搜档网
当前位置:搜档网 › 中考数学一轮复习勾股定理(讲义及答案)附解析

中考数学一轮复习勾股定理(讲义及答案)附解析

中考数学一轮复习勾股定理(讲义及答案)附解析
中考数学一轮复习勾股定理(讲义及答案)附解析

一、选择题

1.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2

()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =

1∶2∶3 ;⑤111

,,345

a b c ===;⑥10,a = 24,b = 26c = A .2个

B .3个

C .4个

D .5个

2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判

断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )

A .1个

B .2个

C .3个

D .4个

3.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .

A .9

B .10

C .18

D .20

4.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )

A .5

B .8

C .13

D .4.8

5.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:

①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( )

A .1

B .2

C .3

D .4

6.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( ) A .32

B .213

C .5

D .6

7.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )

A .3

B .5

C .4或5

D .3或51

8.如图,在四边形ABCD 中,AD BC ∥,90D ?∠=,4=AD ,3BC =.分别以点A ,

C 为圆心,大于

1

2

AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )

A .22

B .4

C .3

D .10

9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )

A .4

B .3

C .2

D .1

10.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )

A.3

2

B.2 C.22D.10

二、填空题

11.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若∠A =60°,AB=4,CE=3,则BC的长为_______.

12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 13.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.

14.以直角三角形的三边为边向外作正方形P,Q,K,若S P=4,S Q=9,则K S=___ 15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________

16.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE 的长为______.

17.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5. ①线段OA 的取值范围是______________; ②若BD -AC =1,则AC ?BD = _________.

18.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.

19.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,

7AD =,则EF =__________.

20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM 7EF ,则正方形ABCD 的面积为_______.

三、解答题

21.如图,,90,8,6,,ABC B AB cm BC cm P Q ?

?∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;

(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ?成为等腰三角形的运动时间.

22.(1)计算:1

312248233?÷ ?

(2)已知a 、b 、c 满足2|2332(30)0a b c -+-=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

23.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.

(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.

24.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .

(1)若∠AED =20°,则∠DEC = 度;

(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.

25.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=?,连接AE .

(1)判断AE 与BD 的数量关系和位置关系;并说明理由.

(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;

(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.

27.如图,ABC ?是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .

(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=?;

②如图3,连接,BE CG ,若30,4EBD BG ∠=?=,则BCG ?的面积为______________.

28.在ABC ?中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.

(1)求CD 的长.

(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.

①若当2v =时,CP BQ =,求t 的值.

②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.

29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .

(1)求∠EDF= (填度数);

(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;

(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;

②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.

30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .

(1)求证:∠ABE =∠CAD ;

(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;

ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【分析】

根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案. 【详解】

解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确; ∵2

()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确;

∵∠A =∠B -∠C ,得∠B=∠A+∠C , ∵∠A+∠B+∠C=180°, ∴∠B=90°,故③正确;

∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴3

18090123

C ∠=??

=?++,故④正确;

∵222111()()()45

3

+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确; ∴能构成直角三角形的有5个; 故选择:D. 【点睛】

本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.

2.C

解析:C 【分析】

根据AC=2AB ,点D 是AC 的中点求出AB=CD ,再根据△ADE 是等腰直角三角形求出AE=DE ,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE 和△DCE 全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC ,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC ,然后推出∠BEC=∠AED ,从而判断出③小题正确;

倍,用DE 表示出AD ,然后得到AB 、AC ,再根据勾股定理用DE 与EC 表示出BC ,整理即可得解,从而判断出④小题错误. 【详解】

解:∵AC=2AB ,点D 是AC 的中点, ∴CD=

1

2

AC=AB , ∵△ADE 是等腰直角三角形, ∴AE=DE ,

∠BAE=90°+45°=135°,∠CDE=180°-45°=135°, ∴∠BAE=∠CDE , 在△ABE 和△DCE 中,

AB CD BAE CDE AE DE =??

∠=∠??=?

