搜档网
当前位置:搜档网 › 离心压缩机喘振发生的机理

离心压缩机喘振发生的机理

离心压缩机喘振发生的机理
离心压缩机喘振发生的机理

喘振发生的机理:

当离心式制冷压缩机流量降低至某一值时,叶片进口气流正冲角很大,致使叶片非工作面的气流边界层严重分离,并沿流道扩张开来造成叶片流道有效流通面积大为减少,此时叶轮虽然仍在旋转对气体做功,但是无法太高其他压力,于是压缩机流量显著下降。

由于冷凝器具有相对较大的容积,故冷凝器中的气体不可能很快下降,于是冷凝器中的气体会在压差的作用下反向倒流回压缩机,同时冷凝器气体压力迅速下降,直到冷凝器压力等于压缩机出口压力,倒流现象停止;

此后,气流又在旋转叶轮的作用下提高气体流量和排气压力并重新向冷凝器输送气体,但是,随着排气流量的不断增加,冷凝器中的压力又迅速回升,而压缩机的气体流量仍然不足,叶片非工作面边界层再次出现严重分离。

【离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得压力能和速度能。在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。扩压器流道内的边界层分离现象:扩压器流道内气流的流动,来自叶轮对气流所做功转变成的动能,边界层内气流流动,主要靠主流中传递来的动能,边界层内气流流动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。当主流传递给边界层的动能不足以使之克服压力差继续前进时,最终边界层的气流停滞下来,进而发生旋涡和倒流,使气流边界层分离。气体在叶轮中的流动也是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B 流道发生气流分离的现象,这样B 流道的有效通流面积减小,使原来要流过B 流道的气流有一部分要流向相邻的A流道和C 流道,这样就改变了A 流道,C 流道原来气流的方向,它使C 流道的冲角有所减小,A 流道的冲角更加增大,从而使A 流道中的气流分离,反过来使B 流道冲角减小而消除了分离现象,于是分离现象由B 流道转移到A 流道。这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。

扩压器同样存在旋转脱离。在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,流动严重恶化,使压缩机出口压力突然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。而实际上压缩机的总负荷很小,限制了压缩机的排量,压缩机的排量又慢慢减小,气体又产生倒流,如此反复,在系统中产生了周期性的气流振荡现象,这种现象称为喘振。

压缩机达到最小排量点而产生严重的气流旋转脱离是内因,而压缩机的性能曲线状况和工况点的位置是条件,内因只有在条件的促成下,才能发生特有的现象———喘振。

离心冷水机组运行在部分负荷时,压缩机导叶开度减小,参与循环的制冷剂流量减少。压缩机排量减小,叶轮达到压头的能力也减小。而冷却水温由于冷却塔未改变而维持不变,则此时就可能发生旋转失速或喘振。

喘振是速度型离心式压缩机的固有特性。因此对于任何一台压缩机,当排量小到某一极限点时就会发生该现象。冷水机组是否在喘振点附近运行,主要取决于机组的运行工况。在什么状态发生喘振只有通过对机器的试验,即不断减少其流量,才可以测出具体的喘振点。

由于压缩机叶轮流道内气体流量的减少,按照压缩机的特性曲线,其运行的工况点引向高压缩比方向。这时气流方向的改变在叶轮入口产生较大的正冲角,使得叶轮叶片上的非工作面产生严重的气流“脱离现象”,气动损失增大,叶轮出口处产生负压区,引起冷凝器上部或蜗壳内原有的正压气流沿压降方向“倒灌”,退回叶轮内,使叶轮流道内的混合流量增大,叶轮恢复正常工作。

如此时压缩机工况点仍未脱离喘振点(区) ,又将出现上述气流的“倒灌”。气流这种周期性的往返脉动,正是压缩机喘振的根本原因。】

喘振对机组的危害

压缩机性能显著恶化,气体参数(压力,流量等)产生大幅度脉动

伴随强烈的周期性气流噪声,出现气流吼叫声

整个机组出现强烈振动,该振动不同于一般的机械振动,喘振导致压缩机出口气流的反复倒吸、吐出、来回撞击,压缩机转子在机内沿轴向来回窜动,使密封和轴承损坏,甚至发生振动元件和固定元件出现碰撞;

