搜档网
当前位置:搜档网 › 最新初中二次函数知识点总结与练习题汇编

最新初中二次函数知识点总结与练习题汇编

最新初中二次函数知识点总结与练习题汇编
最新初中二次函数知识点总结与练习题汇编

二次函数知识点总结

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这

里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,

可以为零.二次函数的定义域是全体实数.

2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

a 的符号

开口方向 顶点坐标 对称轴 性质

0a >

向上

()00, y 轴

0x >时,y 随x 的增大而增大;0x <时,y 随

x 的增大而减小;0x =时,y 有最小值0. 0a < 向下

()00,

y 轴

0x >时,y 随x 的增大而减小;0x <时,y 随

x 的增大而增大;0x =时,y 有最大值0.

a 的符号

开口方向 顶点坐标 对称轴 性质

0a >

向上

()0c ,

y 轴

0x >时,y 随x 的增大而增大;0x <时,y 随

x 的增大而减小;0x =时,y 有最小值c . 0a < 向下

()0c ,

y 轴

0x >时,y 随x 的增大而减小;0x <时,y 随

x 的增大而增大;0x =时,y 有最大值c .

a 的符号 开口方向 顶点坐标 对称轴 性质

0a >

向上

()0h , X=h

x h >时,y 随x 的增大而增大;x h <时,y 随

x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,

X=h

x h >时,y 随x 的增大而减小;x h <时,y 随

x 的增大而增大;x h =时,y 有最大值0.

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:

向右(h >0)【或左(h <0)】平移 |k|个单位

向上(k >0)【或下(k <0)】平移|k |个单位

向右(h >0)【或左(h <0)】平移|k|个单位

向右(h >0)【或左(h <0)】平移|k|个单位

向上(k >0)【或下(k <0)】平移|k |个单位

向上(k >0)【或向下(k <0)】平移|k |个单位

y=a (x-h )2+k

y=a (x-h )2

y=ax 2+k

y=ax 2

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2

沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2

变成

c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2

2424b ac b y a x a a -?

?=++ ??

?,其中2424b ac b h k a a -=-=

,. 五、二次函数2y ax bx c =++图象的画法

五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、

对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,

、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

a 的符号 开口方向 顶点坐标 对称轴 性质

0a >

向上

()h k , X=h

x h >时,y 随x 的增大而增大;x h <时,y 随

x 的增大而减小;x h =时,y 有最小值k . 0a < 向下 ()h k ,

X=h

x h >时,y 随x 的增大而减小;x h <时,y 随

x 的增大而增大;x h =时,y 有最大值k .

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

六、二次函数2y ax bx c =++的性质

1. 当0a >时,抛物线开口向上,对称轴为2b

x a =-,顶点坐标为2424b ac b a a ??-- ???

,.

当2b x a <-

时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b

x a

=-时,y 有最小值2

44ac b a

-.

2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ?

??

,.当2b

x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值

2

44ac b a

-. 七、二次函数解析式的表示方法

1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只

有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,

当0b >时,02b

a

-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b

a

->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b

a

-=,即抛物线的对称轴就是y 轴; 当0b <时,02b

a

-

<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.

ab 的符号的判定:对称轴a

b

x 2-

=在y 轴左边则0>ab ,在y 轴的右侧则0

3. 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.

总之,只要a b c ,

,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---; 2. 关于y 轴对称

2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++; 3. 关于原点对称

2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y a x b x c =++关于顶点对称后,得到的解析式是22

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+. 5. 关于点()m n ,

对称 ()2y a x h k =-+关于点()m n ,

对称后,得到的解析式是()2

22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原

抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):

一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:

① 当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()2

00ax bx c a ++=≠的两根.这两点间的距离2214b ac AB x x a

-=-=.

② 当0?=时,图象与x 轴只有一个交点; ③ 当0?<时,图象与x 轴没有交点.

1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'

当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

图像参考:

0?> 抛物线与x 轴有

两个交点

二次三项式的值可正、可零、可负

一元二次方程有两个不相等实根

?=

抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 0?<

抛物线与x 轴无交点

二次三项式的值恒为正 一元二次方程无实数根.

y=

x 22

y=2x 2

y=x 2

y=-2x 2

y= -x 2

y= -

x 22

y=2x 2-4

y=2x 2+2

y=2x 2

y=3(x+4)2

y=3(x-2)2

y=3x 2

y=-2(x+3)2

y=-2(x-3)2

y=-2x 2

十一、函数的应用

y=2(x-4)2-3

y=2(x-4)2

y=2x 2

二次函数应用??

???

刹车距离何时获得最大利润最大面积是多少

二次函数考查重点与常见题型

1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:

已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是

2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查

两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )

y y y y

1 1

0 x o-1 x 0 x 0 -1 x A B C D

3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选

拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为3

5

=

x ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-3

2

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.

