搜档网
当前位置:搜档网 › 制冷系统中冷媒的选用

制冷系统中冷媒的选用

制冷系统中冷媒的选用
制冷系统中冷媒的选用

制冷系统中冷媒的选用

在制冷系统中,冷媒(载冷剂)的主要作用是将制冷系统产生的冷量传递给被冷却介质。冷媒在系统中必须保证具有良好的活动性和防冻、防结冰性能,以保证制冷系统正常运行。

一、冷媒的特点

理想的冷媒应具备的条件如下:

①比热大。在传送一定的冷量时,比热大的冷媒循环量小;

②导热系数大。导热系数大的冷媒在热交换过程中传热效果好,可以选择换热器面积小一些的,节省设备投资;

③黏度和密度小。黏度大的冷媒在管道中的活动阻力增大,密度大会使泵的功耗增加;

④冰点低,挥发性小,冷媒的起始冰点应低于蒸发温度5~8℃,不致使其结冰;挥发性小可减少冷媒的损失,节约运行用度;

⑤腐蚀性小。良好的冷媒不应腐蚀设备、管道和阀件;

⑥不燃、无毒、对人体无刺激、化学性稳定等。

二、常用的冷媒及其应用

常用的冷媒主要有水、盐水、空气、乙二醇、酒精、丙三醇等,近来又有一种新型冷媒: HLM型防腐冷媒。空气的比热很小,所需传热面积很大,只有在采用空气直接冷却时才使用,一般常用于家用空调、冰箱。水的比热较大,但在0 ℃时就会结冰,限制了它的应用,只能用在0 ℃以上的制冷系统中,广泛应用在冷水机组。

盐水有氯化钠水溶液(NaCl)和氯化钙水溶液(CaCl2 )两种。盐水

的凝固点随水中盐的含量而变化,可通过盐水的凝固曲线得到凝固点与盐水浓度的对应关系。但是,盐水是有共晶点的,低于共晶点时,浓度越大,凝固点越低;超过共晶点时,凝固点随浓度增大而升高。一般情况下,蒸发温度高于- 16℃时,采用氯化钠水溶液;蒸发温度在-55~-16℃时,采用氯化钙水溶液。盐水溶液的最大缺点是对金属有腐蚀作用。采用盐水溶液作冷媒,必须在盐水溶液中添加重铬酸钠或重铬酸钾作缓蚀剂,减轻盐水溶液对设备、管道的腐蚀。

乙二醇水溶液是目前被广泛使用的一种冷媒,其腐蚀性小,无色、无味、无电解性、无燃烧性,一般在-70~7℃的制冷系统中使用。但乙二醇溶液使用一段时间后受到各种细菌、霉菌的感染,在金属层形成厚厚的霉菌层,腐蚀金属,影响换热;其自身也易被氧化天生酸性物质,加快腐蚀速度,在蒸发器、换热器和管线中形成蚀垢,影响机组的运行性能,增加运行本钱和维修用度,减少设备使用寿命。相对于盐水溶液,乙二醇溶液更好。

酒精的凝固点为- 117 ℃,适用于更低的载冷温度,但酒精具有燃烧性,使用时需采取防火措施。丙三醇(甘油)是极稳定的化合物,其水溶液无腐蚀性、无毒,可以和食品直接接触,但价格较高。有机物冷媒的标准蒸发温度(沸点)均较低,一般都采用闭式循环。温度变化时,有机物冷媒体积会有变化,系统中往往放置膨胀节或膨胀容器。

HLM型冷媒的冰点温度可达到- 100 ℃,主要由缓冲剂、防锈剂、防霉剂、增溶剂、低碳醇组成。HLM型冷媒是无色或浅色透明液体,纯品易燃,稀释后的水溶液不燃,无异味。

三、HLM型冷媒(以HLM-2型冷媒为例)与几种冷媒在相同情况下的物性比较

HLM型冷媒(以HLM-2型冷媒为例)与几种冷媒在相同情况下的物性比较如表1所示。

四、CaC l2 盐水溶液与HLM - 2型冷媒的经济性比较

以平顶山煤业团体开封东大有限公司(以下简称“开封东至公司”)的制冷系统为例,比较CaCl2水溶液与HLM - 2型冷媒的性能与经济性。开封东至公司制冷系统有3种运行工况:

