搜档网
当前位置:搜档网 › 塑性力学和弹性力学的区别和联系

塑性力学和弹性力学的区别和联系

塑性力学和弹性力学的区别和联系
塑性力学和弹性力学的区别和联系

塑性力学与弹性力学的区别与联系固体力学就是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正就是固体力学中的两个重要分支。

弹性力学就是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)与位移的分布,以及与之相关的原理、理论与方法;塑性力学则研究它们在塑性变形阶段的力学响应。

大多数材料都同时具有弹性与塑性性质,当外载较小时,材料呈现为弹性的或基本上就是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性与塑性,只就是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体就是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性与塑性性质,特别就是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料与结构在外部干扰下力学响应的基本原理、理论与方法。以及相应的“破坏”准则或失效难则。

塑性力学与弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;与流变学的区别在于,塑性力学考虑的永久变形只与应力与应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。

一、基本假定

1、弹性力学:

(1)假设物体就是连续的。就就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。

(2)假设物体就是线弹性的。就就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

(3)假设物体就是均匀的。就就是说整个物体就是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量与泊松比才不随位置坐标而变。

(4)假设物体就是各向同性的。也就就是物体内每一点各个不同方向的物理性质与机械性质都就是相同的。

2、塑性力学:

(1)材料就是连续的,均匀的。

(2)平均正应力(静水压力)不影响屈服条件与加载条件。

(3)体积的变化就是弹性的。

(4)不考虑时间因素对材料性质的影响。

二、基本内容

(一)弹性力学

弹性力学问题的求解主要就是基于以下几个理论基础。

1、Newton定律

弹性力学就是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。质点力学与刚体力学就是从Newton定律演绎出来的,而弹性力学不同于理论力学,它还有新假设与新定律。

2、连续性假设

所谓连续性假设,就就是认定弹性体连续分布于三维欧式空间的某个区域之内,与此相伴随的,还认定弹性体中的所有物理量都就是连续的。也就就是说,我们将假定密度、位移、应变、应力等物理量都就是空间点的连续变量,而且也将假定空间的点变形前与变形后应该就是一一对应的。

3、广义Hooke 定律

所谓广义Hooke 定律,就就是认为弹性体受外载后其内部所生成的应力与应变具有线性关系。对于大多数真实材料与人造材料,在一定的条件下,都符合这个实验定律。线性关系的Hooke 定律就是弹性力学特有的规律,就是弹性力学区别于连续介质力学其她分支的标识。

Newton 定律、连续性假设与广义Hooke 定律,这三方面构成了弹性力学的理论基础。 弹性力学在不同的常用坐标系下有不同的基本方程。

1、直角坐标x,y,z

几何方程为 平衡方程为

,,121212x y z yz zx xy u v w x y z v w z y w u x z u v y x εεεγγγ????===??????????=+? ????????????=+ ?????????

???=+ ???????

000yx x zx x xy y zy y zy xz z z f x y z f x y z f x y z τσττστττσ????+++=??????????+++=?????????+++=?????? 应变协调方程为 以位移表示的弹性力学方程为 22222222222222222220202000yz y z zx x z xy y x yz xy x zx y xy yz zx xy yz x zx y z z

y z x x z x y y x y z x x y z z x y y z x x y z z x y γεεγεεγεεγγεγεγγγγγεγ???--=???????--=???????--=???????????--++= ????????????????--++= ???????????????--++??????0??????

?????????????=? ????

? 222110121101211012x y z u v w u f x x y z u v w v f y x y z u v w w f z x y z νμνμνμ????????++++=? ?-????????????????++++=? ?-????????????????++++= ?-???????? 在弹性力学里求解问题,主要有三种基本方法,分别就是按位移求解、按应力求解与混合求解。

按位移求解时,以位移分量为基本未知函数,根据基本方程与边界条件求出位移分量,从而求出其她分量。

按应力求解一般有逆解法与半逆解法。所谓逆解法,就就是先设定各种形式的、满足相

容方程的应力函数?,从而求出应力分量。然后根据应力边界条件来考察,在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知所设定的应力函数可以解决什么问题。所谓半逆解法,就就是针对所要解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数?,然后来考察这个应力函数就是否满足相容方程以及原来假设的应力分量与由这个应力函数求出其她应力分量,就是否满足应力边界条件与位移单值条件。

相容方程:

()22220x y x y σσ????++= ?????