喘振使压缩机转轴、叶轮、扩压器、齿轮等元件经受交变的动应力,增大各元件损坏概率,缩短其使用寿命

主电机电流在低负荷和高负载间交替脉动,电机发热量和冷却效果恶化,降低电机绕组的绝缘寿命

【喘振是离心式压缩机的运行工况在小流量、高压比区域中所产生的一种不稳定的运行状态。压缩机喘振时,将出现气流周期性振荡现象。喘振带给压缩机严重的破坏,会导致下列严重后果:

1) 使压缩机的性能显著恶化,气体参数(压力、排量) 产生大幅度脉动。2) 噪声加大。3) 大大加剧整个机组的振动。喘振使压缩机的转子和定子的元件经受交变的动应力:压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等:叶轮动应力加大。

4) 电流发生脉动。5) 小制冷量机组的脉动频率比大型机组高,但振幅小。

不同于一般的机械振动,在压缩机出口产生气流的反复倒灌、吐出、来回撞击,使得主电机交替出现满载和空载,电流表指针或压缩机出口压力表指针产生大幅度无规律的强烈抖摆和跳动。压缩机转子在机内沿轴向来回窜动,并伴有金属摩擦和撞击声响。】

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

长输管道离心压缩机的喘振分析及预防

长输管道离心压缩机的喘振分析及预防 发表时间:2018-05-23T10:31:46.143Z 来源:《基层建设》2018年第6期作者:单洁丽 [导读] 摘要:离心压缩机是一种速度式压缩机,是长输管道生产中的关键设备,可以提高管道的输送能力,是管道的心脏。 西安陕鼓动力股份有限公司陕西西安 710075 摘要:离心压缩机是一种速度式压缩机,是长输管道生产中的关键设备,可以提高管道的输送能力,是管道的心脏。文章简要分析了离心压缩机喘振产生的机理、危害及喘振工况的判断方法,并提出了预防及解决喘振的措施,以供参考。 关键词:长输管道离心压缩机喘振分析预防 Abstract:the centrifugal compressor is a kind of speed compressor,which is the key equipment in the production of long transport pipeline,which can improve the conveying capacity of the pipeline and is the heart of the pipe. This paper briefly analyzes the mechanism,hazard and the judgment method of the surge of centrifugal compressor,and puts forward some measures to prevent and solve the surge. Key words:long transmission pipeline centrifugal compressor surge analysis prevention 1喘振机理 离心压缩机基本的工作原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。 当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,气流的分离区域就越大。由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。 2离心式压缩机喘振故障原因分析 2.1压缩机叶轮磨损或者粘附物太多 压缩机叶轮通过自身的曲线槽结构和高速旋转来增加工艺气体的压力和速度,压缩机大概有2/3的压力增加都是通过叶轮产生的。当叶轮磨损或粘附物太多时,都会改变叶轮自身的曲线槽结构,降低叶轮增加工艺气体压力和速度的能力。叶轮磨损越严重或粘附物越多,越容易导致压缩机产生喘振故障。 2.2压缩机扩压器腐蚀磨损 工艺气体经过高速旋转的叶轮产生高速高压后,经过静态的扩压器时,扩压器内特殊设计的曲线腔壁能把工艺气体的流速降低,压力再一次增加,一般约有l/3的压力是在扩压器内提高的。当扩压器内特殊设计的曲线腔壁腐蚀磨损比较严重时,高速的工艺气体经过扩压器时就容易形成涡旋,进气量就会减少,无法提高空气压力,导致压缩机的输出压力降低,从而容易形成喘振。 2.3叶轮与扩压器之间的间隙变化 离心式压缩机对叶轮与扩压器之间的间隙有着非常严格的要求。间隙过大会发生泄漏串气,导致空气流量减少;间隙过小,通过的工艺气体流量变小,同时在后端推力轴承磨损的情况下,容易发生叶轮与扩压器碰撞的设备事故。因此叶轮与扩压器之间的间隙过大和过小都会造成空气流量变小,使压缩机无法提高输出压力,从而形成喘振故障。 2.4压缩机进气口温度变化 离心压缩机设计上的压缩量是指在25℃,一个标准大气压的条件下的压缩量,而实际上的工艺气体温度是时常变化,不以人的意志而改变的。恒压的条件下,在温度升高时,工艺气体密度降低,压缩机实际压缩的工艺气体流量减少,导致压缩机输出压力不足,形成喘振现象。实际使用过程中,夏季比冬季更容易发生喘振现象就可以说明这个原因。 3喘振的判断 由于喘振的危害较大,在喘振的初始阶段,操作人员就应能及时判别,同时及时调整工况,使压缩机尽快脱离喘振区域,只有这样才能保证压缩机的正常运行。压缩机的喘振一般可从以下几个方面判别: 3.1从现场仪表的指示值判断 3.1.1压缩机的进口气体温度指示值升高,说明压缩机已经进入喘振工况。这是由于高温气体倒流至压缩机进口所致。此时压缩机各级压力会出现急剧波动。 3.1.2压缩机流量指示值急剧下降并大幅波动,严重时气体甚至会倒流回吸气管道,在进口过滤器处有时能看到被反吹出的灰尘。 3.1.3用电机驱动的压缩机,电机的电流和功率指示值出现不稳定,大幅波动;用汽轮机驱动的机组,汽轮机的转速指示值会出现波动,机组运行工况不稳定。 3.2从异常声响判断 3.2.1当压缩机接近喘振工况时,排气管道会发出周期性、时高时低的“呼哧”、“呼哧”声。进入喘振工况后,压缩机会发出周期性、间断的类似牛的吼叫声。噪声分贝立即增大,影响范围变大。 3.2.2压缩机出现强烈而有规律的低频率振动,管道内气流同时发出异常声响。系统内各管线振动剧烈,机身也会剧烈振动,并使出口管道、厂房、辅助机组发生强烈振动。如果是大型离心压缩机进入喘振工况,那么在附近的建筑物上也能感觉到振动。 4喘振的预防 在实际生产运行过程中,为了防止离心压缩机发生喘振,可以采取以下措施: 4.1提高离心压缩机入口流量,使压缩机运行工况脱离喘振区域,图1为压缩机不同转速下的性能曲线,左侧为喘振区。同时加装低流量报警装置。在流量不变时,可通过降低离心压缩机排气压力、提高入口压力或两者相结合的方法,减小出口、入口压比,以防止压缩机