①-10 ℃系统冷媒流量Q 为300 m3 /h,H为25 m,冷媒贮罐V为35m3;

②-20 ℃系统冷媒流量Q 为320 m3 /h,H为34m,冷媒贮罐V为25m3;

③-35 ℃系统冷媒流量Q为100 m3 /h,H为38 m,冷媒贮罐V为25 m3。

1、CaC l2 水溶液与HLM - 2型冷媒的性能参数比较

CaCl2 水溶液与HLM - 2型冷媒的性能参数比较见表2。

通过比较可以看出,同等条件下HLM - 2型冷媒的比热、密度、黏度均优于CaCl2溶液。

CaCl2总用量12. 8 + 9. 88 + 11. 3 = 33. 98 ( t),以1 400元/

t计,1 400 ×33. 98 =4. 76万(元) ,HLM-2型冷媒总用量9. 8 +11.

75 + 12. 5 =34. 05 ( t),以5 500元/ t计,5 500 ×34. 05 = 18. 73万(元) ,使用HLM - 2 型冷媒比用CaCl2 溶液投资增加了13. 97万元。

2、运行用度比较

以选用IS型离心泵为例计算。使用CaCl2 溶液时,- 10 ℃系统选用IS200 - 150 - 315B,电机功率37 kW - 4P; - 20 ℃系统选用IS200 - 150 -400B,电机功率55 kW - 4P; - 35 ℃系统选用IS100- 65 - 200,电机功率22 kW - 2P。选用HLM-2型冷媒时,-10 ℃系统选用IS200 -150 -250,电机功率30kW - 4P;-20 ℃系统选用IS200 - 150 - 315A,电机功率45kW - 4P; - 35 ℃系统选用IS125 - 100 - 315,电机功率15 kW - 4P。

3种工况泵运行配电功率相差( 37 + 55 +22) -(30 + 45 + 15) = 24 ( kW ) ,1 年运行用度相差24 kW ×8 000 h / a ×0. 9 ×0. 5 元/ ( kW ·h) =8. 64万(元)。

通过计算对比可以看出,固然使用HLM-2型冷媒初次投资增加了近14万元,但使用HLM - 2型冷媒每年可节约运行用度6万元。在年之内可收回多投进的资金;而且,采用LM 型冷媒对设备管道无腐蚀,无污垢,换热效果较好。使用CaCl2 溶液对系统腐蚀比较严重,运行一段时间后影响换热效果,维修用度高,设备的使用寿命短。

五、结语

HLM-2 型冷媒是新一代载冷剂,是CaCl2 溶液、乙二醇、酒精等冷媒的替换产品,其性能也较优越,值得在制冷系统中推广。但是应留意冷媒泄漏时对生产物料的性能影响,若HLM型冷媒与生产物料发生反应会影响产品质量,应慎用。

在制冷系统中,冷媒(载冷剂)的主要作用是将制冷系统产生的冷量传递给被冷却介质。冷媒在系统中必须保证具有良好的活动性和防冻、防结冰性能,以保证制冷系统正常运行。

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

制冷剂 基础知识(DOC)

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁

制冷剂

制冷剂 一;对制冷剂性质的要求 (1)具有优良的热力学特性,以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。 (2)具有优良的热物理性能具体要求为:较高的传热系数、较低的粘度及较小的密度。 (3)具有良好的化学稳定性要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (4)与润滑油有良好互溶性 (5)安全性工质应无毒、无刺激性、无燃烧性及爆炸性。 (6)有良好的电气绝缘性 (7)经济性要求工质低廉,易于获得。 (8)环保性要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 二;制冷剂的一般分类 根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类: 1.低压高温制冷剂 冷凝压力Pk≤2~3㎏/㎝(绝对),T0>0℃ 如R11(CFCl3),其T0=23.7℃。这类制冷剂适用于空调系统的离心式制冷压缩机中。通常30℃时,Pk≤3.06 ㎏/㎝。 2.中压中温制冷剂 冷凝压力Pk<20 ㎏/㎝(绝对),0℃>T0>-60℃。 如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。 3.高压低温制冷剂 冷凝压力Pk≥20 ㎏/㎝(绝对),T0≤-70℃。 如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。

