时,图像开口向____,函数有最____值,等于________; 当a<0时,图像开口向____,函数有最____值,等于________. 3.二次函数的图像 向上平移k(k>0)个单位得到解析式________, 向下平移k(k>0)个单位得到解析式________; 向左平移h(h>0)个单位得到解析式________, 向右平移h(h>0)个单位得到解析式________. 设计意图: 在已有知识的基础上提出新问题,能为学生营造一个主动观察、思考、探索的氛围,提高学生的学习兴趣. (三)分组展示,探索新知

二次函数与实际问题中考题

二次函数与实际问题 类型一用二次函数解决“抛物线型”问题 方法技巧:利用二次函数解决抛物线问题通常有以下几种:拱桥问题、导弹问题、投抛 球问题、喷泉喷水问题、跳台跳水问题、荡秋千问题等。解决此类问题常常要建立平面直角坐标系,通过建立图象模型,构造二次函数关系式解决实际问题。 1、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边 AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是 11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系。 (1)求抛物线的解析式; (2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系h=-1/128(t-19)2+8(0?t?40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行? 2、如图,庄子大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁高度相同,则小强骑自行车通过拱梁部分的桥面OC共需( )秒

类型二用二次函数解决方案设计中最优化的问题 方法技巧:方案最优化问题实际就是求函数的最大(小)值,如利润最大,效益最好, 材料最省,根据题意列出二次函数关系式,通过配方转化为顶点式后,求最值。 1、为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担。张刚按照相关政 策投资销售本市生产的一种新型节能灯。已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500. (1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价 为多少元? (2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元。如果张刚想要每月获得的利润 不低于3000元,那么政府为他承担的总差价最少为多少元?

《实际问题与二次函数》教学设计

实际问题与二次函数(教学设计) 162 团中学高文君 第1课时如何获得最大利润 【学情分析】 学生已经学习了二次函数的概念、图象和性质。这些内容为学习二次函数的应用提供知识支持,又学习了列代数式,列方程解应用题,这些应用性质的内容为本节课的学习提供了建模能力的基础,但是作为建立二次函数模型区解决实际问题,带有很强的综合性、灵活性, 对学生的要求较高。 【教学目标】 1. 能够分析和确定实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值; 2. 经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系; 3. 通过实际问题的解决,逐步领会二次函数的应用价值和实际意义;通过小组合作,交流讨论和探索,建立合作和探索意识,激发学习的兴趣和欲望。 【教学重难点】 1. 探究利用二次函数的最大值(或最小值)解决实际问题的方法; 2. 如何将实际问题转化为二次函数的问题。 【教学方法】启发引导,小组讨论 【教学过程】一【复习旧知,引入新课】 1 . 二次函数y ax 2 bx c的图象是一条_______________ ,它的对称轴是__________ ,顶点坐标 是. 当a>0时,抛物线开口向,有最点,函数有最______________________________ 值,是 _______ ;当a<0时,抛物线开口向,有最 ____________ 点,函数有最 _______ 值, 2.二次函数y 2x2 8x 9的对称轴是____________ ,顶点坐标是—」当x= _______ 时,函数有最 值,是 _____ 。 【设计意图】在前几节课的学习中,我们已经学习了二次函数的图象和性质,这节课首先复习二次函数的相关内容,唤起学生对二次函数的记忆。 二、【试一试,我能行】 问题.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。如何定价才能使利润最大? 1、本题中的变量是什么? 2、学生对商品利润问题的理解:每件的利润=售价一进价 总利润=每件的利润X卖出的总件数 总利润=销售额一进货额 3 、学生对两个变量的理解。 师生共同分析:(1)销售额为多少?(2)进货额为多少? (3)利润y与每件涨价x元的函数关系式是什么? (4)变量x的取值范围如何确定? (5)如何求解最值? 设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先确定y与x的函数关系式。涨

实际问题与二次函数—知识讲解(提高)

实际问题与二次函数—知识讲解(提高) 【学习目标】 1.能运用二次函数分析和解决简单的实际问题,培养分析问题、解决问题的能力和应用数学的意识. 2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模 型. 【要点梳理】 要点一、列二次函数解应用题 列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤: (1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系). (2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确. (3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数. (4)按题目要求,结合二次函数的性质解答相应的问题。 (5)检验所得解是否符合实际:即是否为所提问题的答案. (6)写出答案. 要点诠释: 常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式. 要点二、建立二次函数模型求解实际问题 一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题. 要点诠释: (1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. (2)对于本节的学习,应由低到高处理好如下三个方面的问题: ①首先必须了解二次函数的基本性质; ②学会从实际问题中建立二次函数的模型; ③借助二次函数的性质来解决实际问题. 【典型例题】 类型一、利用二次函数求实际问题中的最大(小)值

二次函数的实际问题应用(分类讲解变式)

二次函数的应用 【今日目标】 1、学会建立二次函数模型解决实际问题(与方程、最值相结合); 2、能在限制条件下求出符合题意的最值。 【精彩知识】 【引例】求下列二次函数的最值: (1)求函数223 x y x x的最值.(2)求函数223 y x x的最值.(03) ★方法归纳: 如果自变量的取值范围是全体实数,那么函数在处取得最大值(或最小值). 如果自变量的取值范围是 x x x,分两种情况: 12 a为例,最大值是;最小值是顶点在自变量的取值范围内时,以0 顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性 专题一应用之利润最值问题 【例1】某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少? ●变式练习: 某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上 涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为x的取值范围为y元。 (1)求y与x的函数关系式,并直接写出自变量x的取值范围; (2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

【例2】某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y (万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式; (2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少? (3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元? 专题二应用之面积最值问题 【例3】把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚 度忽略不计)。 (1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的 长方形盒子。 ①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少? ②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的 边长;如果没有,说明理由。 (2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边 上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。 专题三实际应用问题 【例4】如图,排球运动员站在点O处练习发球,将球从O点正上方 2 m的A处发出,把球看

相关主题