离心式压缩机喘振分析及解决措施

离心式压缩机喘振分析及解决措施 摘要:论述了离心式压缩机喘振机理、影响因素、危害及判断,以及本车间气压机组发生喘振时的处理措施。 关键词:离心式压缩机喘振机理影响因素危害判断措施 0 引言 离心压缩机是速度式压缩机中的一种,由于具有排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,目前已广泛应用于石油、化工、冶金、动力、制冷等行业。离心压缩机的安全可靠运行对工业生产有着非常重要的意义。然而,离心压缩机对气体的压力、流量、温度变化较敏感,易发生喘振。喘振是离心压缩机固有的一种现象,具有较大的危害性,是压缩机损坏的主要诱因之一。早在1945年于英国首先发现了离心压缩机的喘振现象并引起了人们的注意。 1 离心式压缩机的喘振机理及影响因素 1.1 离心式压缩机的喘振机理离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面

(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,气流的分离区域就越大。由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。发生旋转脱离时叶道中气流通不过去,级的压力突然下降,排气管内较高压力的气体便倒流回级里来。瞬间,倒流回级中的气体补充了级流量的不足,叶轮又恢复正常工作,重 新把倒流回来的气体压出去。这样又使级中流量减小,于是压力又突然下降,级后的压力气体又倒流回级中来,如此周而复始,在系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。 2 喘振的危害及判断 2.1 喘振的危害喘振现象对压缩机十分有害,主要表现在以下几个方面:①喘振时由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。②会使叶片强烈振动,叶轮应力大大增加,噪声加剧。③引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时会产生轴向窜动,碰坏叶轮。④加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金

离心式压缩机防喘振控制设计讲解

1 概述 1.1压缩机喘振及其危害 压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。 1.2喘振的工作原理及防治 压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。