目前使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种:1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为 -77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~ 1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。 3.氟利昂-22(代号:R22)

空调常用制冷剂的特性

空调常用制冷剂的特性 目前我们所使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到 0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力

适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12 的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

氨系统与氟利昂系统的区别

氟利昂制冷与氨制冷得比较 氟机(指传统得氟利昂制冷剂与替代得绿色环保制冷剂得制冷 与氨机制冷系统可以从系统运行安全、节能等方面进行比较,具体比较如下: 1、安全性 (a)绿色环保制冷剂R404A为本项目所使用得制冷剂,无色、无味、不燃烧、不爆炸得安全工质;而氨无色,有毒(二级毒性),含有强烈得刺激性气味,对眼、鼻、喉、肺及皮肤均有强烈刺激及中毒危险,空气中浓度超过15%时有立即造成火灾及爆炸得危险。基于上述缺点,在人员密集得公共场所与人员密集得工作场所都会遭到禁用。氨制冷系统因此也受到国家安全生产管理部门得审批管理与运行监管。 (b)另外,氟系统得并联技术已经发展得非常完善,并联系统在运行中不会因为个别压缩机得故障或维护需要而影响整个系统得正常运行。而且相对于单机系统产生相同得冷量,并联机组得每台压机平均运行时间远小于单机供冷系统,压缩机使用寿命更长、 2。节能性 (a)氨机得满液式系统提供单一得,稳定得蒸发压力,但调节即适应温度变化得能力差,对于温度经常处于波动得场合,如经常性入库拉温,其传热温差在变温情况下会很大,也就意味着效率下滑,通常增加1摄氏度得传热温差会引起近3%得能耗增加;对于直接供液得氟系统,由于其通过膨胀阀得良好得调节功能,其在同等条件下得效率要高于氨机得满液式系统。另外传热温差得加大也意味着干耗得增加,会

导致产品品质得下降与货品重量得损失。 (b)对于大型单机系统,在实际运行过程中,绝大部分时间就是运行在部分负荷下,对于可进行能量调节得压缩机,特别就是螺杆压缩机,其在部分负荷下得能效比要低于满负荷时得能效比,特别就是当负荷下降到70%以下时,其能效比下降显著,因此,单机系统得实际运行费用会远高于用满负荷能效比计算得评估值;对于并联系统与SRS(分布式制冷系统)因其就是通过控制压缩机得开停来进行能量调节,因此可确保机组在部分负荷运行时每个机头都保持其最高得能效比,系统得实际运行费用会大大降低、 3。系统复杂性比较 氟系统结构紧凑,附件少,机组大部分可以在工厂内完成,系统得质量有充分保证;氨系统由于一直无法找到合适得与氨互溶得润滑油,需要大量得附件保证系统得回油与降低系统温度,导致系统复杂,需要大量现场安装工作,对于系统得质量很大程度上取决于安装队伍得素质。氟系统结构紧凑,占地小得特点还使过道布臵或楼顶布臵机组成为可能。 4。自动化程度 SRS控制系统,根据热负荷来控制机组中压缩机得开停,从而实现对库温得控制。我们可以在集中控制屏上设定库温上下限,这个温差可以设得很小,对库内食品储藏期间得品质非常有利。而国内氨系统对库温得控制一般为全手动控制,根据人员对库温得观察,来确定开启或停止压缩机开机台数。因为全部为人员手动操作,这就需要依赖

制冷剂的分类

常用制冷剂种类及特性 新闻来源: 空调技术网2005-6-14 11:13:12作者: 未知责任编辑: LOG 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿 (C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性 制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技术分享)