(二)塑性力学

人们对塑性变形基本规律的认识主要来自于实验。从实验中找出在应力超出弹性极限后材料的特性,将这些特性进行归纳并提出合理的假设与简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。解出这些方程,便可得到不同塑性状态下物体内的应力与应变。

塑性力学研究的基本试验有两个。一就是简单拉伸实验,另一就是静水压实验。从材料简单拉伸的应力-应变曲线可以瞧出,塑性力学研究的应力与应变之间的关系就是非线性的,它们的关系也不就是单值对应的。而静水压可使材料可塑性增加,使原来处于脆性状态的材料转化为塑性材料。

为了便于计算,人们往往根据实验结果建立一些假设。比如:材料就是各向同性与连续的;材料的弹性性质不受影响;只考虑稳定材料;与时间因素无关等。

对于不同的材料,不同的应用领域,我们可以采用不同的变形体的模型,这种模型必须符合材料的实际性质。不同的材料有不同的拉伸曲线,但它们具有一些共同性质。其拉伸曲线图如图

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 1、试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各 向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 1.2 一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性, 各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和 岩质地基不可以作为理想弹性体。 1.3五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理 量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的 位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的 平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与 形变的关系时,它们的二次幕或乘积相对于其本身都可以略去不计,使得弹性力学中的微分

《弹性力学》、《岩体力学》复习大纲2015

第一章绪论 1-1弹性力学的内容 1-2弹性力学中的几个基本概念 1-3弹性力学中的基本假定 习题 第二章平面问题的基本理论 2-1平面应力问题与平面应变问题 2-2平衡微分方程 2-3平面问题中一点的应力状态 2-4几何方程刚体位移 2-5物理方程 2-6边界条件 2-7圣维南原理及其应用 2-8按位移求解平面问题 2-9按应力求解平面问题相容方程 2-10常体力情况下的简化应力函数 习题 第三章平面问题的直角坐标解答 3-1逆解法与半逆解法多项式解答 .3-2矩形梁的纯弯曲 3-3位移分量的求出 3-4简支梁受均布荷载 3-5楔形体受重力和液体压力 习题 第四章平面问题的极坐标解答 4-1极坐标中的平衡微分方程 4-2极坐标中的几何方程及物理方程 4-3极坐标中的应力函数与相容方程 4-4应力分量的坐标变换式 4-5轴对称应力和相应的位移 4-6圆环或圆筒受均布压力 4-7压力隧洞 4-8圆孔的孔口应力集中 4-9半平面体在边界上受集中力 4-10半平面体在边界上受分布力 习题 要求:了解弹性力学的基本概念,发展历史与基本假设,理解两类平面问题的解法,掌握三大方程的建立,边界的确定,有限单元法在解弹性力学问题的应用,了解空间问题的求解的方法。

第1章绪论 1.1 岩石与岩体(二者的区别) 1.2 岩体力学的研究任务与内容(岩体的力学特征) 1.3 岩体力学的研究方法 1.4 岩体力学在其他学科中的地位 1.5 岩体力学的发展简史 基本要求:了解岩石力学、岩体力学定义及其它们的联系和区别;理解岩石力学的发展、研究对象和研究方法;了解岩石力学研究现状及热点问题。 重点与难点:岩石力学的定义、任务、研究方法。 第2章岩石的基本物理力学性质 2.1 岩石的基本物理力学性质 2.2 岩石的强度特性 2.3 岩石的变形特性 2.4 岩石的强度理论 基本要求:掌握岩石的成分、结构及其力学性质;了解岩石的变形特征和流变性;理解岩石的各种强度及其测定方法。 重点与难点:岩石的物理指标、强度与变形特征。 第3章岩石动力学基础 3.1 岩石的波动特性 3.2 影响岩体波速的因素 3.3 岩体的其他动力学特性 基本要求:理解岩石的波动特性,了解影响岩体波速的因素,了解岩体的其他动力学特性。重点与难点:岩石的动力学特性。 第4章岩体的基本力学性能 4.1 岩体结构面的分析 4.2 结构面的变形特性 4.3 结构面的力学效应 4.4 碎块岩体的破坏 4.5岩体的应力-应变分析 基本要求:理解岩石和岩体的区别,了解结构面的相关性质,了解岩体的变形特征和强度测定方法,理解岩体的破坏条件及应力-应变分析。 重点与难点:理解岩体的相关特性。