离心式压缩机喘振的分析和处理方法

离心式压缩机喘振的分析和处理方法 摘要:本文就离心式压缩机为主要描述对象,分析了喘振的原因和主要问题,并针对这些原因提出了消除喘振的方法。就喘振现象的发生机理以及影响因素,本文做出了详细论述,旨在为减轻喘振来提高离心式压缩机的性能。 关键词:离心式压缩机喘振分析 前言 离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。在工业生产上,离心压缩机的安全性能起重要作用。但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。 1.离心式压缩机的喘振机理 由实际物体的高速转动带来气体的转动,从而形成离心力,这一过程实现了能量的传递,气体获得动能和压力能。叶轮中高速转动的气体在扩压器内实现动能向压力能的转化。所以说主要的压缩过程在叶轮和扩压器内。这也是离心式压缩机的基本工作原理。当时机情况偏离设计工况时,会出现气流量减小的情况,以致进入叶轮和扩压器的气体反向流动,冲向工作面,增加了非工作面边缘的扩压度,导致气流边界分层,最终形成了漩涡区。在越靠近叶轮出口的地方,这种漩涡现象越严重,波及的范围也更大。这是与偏离设计工况的程度成正相关关系的,因为偏离程度越大,气流量也就越小,工作面和非工作面之间出现的气流边界分层现象也就原来越严重。而在离心式压缩机的实际构造中,由于叶轮中叶片的不完全对称性,导致气流流动的不均匀,气流边界分层可能会出现在不确定的某个叶道中。当气流量减小到某一临界值时,叶轮的旋转会将整个分层现象扩张到更广的区域,此时气流向叶轮旋转的反向流动,气流旋涡开始形成,并出现在叶轮的外圆和内圆中,发生旋转失速的情况。旋转失速的情况下,叶道中的气流无法通过,排气管中的高压气体会向压力下降的级里流动,及时填补了级流量不足的空缺,促使压缩机恢复运转,将倒流的气体重新排放出去。此时又出现了级中气流量不足的情况,然后高压气体又流向低压区域的级里,促使叶轮正常工作。这样周而复始的循环工作兴城路周期性的气流振荡,即“喘振”现象。 2.喘振的危害及判断 2.1.喘振的危害 喘振对于离心式压缩机的危害很大,可以总结为以下几点:①离心机的工艺过程和工作系统都是在特定的参数下进行的优化设计,尤其是对于气体参数的要求更高,但是喘振时气流的强烈振荡会带来一定的不稳定性。②叶片的强烈震动会带来极大噪声。③各部件之间的摩擦加大,压缩机的主轴也会受到影响,甚至

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心式压缩机的防喘振 控制(正式版)

离心式压缩机的防喘振控制(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的

“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中

浅析离心式压缩机喘振故障原因及解决方法

浅析离心式压缩机喘振故障原因及解决方法 喘振问题作为离心式压缩机最常见的问题之一,严重影响着压缩机的运行,也是造成压缩机损坏的主要原因之一。在实际生产中,往往由于对喘振故障认识不足,可能会出现压缩机发生喘振故障时没有得到及时的判断和处理,造成压缩机硬件损坏,甚至危及压缩机使用寿命及功能的情况发生。 一、离心式压缩机控制系统现状 离心压缩机控制系统主要是保障压缩机的安全、稳定运行,充分应用压缩机工艺区域,在工艺压力与流量范围内,保障工况稳定运行,提升离心压缩机操作的便捷性与自动化水平。通过应用控制系统,可将离心压缩机的工作状态实时展现出来,促使操作人员掌握相应的信息,实时储存运行数据,为后期查询与分析奠定基础。 受到某些原因的影响,若离心式压缩机运行不稳定,控制系统可及时预测各类影响因素,在出现故障与问题的情况下,通知操作人员。系统能够依据不同的情形,采取针对性的解决对策,合理做出动作,促使离心式压缩机迅速恢复到正常的运行轨道。离心式压缩机控制系统设计本身属于关键性问题,本文主要从以下三方面入手,深入分析离心式压缩机控制系统设计现状,主要包括:(1)选择控制系统硬件平台,目前国内是在经典压缩机控制系统基础上,选择模拟调节器,实现运行参数(比如:排气量、排气压力等)调节,以此实现对保护装置安全运行提供保障,更好的满足实际工艺需求。但就实际情况而言,这类调节器难以应变大负荷,就突发工况变化无法精准应对,难以使机组处于最佳运行状态中。(2)合理选择控制系统软件,国外进口的压缩机组,供货商一般会选择配套的控制系统,这类系统的针对性较强,且控制效果比较理想。也可购买第三方厂家的主要控制软件,将其直接应用在上位机监控系统内,可实现开发周期缩短,但这类方式会增加开发成本。(3)选择控制策略,在离心式压缩机控制系统设计工作中,应当将防喘振数字划分为直接控制,实现最小流量控制,就不同故障情形,采取不同的解决对策。不断引入先进的控制技术,比如:模糊控制、神经网络控制技术,为后期压缩机智能控制奠定良好基础。在智能化技术背景下,传统的控制方式已经难以满足上述控制需求,只有积极引入先进的PDI控制技术,才可实现离心压缩机控制水平的提升。 二、离心式压缩机喘振故障的解决方法