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技 术分享) 常用制冷剂R22、134a、R404A、R407C、R410A 的特性 1. R22R22是一种中温制冷剂,它的标准沸点为-40.8°C; 水在R22中的溶解度很小,与矿物油互相溶解; R22不燃烧,也不爆炸,毒性很小; R22参透能力很强,并且泄漏难以发现.R22的ODP和GWP比R12小的多,属于HCFC类物质,对臭氧层仍有破坏作用.由于R12已逐步禁用,R22正作为某些CFC制冷剂的过渡替代物在使用。 2. 134a R134a是一种新型制冷剂,它的标准沸点为-26.5°C; R134a 安全性好、无色、无味、不燃烧、不爆炸、基本无毒性、化学性质稳定; R134a气化潜热大、比定压热容大、具有较好制冷能力;饱和气体积大,相同排气量压缩机的制冷剂的质量流量小;热导率较高、热传导性能好;粘度低、流动性好;对臭氧层没有破坏作用、温室效应比R22小。R134a对金属的腐蚀作用比较小,稳定性好,也不溶于水,但R134a不溶于矿物油,需用POE或PAG润滑油。R134a属HFC类制冷剂,按当前的国际协议可长期使用。值得指出的是R134a的GWP(全球变暖潜能值)为1600,仍比较头。注:环境性能及指标解释。ODP表示制冷剂消耗大气层臭氧分子潜能的程度。GWP表示制冷剂对气候变暖影响的潜能指标值。

TEWI总体温室效应值,它由两项构成:a 直接使用制冷剂产 生的温室效应;b制冷机使用期内电厂发电产生的间接温室效应。 3. 混合制冷剂常用的混合制冷剂有R404A、 R407C、R410A等。其物理性质均不可燃,属HFC类制冷剂,压缩机须充注聚酯类(POE)润滑油。R404A是由R125、R134a和R143a三种工质按44%、52%和52%和4%的质量分数混合而成,可作为R22和R502的替代工质。美国杜邦公司和英国ICI公司产品的商品名分别为SUV A-HP62、FX-70。R404A的标准压力下泡点温度为-46.6°C,相变温度滑移较小,约为0.8°C,气化潜热为143.48KJ/(Kg.K),液体的比热容为1.64KJ/(Kg.K),气体的比定压热容为1.03KJ/(Kg.K)。该制冷剂的ODP为0,GWP为4540。R407C是由R32、R125和R134a三种工质按23%、25%和52%的质量分数混合而成。标准压力下泡点温度为-43.8°C,相变温度滑移为7.2°C。该制冷剂的ODP为0, GWP为1980。美国杜邦公司和英国ICI 公司产品的商品名分别为SUV A9000和KLEA66。R407C的热力性质与R22最为相似,两者的工作压力范围,制冷量都十分相近。原有R22机器设备改用R407C后,需要更换润滑油、调整制冷剂的充注量及节流元件。R407C机器的制冷量和能效比比R22机器稍有下降。R407C的缺点可能是温度滑移较大,在发生泄漏、部分室内机不工作的多联系统,以及使用满液式蒸发器的场合时,混合物的配比就可能发生变化而达不

冷冻机的工作原理及分类

冷冻机的分类及工作原理 摘要:工业冷水机组通过液态冷冻剂在蒸发器中的汽化吸收冷冻循环水中的热量,实现制冷目的。汽化的冷冻剂通过压缩机压缩,经冷凝器冷凝成液态供下个制冷循环使用。压缩机由电动机驱动,通过电气控制系统实现整台冷水机组的工况调节。 关键字:压缩机制冷水循环电气控制

0引言 近年随着我国生产制造业进入一个新的快速发展时期,市场竞争激烈对产品质量的要求亦有较大程度的提高。在生产过程中,由于机械、模具及工业反应不断产生热量,影响产品质量的问题屡屡发生。当温度超过物料之承受程度产品质量就不稳定,以塑料产品和电镀生产为例,塑料产品生产中冷却时间占全周期80%以上,冷却时间减少之重要性由此可见,冷冻水能及时吸收热量,使模腔温度快速降低,加速产品定型,缩短开面。电镀生产中冷冻水能将电镀溶液温度降低并将温度恒定在某一范围内,使金属分子随着稳定电流快速附向镀件表面,使产品平滑和密度增加。 因此工业冷水机广泛应用于多种工业生产,如:1.化工(学)工业 2.塑料制品、塑料容器、制膜、塑钢型材、管材、电线、电缆护套、轮胎行业3.电镀及机床切削液冷却行业4.制药行业5.电子行业6.五金工业7. 食品及饮料行业8.制鞋行业9.实验室10.医疗设备11.光学仪器等。 1工业冷水机组组成 工业冷水机组系统的运作是通过制冷剂循环系统、水循环系统、电器自控系统三个相互联系的系统实现的。 制冷剂循环系统: 蒸发器中的液态制冷剂吸收水中的热量并开始蒸发,最终制冷剂与水之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩(压力和温度增加),气态制冷剂通过冷凝器(风冷/水冷)吸收热量,凝结成液体。通过膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成