, ∴△ABE ≌△DCE (SAS ),故①小题正确; ∴BE=EC ,∠AEB=∠DEC ,故②小题正确; ∵∠AEB+∠BED=90°, ∴∠DEC+∠BED=90°,

∴BE ⊥EC ,故③小题正确; ∵△ADE 是等腰直角三角形, ∴AD=2DE ,

∵AC=2AB ,点D 是AC 的中点, ∴AB=2DE ,AC=22DE ,

在Rt △ABC 中,BC 2=AB 2+AC 2=(2DE )2+(22DE )2=10DE 2, ∵BE=EC ,BE ⊥EC , ∴BC 2=BE 2+EC 2=2EC 2, ∴2EC 2=10DE 2,

解得EC=5DE ,故④小题错误, 综上所述,判断正确的有①②③共3个. 故选:C . 【点睛】

本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE 是等腰直角三角形推出AE=DE ,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.

3.C

解析:C 【分析】

将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求. 【详解】 解:如图,

将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,

2222'15129A D A B BD ∴--'==.

所以底面圆的周长为9×2=18cm. 故选:C . 【点睛】

本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行

计算是解题的关键.

4.D

解析:D 【分析】

过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABC

ACD

BCD S

S

S

=+即可求出答案.

【详解】

如图,过点C 作CH ⊥AB ,连接CD , ∵AC=BC ,CH ⊥AB ,AB=8, ∴AH=BH=4, ∵AC=5, ∴2222543CH AC AH =-=-=,

∵ABC

ACD

BCD S S

S

=+,

∴111

222AB CH AC DE BC DF ??=??+??, ∴

111

8355222

DE DF ??=?+?, ∴DE+DF=4.8, 故选:D.

【点睛】

此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到

ABC

ACD

BCD S

S

S

=+的思路是解题的关键,依此作辅助线解决问题.

5.C

解析:C 【解析】

试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE . ∵在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE , ∴△BAD ≌△CAE (SAS ).∴BD=CE .本结论正确. ②∵△BAD ≌△CAE ,∴∠ABD=∠ACE .

∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°. ∴BD ⊥CE .本结论正确.

③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°. ∵∠ABD=∠ACE ,∴∠ACE+∠DBC=45°.本结论正确.

④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得:BE 2=BD 2+DE 2.

∵△ADE为等腰直角三角形,∴DE=2AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.

而BD2≠2AB2,本结论错误.

综上所述,正确的个数为3个.故选C.

6.D

解析:D

【分析】

先根据B(3m,4m+1),可知B在直线y=4

3

x+1上,所以当BD⊥直线y=

4

3

x+1时,BD最

小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的长即可.

【详解】

解:如图,

∵点B(3m,4m+1),

∴令

3

41

m x

m y

=

?

?

+=

?

∴y=4

3

x+1,

∴B在直线y=4

3

x+1上,

∴当BD⊥直线y=4

3

x+1时,BD最小,

过B作BH⊥x轴于H,则BH=4m+1,

∵BE在直线y=4

3

x+1上,且点E在x轴上,

∴E(?3

4

,0),G(0,1)

∵F是AC的中点

∵A(0,?2),点C(6,2),∴F(3,0)

在Rt△BEF中,

∵BH 2=EH ?FH ,

∴(4m+1)2=(3m+

3

4)(3?3m) 解得:m 1=?14(舍),m 2=1

5,

∴B(35,95

),

=6, 则对角线BD 的最小值是6; 故选:D . 【点睛】

本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B 的坐标确定其所在的直线的解析式是关键.

7.C

解析:C 【分析】

设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答. 【详解】

解:∵在△ABC 中,AC =AM =3, 设AB =x ,BC =9-x ,

由三角形两边之和大于第三边得:

3939x x x x +-??

+-?

>>, 解得3<x <6,

①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,

②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6, ③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6, ∴x =5或x =4; 故选C . 【点睛】

本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.

8.A

解析:A 【分析】

连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ???,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ?中利用勾股定理求出CD 的长. 【详解】

解:如图,连接FC ,则=AF FC .

AD BC ∵∥,

FAO BCO ∴∠=∠. 在FOA ?与BOC ?中, FAO BCO OA OC

AOF COB ∠=∠??

=??∠=∠?

, ()FOA BOC ASA ∴???,

3AF BC ∴==,

3FC AF ∴==,431FD AD AF =-=-=.

在FDC ?中,

90D ?∠=,

222CD DF FC ∴+=, 22213CD ∴+=,

22CD ∴=.

故选A . 【点睛】

本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.

9.A

解析:A 【分析】

根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积. 【详解】

解:3和5为两条直角边长时, 小正方形的边长=5-3=2,

∴小正方形的面积22=4; 综上所述:小正方形的面积为4; 故答案选A . 【点睛】

本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键.