离心式压缩机的防喘振控制

编订:__________________ 审核:__________________ 单位:__________________ 离心式压缩机的防喘振控 制 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5913-30 离心式压缩机的防喘振控制 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二

压缩机防喘振控制方案

压缩机防喘振的两种方法 [分享]压缩机防喘振的两种方法 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。 二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。 三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法 1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。 2.可变极限流量法

在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极 限流量法。 常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如图3所示。近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。 其中a、b由压缩机制造厂决定,C是一个常数。 式中M—分子量 z—压缩系数 R—气体常数 k—综合流量系数 四、防喘振控制系统的实现方法 水气厂一英格索兰空气压缩机,型号为C90M × 3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。防喘振控制

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法 一、什么是喘振 喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。 压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。 二、离心式压缩机特性曲线 对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。 如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。 图1为离心式压缩机特性曲线 压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。 (1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。 (2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。每个转速下都有一个喘振流量,不同转速下喘振流量工况点的连线称为喘振线。在喘振线左侧为非稳定工作区,而右侧为稳定工作区。一般来说,单级工业离心式压缩机的额定转速线下的喘振流量约为额定流量的50%,多级离心式压缩机额定转速下的喘振流量一般为额定流量的70~80%。喘振工况是小流量下的一种压缩机不稳定状况,不仅与压缩机级的设计导致的旋转失速有关,还与外管网有关。 (3)在增大流量时也会有限制,在转速不变的情况下,流量加大到某个最大值时,压比和效率垂直下降,出现所谓“阻塞现象”。阻塞工况也称作最大流量工况,造成这种工况

离心式压缩机的喘振分析

离心式压缩机的喘振分析 卢勇 摘要:本文通过分析离心式压缩机工作过程中喘振产生的机理,原因,危害及判断方法,介绍了催化剂长岭分公司空压站4台压缩机的控制方式和喘振控制系统选择准则。 关键词:喘振机理原因危害判断控制 一、引言 随着生产规模的扩大以及对产品质量要求的提升,生产车间对工艺和仪表用风要求越来越高,催化剂长岭分公司综合车间空压站因此不断进行改造,增加供风能力和提高供风质量,目前,已经淘汰所有往复式压缩机,全部使用离心式压缩机。 离心式压缩机是速度式压缩机的一种,具有排气量大、效率高、结构简单、体积小、气流不受油污染以及正常工况下运行平稳、压缩气流无脉动等特点,然而,离心式压缩机对气体的压力、流量、温度变化较敏感,易发生喘振。喘振是离心式压缩机的一种固有现象,具有较大的危害性,是压缩机损坏的主要诱因之一,长岭分公司空压站共有4台离心式压缩机,其中库柏公司3台,IHI寿力公司1台,虽然制造厂家通过控制系统的合理设计,避开了绝大多数的喘振,但在设备的长期使用过程中,仍然不同程度地出现了喘振现象,并造成了一些危害,因此,需要结合生产实践,逐步弄清喘振机理,掌握喘振的影响因素,采取有效的防喘振控制措施,消除喘振产生的条件,减少喘振出现的频次,提高压缩机的运行可靠性。

二、喘振现象的产生 1.喘振的机理 图1 离心式压缩机是利用机器的作功元件如高速回转的叶轮对气体作功,使气体在离心力场中压力得到提高,同时动能也大为增加,随后在扩压流道中流动时这部分动能又转变成静压能,而使气体压力进一步提高,这就是离心式压缩机的工作原理或增压原理。 图1为离心式压缩机的性能变化曲线,它清晰地表明了各种工况下的性能、稳定工作范围等,在转速不变的情况下,当流量Q增大到某个最大值时,压比和效率垂直下降,出现阻塞现象。 当流量Q减小到某个值时,操作工况也会发生变动并偏离设计工况,这时进入叶轮或扩压器流道的气流方向就会发生变化,气流向着叶片的工作面冲击,在叶片的非工作面的前缘部分,产生很大的局