冰机系统加注制冷剂的方法资料

制冷系统 1.制冷系统在加注制冷剂前要抽真空的原因及方法 冰机系统在加注制冷剂前抽真空是为了清除系统中的空气及水分,并进一步检查系统在真空情况下的密封性,系统中若混有空气和水分会产生一系列不良后果: (l)由于空气绝热指数大于制冷剂的绝热指数,就导致压缩机排气温度高于制冷剂气体温度。 (2)空气进入系统后,制冷剂冷凝压力也会升高。 (3)由于空气存在,冷凝器传热管内表面上形成的气层,起了增加热阻的作用,降低了冷凝器的散热能力。 (4)水在系统中与制冷剂作用产生酸性物质,从而腐蚀管道和设备。 (5)水在系统中与制冷剂不相溶,而会在膨胀阀节流孔处形成“冰堵”现象。 所以必须将系统中空气及水分减少到最低限度,必须对系统抽真空到真空度为 98.7kPa(740mmHg),使水沸腾蒸发后排出。 抽真空步骤: (1)将歧管压力表中黄色(中间)软管的90°弯头接到真空泵上,将蓝色(低压)软管的90°弯头接到低压管路维修阀口上或压缩机低压维修阀上(标志为S或SUC),将红色(高压)软管接头接到高压管路维修阀口上或压缩机高压维修阀上(标志为D或DIS)。 (2)打开歧管压力表,打开高低压手动阀,启动真空泵。 (3)抽真空到低压表的负压值高于l00kPa(750mmHg)。 (4)关闭高低压手动阀,其低压侧表针在10分钟内不得有明显回升。若无,则可向系统内充注制冷剂;若有,就应向系统内充入少量制冷剂进行查找、检修泄漏点,并重新抽真空。 2.向系统内加注制冷剂的方法 在系统抽真空后,即可灌注制冷剂,一般采用下述两种方法: (1)向系统注入液态制冷剂 1)将压力表黄色软管90°弯头从真空泵上接到倒置于磅秤上的制冷剂钢瓶接口上。 2)拧开钢瓶阀门,拧松压力表黄色软管螺母,直到有制冷剂气体外泄约2-3秒种,然后拧紧螺母。 3)拧开压力表高压手动阀,向系统中加入液态制冷剂,直到规定量;若不能加注到规定量,可按

制冷剂的种类及特性

制冷剂的种类及特性 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿(C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性 制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to 下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

常用制冷剂种类及特性教案资料

常用制冷剂种类及特 性 常用制冷剂种类及特性 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热 量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、 R12 R113 R114 R115 R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC四氯化碳(CCL4和甲基 氯仿(C2H3CL3生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上 物质,发展中国家可推迟到2010年。另外对过渡性物质HCF(提出了2020年后的控制日程表。

HCFC中的R123和R134a是R12和R22的替代品 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使 其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力PC应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这 样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩 机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