弹性力学重点(适合入门)

1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理 2 (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途? 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 3 (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量xσ,yσ,xyτ存在,且仅为x,y的函数。平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量xε,yε,xyγ存在,且仅为x,y的函数。4简述按应力求解平面问题时的逆解法。 所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 5有限元分析的解题步骤。 答:(1)力学模型的确定;(2)结构的离散化;(3)计算载荷的等效节点力;(4)计算各单元的刚度矩阵;(5)组集整体刚度矩阵;(6)施加便捷约束条件;(7)求解降阶的有限元基本方程;(8)求解单元应力;(9)计算结果的输出 7逆解法: 设定各种形式的、满足相容方程的应力函数, 求出应力分量后,根据应力边界条件判断该应力函数能解决什么问题。 8半逆解法: 针对所求问题,假定部分或全部应力分量的函数形式、从而推出应力函数的形式。然后代入相容方程,求出应力函数的具体表达式。最后求出应力分量,并考虑这些应力分量是否满足全部应力边界条件及多连体中的位移单值条件 9圣维南(Saint Venant)原理:

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学简明教程(第四版)_习题解答

【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x y 2 h 1h b g ρo () 2h b >> h x y l /2/2 h M N F S F 1 q q 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()222 10000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=????? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M ' N F 'S F '

弹性力学部分简答题

1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。 在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。 2、简述弹性力学的研究方法。 答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。 3、弹性力学中应力如何表示?正负如何规定? 答:弹性力学中正应力用σ表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用τ表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4、简述平面应力问题与平面应变问题的区别。 答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有x σ,y σ,xy τ。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u 和v 5、简述圣维南原理。 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 6、简述按应力求解平面问题时的逆解法。 答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

材料力学 结构力学 弹性力学 异同点

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。 包括两大部分:一部分是材料的力学性能的研究,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: 线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。 几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 物理非线性问题。在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 结构力学它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应作用下的响应,这些效应包括外力、温度效应、施工误差、支座变形等。主要是内力——轴力、剪力、弯矩、扭矩的计算,位移——线位移、角位移计算,以及结构在动力荷载作用下的动力响应——自振周期、振型的计算。 一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究

弹性力学岩石力学

弹性力学基本知识考试 一、 基本概念: 1. 面力、体力与应力、应变、位移的概念及正负号规定 体力是作用于物体体积 内的力,以单位体积力来度量,体力分量的量纲为 L -2MT -2 ;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为 L -1MT -2 ;体力和面力符号的规定为以 沿坐标轴正向 为正,属 外 力;应力是作用于截面单位面积的力,属 内 力,应力的量纲为 L -1MT -2 ,应力符号的规定为: 正面正向、负面负向为正,反之为负 。 (1) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (2) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 平面应力与平面应变; (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 (3) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (4) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

弹性力学答案清晰修改

2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。 证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程 ???????=+??+??=+??+??00y x xy y y x y yx x x f f τ στσ (a ) 0)1())((22 22=??+??+-=+??+??)(y f x f y x y x y x μσσ (b ) 显然(a )、(b )是满足的 (2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式 ?? ?? ?=+=+)()() ()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),cos(),cos(y n q y n y -=σ 所以q x -=σ,q y -=σ。 对于单连体,上述条件就是确定应力的全部条件。 (3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形

变分量q E x )1(-= με,q E y ) 1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得 q E x u ) 1(-=??μ,q E y v )1(-=??μ,0=??+??y u x v (e ) 前而式的积分得到 )()1(1y f qx E u +-= μ,)() 1(2x f qy E v +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dx x df dy y df ) ()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。因此,只可能两边都等于同一个常数ω,于是有 ω-=dy y df )(1,ω=dx x df ) (2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量 ?? ???++-=+--=v x qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。 从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确 的解答。 2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。 解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横 截面对z 轴(中性轴)的惯性矩为12 3 h I z =,根据材料力学公式,弯应力

弹性力学简明教程(第四版)习题解答

弹性力学简明教程(第四版) 习题解答 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学简明教程(第四版)-习题解答