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防] 离心式压缩机的喘振原因及预防 田立华 (中石油前郭石化分公司) 摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。因此,离心式压缩机严禁在喘振区域内运行。本文针对喘振的原因和预防措施做了详细论述。 关键词离心式压缩机喘振喘振点性能曲线旋转脱离 一、喘振机理 喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。当外界条件适合内在因素时,便发生喘振。 2.喘振与管网的关系 离心压缩机的喘振是其本身的固有特性。压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。图2为离心压缩机和管网联合工作性能曲线。交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。 3.喘振的产生 从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。如此周而复始地进行,压缩机时而有气流输出,时而有气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。喘振过程中参数变化的频率和幅度的大小与管网容量有很大的关系。管网的容量相当于整个系统的基本谐振器。管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率则愈高,振幅愈小。由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面: (1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。稳定系统压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。 (2)入口流量低于规定值,反飞动调节阀失灵。在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放火炬阀开得过大,最容易引起压缩机入口流量低。 (3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为是抽空现象。 (4)分馏系统操作不稳致使压缩机入口气体带油(例如瓦斯罐液位、界位失灵),液体组分进入机体。 (5)汽轮机的蒸汽压力低或质量差(温度低),机组出现满负荷,转速下降。 (6)调速系统失灵,辅助系统故障,真空效率下降,机组不能额定做功。

离心式压缩机的防喘振控制与阀门选型

晋升任职资格送审论文评审表

论文编号:_______ 专业:生产过程自动化 论文题目: 离心式压缩机的防喘振控制与阀门选型 内容摘要: 离心式压缩机在工业生产中的应用越来越广泛。 本文对离心式压缩机的固有特性喘振进行了详细的 分析。重点分析了乙烯装置裂解气压缩机防喘振系 统的独特设计、工作原理及在TPS控制平台上的逻 辑实现,并对防喘振控制阀的合理选型进行了有益 的探讨。这为离心式压缩机防喘振控制系统的设计 提供了值得借鉴的经验。

目录 前言........................................... 错误!未定义书签。第一章喘振的产生及预防.......................... 错误!未定义书签。 一、喘振的产生过程..................................................... 错误!未定义书签。 二、喘振的预防......................................................... 错误!未定义书签。 三、常用的防喘振控制系统............................................... 错误!未定义书签。第二章乙烯装置裂解气压缩机的防喘振控制.......... 错误!未定义书签。 一、概述............................................................... 错误!未定义书签。 二、防喘振控制系统的实现............................................... 错误!未定义书签。第三章防喘振控制阀的合理选型.................... 错误!未定义书签。 一、合理选型防喘振阀,至关重要......................................... 错误!未定义书签。 二、防喘振控制阀计算的步骤............................................. 错误!未定义书签。 三、以防喘振控制阀FV205为例说明阀门选型的计算......................... 错误!未定义书签。第四章结束语................................... 错误!未定义书签。

喘振原因及常用解决办法

喘振原因及常用解决办法-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

喘振是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害 离心式压缩机发生喘振时,典型现象有: 1)压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动; 2)压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道; 3)拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动; 4)机器产生强烈的振动,同时发出异常的气流噪声。 5)离心机在极端部分负荷、冷却有问题时会发生 目前来说解决喘振常用的方法: ①在压气机上增加放气活门,使多余的气体能够排出。 ②使用可调节式叶片。 ③确保压气机足够流量。

喘振的内部原因 当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离。此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧。气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常。但是,当将倒灌进来的气体压出时,由于流量缺少补给,随后再次重复上述现象。这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,管网有周期性振荡振幅大频率低并伴有周期性吼叫声,压缩机振动强烈机壳轴承均有强烈振动并发出强烈的周期性的气流声,由于振动强烈轴承液体润滑条件会遭到破坏,轴瓦会烧坏转子与定子会产生摩擦碰撞密封元件将严重破坏。 离心式压缩机在生产运行过程中有时会突然产生强烈振动气体介质的流量和压力也出现大幅度脉动