5.考查代数与几何的综合能力,常见的作为专项压轴题。 【例题经典】

由抛物线的位置确定系数的符号

例1 (1)二次函数2y ax bx c =++的图像如图1,则点),(a

c b M 在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

(2)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,?则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个

(1) (2)

【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.

例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1

点在点(O ,2)的下方.下列结论:①aO;③4a+cO ,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D .4个

答案:D

会用待定系数法求二次函数解析式

例3.已知:关于x 的一元二次方程ax 2

+bx+c=3的一个根为x=-2,且二次函数y=ax 2

+bx+c 的对称轴是直线

x=2,则抛物线的顶点坐标为( )

A(2,-3) B.(2,1) C(2,3) D .(3,2) 答案:C 例4、(2006年烟台市)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y m 2. (1)写出y 与x 的关系式;

(2)当x=2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间?求抛物线顶点坐标、 对称轴.

例5、已知抛物线y=

12x 2+x-52

. (1)用配方法求它的顶点坐标和对称轴.

(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.

【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.

例6.已知:二次函数y=ax 2

-(b+1)x-3a 的图象经过点P(4,10),交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x <,

交y 轴负半轴于C 点,且满足3AO=OB .

(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M ,使锐角∠MCO>∠A CO?若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由. (1)解:如图∵抛物线交x 轴于点A(x 1,0),B(x2,O), 则x 1·x 2=3<0,又∵x 1

∴x 2>O ,x 1

∴x 1·x 2=-3x 12=-3.∴x 12

=1. x 1<0,∴x 1=-1.∴.x 2=3.

∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3

∴.二次函数的解析式为y-2x 2

-4x-6. (2)存在点M 使∠MC0<∠ACO .

(2)解:点A 关于y 轴的对称点A ’(1,O),

∴直线A ,C 解析式为y=6x-6直线A'C 与抛物线交点为(0,-6),(5,24). ∴符合题意的x 的范围为-1

当点M 的横坐标满足-1∠ACO . 例7、 “已知函数c bx x y ++=

2

2

1的图象经过点A (c ,-2),

求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A (c ,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。

[解答] (1)根据c bx x y ++=

2

2

1的图象经过点A (c ,-2),图象的对称轴是x=3,得???

????=?

--=++,3212,2212

b

c bc c 解得??

?=-=.

2,

3c b

所以所求二次函数解析式为.232

12

+-=x x y 图象如图所示。 (2)在解析式中令y=0,得

0232

12

=+-x x ,解得.53,5321-=+=x x 所以可以填“抛物线与x 轴的一个交点的坐标是(3+)0,5”或“抛物线与x 轴的一个交点的坐标是

).0,53(-

令x=3代入解析式,得,2

5-=y 所以抛物线232

12+-=

x x y 的顶点坐标为),25,3(-

所以也可以填抛物线的顶点坐标为)2

5

,3(-等等。

函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。

用二次函数解决最值问题

例1已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.

【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.

例2 某产品每件成本10元,试销阶段每件产品的销售价x (元)?与产品的日销售量y (件)之间的关系如下表:

x (元) 15 20 30 … y (件) 25 20 10 …

若日销售量y 是销售价x 的一次函数.

(1)求出日销售量y (件)与销售价x (元)的函数关系式;

(2)要使每日的销售利润最大,每件产品的销售价应定为多少元??此时每日销售利润是多少元? 【解析】(1)设此一次函数表达式为y=kx+b .则1525,

220k b k b +=??

+=?

解得k=-1,b=40,?即一次函数表达

式为y=-x+40.

(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x-10)(40-x )=-x 2+50x-400=-(x-25)2+225.

产品的销售价应定为25元,此时每日获得最大销售利润为225元.

【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,?“某某”要设为自变量,“什么”要设为函数;(2)?问的求解依靠配方法或最值公式,而不是解方程.

A O

x y

B O x y

C O x

y D

O x y

例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳

的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为(建立的平面直角坐标系如右图所示) ( )

A .1.5 m

B .1.625 m

C .1.66 m

D .1.67 m 分析:本题考查二次函数的应用 答案:B

二.二次函数部分

1.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,

给出四个结论:

①2

4b ac >;②0bc <;③20a b +=;④a-b+c>0其中正确结论是(

) A .②④ B .①③

C .②③

D .①④

2.已知二次函数2

y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),

的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>;③4a+c<0其中的正确结论是

3.在同一直角坐标系中,函数y=mx+m 和y=-mx 2+2x +2(m 是常数,且m≠0)的图象可能是( )

4.把抛物线2

y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )

A .2(1)3y x =---

B .2

(1)3y x =-+- C .2

(1)3y x =--+

D .2

(1)3y x =-++

5.把抛物线y =ax 2

+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2

-3x+5,则a+b+c=__________

6.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面

O

y

x 1x =

(30)A ,

第1题图

相关主题