【2-9】【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件:() () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件:()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板 厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-= 由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()22210000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=?? ??? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力

岩石力学知识点

岩石的结构:岩石中矿物颗粒相互之间的关系,包括颗粒大小,形状,排列结构连接特点及岩石中的微结构面。 岩石:由一种或几种矿物按一定的方式结合而成的天然集合体。 岩石的结构联结类型:结晶联结、胶结联结 碎屑岩胶结类型:基质胶结、接触胶结、孔隙胶结。 结晶联结:岩石中矿物颗粒通过结晶相互嵌合在一起。 胶结联结:颗粒与颗粒之间通过胶结物在一起的联结。 微结构面:是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。 解理面:矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。 微裂缝:发育于矿物颗粒内部及颗粒之间的多呈闭合状态的破裂迹线。 层理:在垂直方向上岩石成分变化情况。 片理:岩石沿平行的平面分裂为薄片的能力。 颗粒密度:岩石固体相部分的质量与其体积之比。 块状密度:岩石单位体积内的质量。 吸水率:岩石试件在大气压条件下自由吸入水的质量与岩样干质量之比。 岩石的膨胀性:岩石浸水后体积增大的性质。 岩石的软化性:岩石浸水饱和后强度降低的性质。 岩石的崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性质。体胀系数:温度上升1°所引起的体积增量与其初始体积之比。 线胀系数:温度上升1°所引起的长度增量与其初始长度之比。 岩石的非均质性:岩石的物理力学性质随空间而变化的一种行为 饱和吸水率:岩石在高压或真空条件下吸入水的质量与岩样干质量之比 抗冻性:岩石抵抗冻融破坏的能力 水理性质:岩石在水溶液作用下表现的物理性质 粒度组成:构成砂岩的各种粒组含量,通常以百分数表示 岩石的热导率:度量岩石传热导能力的参数 圆度:碎屑颗粒表面的光滑程度 岩石的变形特征:岩石试件在各种载荷作用下的变形规律,其中包括岩石的弹性变形,塑性变形,粘度流动和破坏规律反映力学属性 岩石强度:岩石试件在载荷作用下开始破坏时的最大应力以及应力与破坏之间的关系 单轴压缩强度:在单轴压缩载荷作用下所承受的最大压应力 岩石的抗压强度:岩石试件在单轴压力下达到破坏的极限值 岩石的抗剪强度:岩石抵抗剪切滑动的能力 三轴抗压强度:岩石在三向压缩载荷作用下,达到破坏时所承受的最大应力 岩石的变形:岩石在任何物理作用因素作用下形状和大小的变化 岩石本构关系:岩石应力或应力速度与其应变速率的关系 岩石的流变性:是指岩石的应力或应变随时间的变化关系 岩石的蠕变:在应力不变的情况下岩石变形随时间增长而增长的现象 古地应力:泛指燕山运动以前的地应力,有时也特指某一地质时期以前的地应力 原地应力:工程施工开始前存在于岩体中的应力 现今地应力:目前存在或正在变化的地应力 重力应力:指由于上覆岩层的重力引起的地应力分量,特别指由于上覆岩层的重力所产生的应力 扰动应力:是指由于地表或地下加载或解载及开挖等,引起原地应力发生改变所产生的应力

(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题? 【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域的应力分布,会使问题的解答精度不足。 【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。 【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。 【3-3】如果某一应力边界问题中有m 个主要边界和n 个小边界,试问在主要边界和小边界上各应满足什么类型的应力边界条件,各有几个条件? 【解答】在m 个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15),共2m 个;在n 个次要边界上,如果能满足精确应力边界条件,则有2n 个;如果不能满足公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界条件来代替2个精确应力边界条件,共3n 个。 【3-4】试考察应力函数3 ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】⑴相容条件: 不论系数a 取何值,应力函数3 ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 上下边界上应力分量均为零,故上下边界上无面力.