离心式压缩机的喘振原因及预防

离心式压缩机的喘振原因及预防 (发布时间:2010-1-7 12:47:07 共有1个附件) 摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。因此,离心式压缩机严禁在喘振区域内运行。本文针对喘振的原因和预防措施做了详细论述。 关键词离心式压缩机喘振喘振点性能曲线旋转脱离 一、喘振机理 喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。当外界条件适合内在因素时,便发生喘振。 2.喘振与管网的关系 离心压缩机的喘振是其本身的固有特性。压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。图2为离心压缩机和管网联合工作性能曲线。交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管**性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。相反闸阀开大时,管道中的阻力系数A减小,管**性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。 3.喘振的产生 从图2可以看出:由于管网阻力的增加,管**性曲线左移,致使压缩机工况点向小流量偏移。压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。如此周而复始地进行,压缩机时而有气流输出,时而有气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。喘振过程中参数变化的频率和幅度的大小与管网容量有很大的关系。管网的容量相当于整个系统的基本谐振器。管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率则愈高,振幅愈小。由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面: (1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。稳定系统压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。 (2)入口流量低于规定值,反飞动调节阀失灵。在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放火炬阀开得过大,最容易引起压缩机入口流量低。(3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为

离心式压缩机的喘振研究

离心式压缩机的喘振研究 发表时间:2018-12-06T22:19:27.033Z 来源:《电力设备》2018年第22期作者:夏方晓高万程赫靓 [导读] 摘要:离心式压缩机控制系统,从70年代的晶体管电路组成的电子调速器到90年代的压缩机防喘振控制系统。 (沈阳鼓风机集团股份有限公司辽宁沈阳 110000) 摘要:离心式压缩机控制系统,从70年代的晶体管电路组成的电子调速器到90年代的压缩机防喘振控制系统。离心压缩机是工业生产中的关键设备,它具有排气压力高,输送流量小的优点。但离心压缩机也存在一些缺陷,如稳定工作区域窄,容易发生喘振等。喘振对压缩机的危害极大,为了保证压缩机的正常运行,必须配备控制系统来防止喘振的发生。随着计算机控制技术的发展,防喘振的控制手段和控制品质都得到了提高,但是始终存在两方面的问题需要解决。其一,经济性问题,防喘振控制导致大量气体回流,造成能量浪费。其二,防喘振控制品质问题,有些控制系统控制回路单一,没有考虑可能发生的其他因素,导致控制质量不好,不能最有效、及时地防喘振。 关键词:离心式;压缩机;喘振;分析 1导言 离心式压缩机用来压缩和输送化工生产中的各种气体而喘振是离心式压缩机工作在小流量时的不稳定流动状态,它是离心式压缩机固有的特性。轻微的喘振不会损坏压缩机但严重的喘振会使机组剧烈振动流量大幅波动很可能引起烧瓦甚至损坏压缩机件等严重事故。因此对离心式压缩机喘振机理、原因及控制方法的研究就显得很有必要。离心式压缩机组作为化工装置项目中的心脏,其顺利开车及正常运转对工程项目成功与否的重要性不言而喻。离心压缩机组是一个庞大的工程系统,喘振是离心式压缩机在小流量工作时不稳定状态,它是离心式压缩机的固有特性。严重的喘振会使整个机组剧烈震动,流量大幅波动,损坏轴瓦、转子等机组内件,还可能带来巨大的经济损失。 