10.D

解析:D 【分析】

根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值. 【详解】

解:∵BE ⊥CE ,AD ⊥CE , ∴∠E =∠ADC =90°, ∴∠EBC +∠BCE =90°. ∵∠BCE +∠ACD =90°, ∴∠EBC =∠DCA . 在△CEB 和△ADC 中,

E ADC EBC DCA BC AC ∠=∠??

∠=∠??=?

, ∴△CEB ≌△ADC (AAS ), ∴CE =AD =3,

在Rt △BEC

中,, 故选D . 【点睛】

本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.

二、填空题 11

【分析】

连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长. 【详解】

连接AC ,交BD 于点O ,

∵AB=AD,BC=DC,∠A=60°,

∴AC垂直平分BD,△ABD是等边三角形,

∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,

∵CE∥AB,

∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,

∴∠DAO=∠ACE=30°,

∴AE=CE=3,

∴DE=AD?AE=1,

∵∠CED=∠ADB=60°,

∴△EDF是等边三角形,

∴DE=EF=DF=1,

∴CF=CE?EF=2,OF=OD?DF=1,

22

∴=-=,

OC CF OF3

22

∴,

BC=OB+OC=7

故答案为:7.

【点睛】

本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.

12.310或10

【详解】

分两种情况:

(1)顶角是钝角时,如图1所示:

在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,

∴AO=4,

OB=AB+AO=5+4=9,

在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,

∴BC=310;

(2)顶角是锐角时,如图2所示:

在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16, ∴AD=4, DB=AB-AD=5-4=1.

在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10, ∴10 ;

综上可知,这个等腰三角形的底的长度为1010. 【点睛】

本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键. 13.【分析】

根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可. 【详解】

∵AB =13,EF =7,

∴大正方形的面积是169,小正方形的面积是49,

∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即1

41202

ab ?=, ∴2ab =120,a 2+b 2=169,

∴(a +b )2=a 2+b 2+2ab =169+120=289, ∴a +b =17, ∵a ﹣b =7, 解得:a =12,b =5, ∴AE =12,DE =5, ∴AH =12﹣7=5. 故答案为:5. 【点睛】

此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 14.5或13 【分析】

根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K . 【详解】 解:如下图所示,

若A=S P=4.B=S Q=9,C=S K,

根据勾股定理,可得

A+B=C,

∴C=13.

若A=S P=4.C=S Q=9,B=S K,

根据勾股定理,可得

A+B=C,

∴B=9-4=5.

∴S K为5或13.

故答案为:5或13.

【点睛】

本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.

15.

【解析】

【分析】

延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.

【详解】

如图,延长AD、BC相交于E,

∵∠A=60°,∠B=∠ADC=90°,

∴∠E=30°

∴AE=2AB,CE=2CD

∵AB=3,AD=4,

∴AE=6, DE=2

设CD=x,则CE=2x,DE=x

即x=2

x=

即CD=

故答案为:

【点睛】

本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键. 16.2或18 【分析】

分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可. 【详解】

解:①如图

点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,

∴△A ′BE ≌△ABE, ∴∠B A′E=∠A=90o ,AB=A ′B

∠B A′C =90o ,∴E 、A',C 三点共线,

在△ECD 与△CB A′中,{CD A B

D BA C

DEC ECB

='∠=∠'∠=∠,

∴△ECD ≌△CB A′,

∴CE=BC=10,

在RT △CB A′中,A′C=22BC BA -'=22106-=8,

∴AE= A′E=CE - A′C=10-8=2;

②如图

点E 为AD 延长线上,由题意得: ∠A"BC+∠A"CB=∠DCE+∠A"CB=90o

∴∠A"BC=∠DCE,

在△A"BC 与△DCE 中,"={""A CDE

CD A B A BC DCE

∠∠=∠=∠

∴△A"BC ≌△DCE,DE= A"C,

在RT △ A"BC 中,A"C=22

"BC BA -=22106-=8,

∴AE=AD+DE=AD+ A"C=10+8=18;

综上所知,AE=2或18. 故答案为:2或18. 【点睛】

此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键. 17.①1<OA <4. ②67

2

. 【解析】

(1)由三角形边的性质 5-3<2OA <5+3, 1<OA <4.