最全面弹性力学基本方程和岩石力学介绍(精华版)

第二章 弹性力学的基本原理 §2.1 应力分析 2.1.1 应力与应力张量 应力被定义为:用假想截面将物体截开,在截面上一点 设 S 的外法 P 的周围取一微元 S , 线为 ν , S 上的力为 T ,如极限 存在,则称 T 为 P 点在该截面上的应力矢量。 lim T / S T S 0 (1 ) ( 2) (3 ) 考察三个面为与坐标面平行的截面 (即以 x 1 , x 2 , x 3 三个坐标轴为法线的三个截面 ), T , T , T 分别表示三个截面上的应力矢量。每一个应力矢量又分解为沿三个坐标轴的应力分量,有 (i ) T ij e j (i,j =1,2,3) (2.1) 这里的张量运算形式满足 “求和约定” ,即凡是同一指标字母在乘积中出现两次时, 3 则理解为 对所有同类求和, 即 ij e j ij e j 应理解为 。这样的求和指标 j 称之为假指标或哑指标。 由此得到 j 1 九个应力分量表示一点的应力状态,这九个分量组成应力张量: 11 12 13 xx xy xz 或 (2.2) ij 21 22 23 ij yx yy yz 31 32 33 zx zy zz 在本书第一章致第九章,应力分量符号 (正负号 )规定如下:对于正应力,我们规定张应力为 正,压应力为负。对于剪应力,如果截面外法向与坐标轴的正方向一致,则沿坐标轴正方向的剪 应力为正,反之为负。如果沿截面外法向与坐标轴的正方向相反,则沿坐标轴正方向的剪应力为 负。 2.1.2 柯西 (Cauchy)方程 记 S 为过 P 点的外法向 为 n 的斜截面。外法线 n 的方向可由其方向余弦记为 cos(n , x 1 ), n1 cos(n , x 3 ) 。 cos(n , x 2 ) , 设此斜截面 坐标面平行的截面 n3 n2 ABC (即以 的面积为 S, 则如图 2.1, 过此点所取的小四面体 OABC 另外三个面为与 x 1 , x 2 , x 3 三个坐标轴为法线的三个截面 其面积分别为 ), OBC : S 1 OAC : S 2 OAB : S 3 S S S cos(n , x 1 ) cos(n , x 2 ) cos(n , x 3 ) S S S n1 (2.3) n 2 n3 ( n) 此截面上的应力矢量记为 即 T , ( n ) ( n) T T j e j T 。 (2.4) (1) ( 2) , (3) 另外三个面上的应力矢量分别为 T , T 考虑此微元 (四面体 OABC 的平衡,其平衡方程为 1 3 ( n) (1) ( 2 ) ( 3 ) T S T S 1 T S 2 T S 3 f S h 0 (2.5) 1 S 3 其中 f 为作用于此单元上的体力, h 为 O 点至截面 ABC 的垂直距离, h 为此微元的体积。当

2015年天津大学结构力学与弹性力学基础考研笔记,复试真题,考研真题,考研经验

1/8 【育明教育】中国考研考博专业课辅导第一品牌官方网站:https://www.sodocs.net/doc/7616615784.html, 1 2015年天津大学考研指导 育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育孙老师。 结构力学与弹性力学基础 一、考试总体要求 结构力学与弹性力学基础是港口航道及海岸工程、水利水电工程等专业的专业技术基础课。考试的总体要求是:准确理解结构力学与弹性力学基本概念和计算原理,掌握各种平面杆系结构的计算方法以及弹性力学平面问题的基本求解方法,能够做到活学活用,计算方法及所得计算结果正确。 二、考试内容及比例 1、平面体系的几何组成分析:5% 2、静定结构的内力及位移计算:静定结构包括静定梁、静定平面刚架、三铰拱、静定平面桁架、静定组合结构。位移计算包括结构在荷载作用下的位移计算;及结构由于温度改变和支座移动引起的位移15% 3、超静定结构的内力及位移计算:包括用力法及位移法计算超静定结构。占40% 4、结构在移动荷载作用下的计算:包括影响线的做法及应用。占5% 5、结构在动力荷载作用下的计算:包括单自由度体系及多自由度体系的自由振动与在简谐荷载作用下的强迫振动。占20% 6、弹性力学基础:包括弹性力学基本概念、平面问题基本理论、平面问题直角坐标解答。占 15%一、试卷题型及比例: 1、选择题:20% 2、分析计算题:80% 二、考试形式及时间形式为笔试,考试时间为三小时 考研时想要取得好成绩,总要寻找各种 各样的成功秘诀,但是你是否曾留意,很多考 生在毫不觉察的情况下,就已经沉溺于误区,

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

相关主题