2压缩机的性能曲线 通常所说的离心式压缩机在一定程度上会形成叶片式旋转机械,主要是通过对于叶轮的高速运转,保证在整个叶轮中心部位气体靠近离心力的作用而不断向外延伸,当气体获得更高速度之后,就会将负压器中所形成的气体的动能不断转化为压力,这样就可以保证整个叶轮在运行的中心会存在一个负压区,气体不断吸入流道,形成一定连续的输送过程。不同的流量在一定程度上会将压力形成不一样的曲线。 3喘振的危害 喘振现象对离心式压缩机的危害极大,会缩短压缩机的使用寿命,喘振现象的危害主要表现在以下几个方面:一是喘振会使气流强烈的脉动以及周期性的震荡,会导致供气参数(流量、转速等)的大幅度上下波动,这会破坏工艺系统的稳定性运行。二是喘振现象的发生会使叶片产生强烈的震动,叶轮的应力也会大大地增加,使噪声加剧。三是喘振会加剧轴颈和轴承的磨损,破坏润滑油膜的稳定性,导致轴承合金产生疲劳裂纹,甚至烧毁轴承。四是喘振现象会致使压缩机机件密封及轴封遭受损坏,导致压缩机的工作效率降低,甚至造成火灾、爆炸等重大事故。五是喘振会致使动静部件之间的摩擦与碰撞,使压缩机的轴弯曲变形,严重时会产生轴向窜动,破坏叶轮;六是喘振会影响与压缩机相连的其他设备的正常运行,干扰操作人员的正常工作,使部分测量仪器仪表准确性降低,甚至是失灵。一般情况下,机组的压力比、排气压力、气体密度和排气量越大,喘振现象就会越严重,其危害就越大。 4离心式压缩机控制系统的现状 离心压缩机的基本控制要求是在压缩机安全平稳运行的情况下,充分利用压缩机的工作区域,在工艺要求的压力和流量范围内,工况稳定可靠,操作方便,自动化程度高。控制系统尽可能地将压缩机系统的工作状态实时展现在操作人员面前,便于操作人员了解,并对运行数据进行存贮,以备查询和分析。当由于某些原因导致压缩机即将出现不稳定时,控制系统应该能及时预测到不稳定性的发生,通知操作人员,并针对不同情形,自动采取措施,做出及时有力的动作,确保压缩机回到正常的工作轨道上来。 4.1控制系统硬件平台的选择 目前国内仍有很多企业的压缩机控制系统以经典控制理论为基础,采用模拟调节器,对其运行中的有关参数如排气量、排气压力,分别作必要的调节,构成单回路的并联控制系统,控制件也多为机械式的双位或比例调节器以及一些保护继电器。这种控制系统模式虽然能对参数进行一定的调节,以保证装置正常安全运行,实现必要的工艺要求,但调节器难以适应大的负荷变化和工况变化,更顾及不到机组总体最佳的节能运行。随着计算机技术的迅猛发展,有可能利用微信号处理机或计算机来完成更高的控制要求,在许多情况下可以利用可编程控制器PLC来实现。 4.2控制系统软件开发平台的选择 很多国外进口的压缩机组,供货商都会一并提供配套的控制系统,针对性比较强,控制效果比较理想。也可以购买第三方厂家的通用工控组态软件来直接进行上位机监控系统的开发,这样可以缩短开发周期,但无疑增加了成本。还可以选择自行设计开发专用于离心压缩机组控制的软件平台,这需要开发人员对压缩机组的特性有比较好的了解,需要较长的开发时间,但是适当降低了成本。 4.3控制策略的选择 这是压缩机控制系统设计中最重要的问题。在防喘振数字直接控制中,最基本的方法仍然是采用最小流量控制,但是可以针对不同的情形采用不同的对策。近年来发展起来的模糊控制、鲁棒和神经网络控制技术,为压缩机的智能控制奠定了基。离心压缩机组工艺流程回路复杂,需要监控的参数众多,涉及到水路、油路、气路的压力、温度和流量控制,以及机组的防喘振控制,机组振动和温度监控,对汽轮机驱动的压缩机机组来说,更是集汽轮机控制、压缩机性能控制和防喘振控制系统等多个系统于一体,显然,传统的控制方法难以满足上述控制要求,因此采用先进PDI控制技术是离心压缩机控制的必然选择。 5针对喘振的防止措施和控制有如下措施: 一是在压缩机的出口管线上可设置自动防喘振控制阀,而且防喘振控制阀的尺寸和型号应根据压缩机的操作条件和性能来选取,除此之外,防喘振控制阀的变送器应该尽量安装在离阀门较近的地方,以缩短反应时间。二是采用固定极限流量的防喘振系统,使压缩机的流量始终高于某一定值流量,从而避免进入喘振区运行,这种控制系统较为简单,而且实用的仪表较少。三是定期的对压缩机校验防喘振控制阀、安全阀、压力以及流量联锁仪表,以保证其整定值的准确性、动作灵敏。另外,还要定期对压缩机的出口单向阀进行维护,以确保其灵活好用。四是要全面提升压缩机的操作质量,重点提高岗位错做 人员的综合素质。操作人员在机组启动前,要对压缩机的尽心各项检查工作,确保无误后再启动。在机组启动后,对系统的升压要平

相关主题