(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE , 由题意知,22BD DE =+()2

BC CE +=2DE +()2

4CE +,

()()22

2225AC DE BC CE DE CE ∴=+-=+-, 2AC ∴+ 2BD

=2DE +()()2

2

245CE DE CE +++-=2(22)5018DE CE ++=+50=68, BD -AC =1,两边平方2AC ∴+ 2BD -2AC ?BD =1,

∴AC ?BD =

672

.

18.49 【分析】

先计算出BC 的长,再由勾股定理求出阴影部分的面积即可. 【详解】

∵∠ACB=90?,25AB = ,24AC =, ∴22222252449BC AB AC =-=-=, ∴阴影部分的面积=249BC =,

八年级数学《勾股定理》讲义全

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

专题勾股定理培优版(综合)

WORD格式 . 专题勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题 1.如图,在△ABC中,AB=AC, (1)若P为边BC上的中点,连结 22 AP,求证:BP×CP=AB-AP; (2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由; A B C P (3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论 A . B C P (二)最值问题 2.如图,E为正方形ABCD的边AB上一点,AE=3,BE=1,P为AC上的动点,则PB+PE的最小值是

A D E P 3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点, B C . 专业资料整理

WORD格式 . 将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1) 求证:△AMB≌△ENB; A D (2)①当M点在何处时,AM+CM的值最小; N E M C B C ②当M点在何处时,AM+BM+CM的值最小,并说明理由; A D N E M B C C (3)当AM+BM+CM的最小值为31时,求正方形的边长. A D N E M B C C

4.问题:如图①,在ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的. 专业资料整理

WORD格式 . 长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD的长为; (2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长. A A B D C B D C 图①图②

勾股定理复习讲义

勾股定理复习讲义 【中考命题趋势】 本章内容在中考中多以填空题与选择题的形式出现,应结合直角三角形的有关性质、三角函数知识进行线段的计算或证明,近几年来,以实际问题为背景的探究题、材料分割题、实际应用题、网格试题不断涌出,题目多以中档题为主,这也是今后中考试题发展的重要趋势。 【知识点归纳】 123456?? ?? ?? ??? ???? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ??? 1、已知直角三角形的两边,求第三边勾股定理 2、求直角三角形周长、面积等问题 3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理相关概念性质 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证 a b c a b c a b c a b c a b a b a b b a 例题:

例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2 -,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2 + (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242 c m B 、36 2 c m C 、482 c m D 、602 c m 考点二:勾股定理的逆定理 (1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 (2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数) (3)直角三角形的判定方法: ①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 ②有一个角是直角的三角形是直角三角形。 ③两内角互余的三角形是直角三角形。 ④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。 例题: 例1:勾股数的应用 (1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,17 (2)若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:

2018年人教版八年级数学下《勾股定理》期末专题培优复习含答案

2018年八年级数学下册勾股定理期末专题培优复习 一、选择题: 1、下列各组数中,以a,b,c为三边的三角形不是直角三角形的是() A.a=1.5,b=2,c=3 B.a=7,b=24,c=25 C.a=6,b=8,c=10 D.a=3,b=4,c=5 2、下列命题中是假命题的是( ) A.△ABC中,若∠B=∠C﹣∠A,则△ABC是直角三角形 B.△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形 C.△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 3、如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式( ) A.a<c<b B.a<b<c C.c<a<b D.c<b<a 4、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是( ) A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形 5、如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为() A.4 B.8 C.2 D.4 6、若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是() A.20 B.30 C.40 D.60 7、如图所示,在数轴上点A所表示的数为a,则a的值为()

A.﹣1﹣ B.1﹣ C.﹣ D.﹣1+ 8、如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是() A.6 B. C.2π D.12 9、在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为() A.6 B.7 C.8 D.9 10、如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是() A.52 B.42 C.76 D.72 11、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( ) A.(11-2)米 B.(11-2)米 C.(11-2)米 D.(11-4)米 12、如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )

勾股定理一对一专题讲义

知识点梳理 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面 积.四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中, 90 C ∠=?,则c ,b ,a ②知道直角三角形一边,可 得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a , b , c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222 ,2,m n mn m n -+c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 += a b c 2.勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ∠=?,则c,b=,a= ?中,90 C ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC C ∠=? ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AB=,15 AC=,求BC的长 解: 题型二:应用勾股定理建立方程

2 1 E D C B A 例2.⑴在AB C ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,C D AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长

A B C D E 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

八年级下勾股定理培优试题集锦(含解析)

初二数学勾股定理提高练习与常考难题和培优题压轴题 二. 填空题(共5小题) 11. 已知Rt A ABC 中,/ C=90 °a+b=14cm , c=10cm ,则Rt A ABC的面积等于_. 12. 观察下列勾股数 第一组:3=2 X1+1 ,4=2 X1 X(1+1 ) ,5=2 X1 X(1+1 ) +1 第二组:5=2 X2+1 , 12=2 X2 X(2+1 ) , 13=2 X2 X(2+1 ) +1 第三组:7=2 X3+1 , 24=2 X3 X(3+1 ) , 25=2 X3 X(3+1 ) +1 第四组:9=2 X4+1 , 40=2 X4 X(4+1 ) , 4仁2 X4 X(4+1 ) +1 ??观察以上各组勾股数组成特点,第7组勾股数是 _ (只填数,不填等式) 13. 观察下列一组数: 列举:3、4、5,猜想:32=4+5 ; 列举:5、12、13,猜想:52=12+13 ; 列举:7、24、25,猜想:72=24+25 ; 列举:13、b、c,猜想:132=b+c ; 请你分析上述数据的规律,结合相关知识求得b= ______ , c= ___ . 三. 解答题(共27小题) 14. a, b, c 为三角形ABC 的三边,且满足a2+b2+c2+338=10a+24b+26c ,试判别这个三角形的形状

15. 如图:四边形ABCD中,AB=CB=匚,CD=匸,DA=1 ,且AB丄CB于B. 试求:(1)ZBAD的度数; (2)四边形ABCD的面积. 16. 如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4, 5, .r的三角形,请你帮助小华作出来 17 .如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东 60方向走了100二km到达B点,然后再沿北偏西30方向走了100km到达目 的地C点,求出A、C两点之间的距离. 18. 如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心 以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响

勾股定理培优练习修订版

勾股定理培优练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

勾股定理 【知识点】1、勾股定理__________________________________________________________________ 2、勾股定理逆定理_____________________________________________________________________ 【基础练习】 1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为() A.30° B.45° C.60° D.90° 2.下列四组线段中,能组成直角三角形的是() A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M,N在边OB上,PM=PN.若MN=6,则OM=() A.4 B.5 C.6 D.7 第1题第3题第5题第6题 4.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是() A.3个B.4个C.5个D.6个 5.(2015?石家庄模拟)图1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是() A.51 B.49 C.76 D.无法确定 6.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 7.下列命题中,是假命题的是( ). A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米. 第8题第9题第10题 9.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= . 10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度. 【例题讲解】 例1、)阅读以下解题过程: 已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状. 错解:∵a2c2﹣b2c2=a4﹣b4…(1), ∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)…(2), ∴c2=a2+b2 (3) 问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号. (2)错误的原因是. (3)本题正确的结论是. 例2.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 例3、我们学习了勾股定理后,都知道“勾三、股四、弦五”.

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

【勾股定理】教师讲义

【勾股定理】教师讲义 https://www.sodocs.net/doc/748516162.html,work Information Technology Company.2020YEAR

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探 索三 个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. S 3 S 2 S 1

人教版八年级下册第17章勾股定理培优提高考试试题附答案

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 D.∠A:∠B:∠C=3:4:5A C.∠+∠B=∠C 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() 2 222cm.72cm108B.36cm D A.18cm C.3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对 =,则∠B为(=4,BC)=4.在△ABC中,∠A30°,AB C.30°或60°D.30°或90°.30A.°B90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A,则梯子底部B滑开的距离1BB是()1 A.4米B.大于4米C.小于4米D.无法计算 的大小,小亮进行了如下分析后作一个直角三角形,使其两直与.为比较 6.

为边长定理可求得长角边的分别其为斜与,则由勾股 ,可得.根据“三角形三边关系”.小)亮的这一做法体现的数学思想是( A.分类讨论思想B.方程思想.数形结合思想DC.类此思想是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个“赵爽弦图”7.,则中间小正方形与大正方形的面积差是6直角三角形的两条直角边的长分别是3和) ( 27D.34A.9B.36C..如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方8,60S=+S、S、S.若SS+ABCD形、正方形EFGH、正方形MNPQ的面积分别为311232)则S的值是(2 30D C.20.BA.12.15小题)二.填空题(共6.9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是时,这个三角a,如果a+b,﹣b是三角形较小的两条边,当第三边等于a10.设>b形为直角三角形.米处折断(未完1米高的小孩,如果大树在距地面4米高的大树,树下有一个11.有一棵9米之外才是安全的.全折断),则小孩至少离开大树 扩充为等腰三角形,将△3ABC,°,90AC=4BC==中,∠△.如图,在12Rt ABCACB.的长为CD为直角边的直角三角形,则AC,使扩充的部分是以 ABD. ,吸管放进杯里(如cm,高为1213.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm 3.6cm,为节省材料,管长acm.的取值范围是图所示),杯口外面至少要露出

勾股定理复习讲义

2 1E D C B A 勾股定理复习 班级______姓名_________ 一.知识归纳 1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形 (1)首先确定最大边(如c ).(2)验证2 c 与2 a +2 b 是否具有相等关系. 若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2 b ,则△ABC 不是 . 3.勾股数 ①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等 题型一:直接考查勾股定理 例1.(1)在ABC ?中,90C ∠=?,17AB =,15AC =,BC = (2)在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = (3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm 练习1:求下列阴影部分的面积: (1) 正方形S = ; (2)长方形S = ; (3)半圆S = ; 2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为 例2.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 D C B A

勾股定理培优训练

八年级下勾股定理培优训练 一.选择题 1.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD AB、AC于E、F,给出以下四个结论: ①AE=CF ②△EPF是等腰直角三角形③EF=AP ④S四边形AEPF=S△ABC 4.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有dm 2dm 7.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交

8.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第 2 (1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a≥0,那么=a (3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限; (4)对角线互相垂直且相等的四边形是正方形; (5)两边及第三边上的中线对应相等的两个三角形全等. 图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为2 EF的长是() 二.填空题 14.如图,△ABD和△CED均为等边三角形,AC=BC,AC⊥BC.若BE=,则CD= .15.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则BC的长是.

16.已知a,b,c是直角三角形的三条边,且a<b<c,斜边上的高为h,则下列说法中正确的是.(只填序号) ①a2b2+h4=(a2+b2+1)h2;②b4+c2h2=b2c2;③由可以构成三角形;④直角三角形的面积的最大值是. 17.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,则四边形ABCD的面积是. 18.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点.若BE=2,AG=8,则AB的长为. 三.解答题 19.如图,已知AD是△ABC的高,∠BAC=60°,BC=3,AC=2,试求AB的长. 20.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合. 问题解决:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC 与BD交于点O,连接CD,如图②. (1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.

初二数学勾股定理讲义经典

第一章 勾股定理 【知识点归纳】 123456?? ?? ?? ??? ?? ?? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ???1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论: ①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证

a b c a b c a b c a b c a b a b a b b a 例题: 例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2+ (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c m B 、36 2c m C 、482c m D 、602c m (3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 例3:探索勾股定理的证明

勾股定理》教师讲义

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么a 2+b 2=c 2。公式的变形:a 2=c 2-b 2,b 2=c 2-a 2。 2、勾股定理的逆定理 如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+b 2=c 2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a 2+b 2=c 2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13)(6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2.如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的 面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是 S 1、S 2、S 3,则它们之间的关系是() =+S 2=+S 3<=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 S 3 S 2 S 1

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________;__________;___________.2. 请你画出圆柱的侧面展开图. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

八年级初二数学 数学勾股定理的专项培优练习题(及解析

八年级初二数学 数学勾股定理的专项培优练习题(及解析 一、选择题 1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( ) ①∠ACD=2∠FAB ②27ACD S ?= ③272CF =- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④ 2.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( ) A .3 B .11 C .23 D .4 3.如图所示,在中, , , .分别以 , , 为直径作 半圆(以 为直径的半圆恰好经过点,则图中阴影部分的面积是( ) A .4 B .5 C .7 D .6 4.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为 ( ) A .5cm B .10cm C .14cm D .20cm 5.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,

DE=3,BC=1,CD=13,则CE的长是() A.14B.17C.15D.13 6.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则 DN+MN的最小值是() A.8 B.9 C.10 D.12 7.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足 线b的距离为3,AB230 MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A.6 B.8 C.10 D.12 8.下列四组数中不能构成直角三角形的一组是() A.1,26B.3,5,4 C.5,12,13 D.3,213 9.下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直10.下列说法不能得到直角三角形的() A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形 二、填空题 11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.

相关主题