氟利昂制冷剂的分类和优劣势

氟利昂制冷剂的分类及优劣势 氟利昂是在制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,合肥空调加氟服务中心介绍,常见的有R12.R22.R502 、R123及R134a,由于其他型号的制冷剂已经停用或禁用。在此不做说明。 一、氟利昂R600a(C4H10) 2-甲基丙烷(异丁烷),属于CH类制冷剂A3类物质,充灌量很少时可用作冰箱制冷剂,具有节能、低噪、对大气无破坏的优势,但其易燃、易爆、安全性差。 二、氟利昂R410A 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5)以50%,50%的质量百分比混合而成的非(近)共沸制冷剂,温度滑移较小,发生相变时两组分比例基本保持恒定,物性接近单组分制冷剂。工作压力为普通R22空调的1.6倍左右,制冷(热)效率更高,不破坏臭氧层。另外,采用新冷媒的空调在性能方面也会有一定的提高。R410A 是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。 三、氟利昂R407C 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5),四氟乙烷R134a(C2H2F4)以23%,25%,52%的质量百分比混合而成的非共沸制冷剂,温度滑移较高。 四、氟利昂134a(C2H2F4,R134a) 是一种较新型的制冷剂,HFC制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。 五、氟里昂502(R502) R502是由R12.R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115.R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 六、氟利昂22(CHF2CL,R22) HCFC制冷剂,是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。对大型空调冷水机组的冷媒大都采用R134a来代替。 七、氟利昂-13

制冷系统主要部件的工作原理及特点_

制冷系统主要部件的工作原理及特点 (1)制冷压缩机 制冷压缩机是用以压缩和输送制冷剂的设备。在消耗外界补偿功的条件下,它以机械方法吸入来自蒸发器的低温低压制冷剂蒸汽,将该蒸汽压缩成高温高压的过热蒸汽,并排放到冷凝器中去,使制冷剂能在制冷系统中实现制冷循环。 ①开启式压缩机。 这种压缩机与电动机没有共同外壳。根据曲轴箱形式,又可分为开式曲轴箱压缩机和闭式曲轴箱压缩机。前者因曲轴箱与大气相通,气缸里漏出的制冷剂直接进人大气,泄漏量大,目前已很少应用。后者曲轴箱的曲轴用轴封加以密闭,使曲轴箱封闭,以减少制冷剂的泄漏量。 ②半封闭式压缩机。 这种压缩机与电动机直接连接;一起装在以螺栓连接的密封壳体内,并共用同一主轴,机壳为可拆卸式,便于维修。根据电动机的冷却形式可分为进气冷却式、进气与空气混合冷却式等形式。目前半封闭式压缩机多为高速多缸式。 ③全封闭式压缩机: 这种压缩机和电动机直接连接,并一起装在一个焊接的密封壳体内。这种压缩机结构紧凑、密封性极好。使用方便、振动小、噪音低,适用于小型制冷设备。全封式压缩机有活塞式、旋转式、涡旋式三种。 A、旋转式压缩机 是一种特殊的小型回转式压缩机,如图1-l-2所示。其转子偏心地装在定子内,排气时间长(比往复活塞式长30%左右),流过气阀的流动阻力损失小,缸径行程比大,排气容积和吸气管管径大,吸气过热小,电动机工作温度低,效率高,成本低以及寿命长。 B、活塞式压缩机 外形如图1-l-3所示 C、涡旋式压缩机 是通过涡旋定子和涡旋转子组成涡卷以及构成这个涡卷的端板所形成的空间来压缩气体的回转式压缩机。工作时,随着曲轴的回转,涡旋转子以其中心始终绕涡旋定子中心作一偏心量为半径的圆周运动。它与往复活塞式压缩机相比,其主要特点是:压缩气体几乎不泄漏、不需吸排气阀、绝热效率可提高10%、震动小、扭矩变化小、噪音可降低5dB(A)、体积减小40%、重量减轻15%。它适用于热泵式、吊顶型等空调机上。 系列柔性涡旋压缩机: 超高能效比

制冷剂R134a的特点及正确使用

制冷剂R134a的特点及正确使用长期以来含氯氟利昂R 12(CCL2F2)一直是汽车空调的唯一制冷剂,近年来科学家们发现,R 12的氯会破坏地球上空15km-25km 内的臭氧层,从而使更多的太阳能光紫外线能辐射到地球危害到人体健康,因此,国际社会于1987年9月在加拿大缔结了蒙特利尔协议书,明确规定了禁用R 12的期限为2000年,但近年来由于臭氧层的破坏不断加剧,国际社会把R 12R 的完全禁用日期提前到了1995年,发展中国家则可推迟10年。 我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂R 134a替代R 12,在2000年生产的新车上不准再用R 12。因此,汽车使手人员和维修人员必须了解和熟悉新制冷剂R134a的特点,以便能够熟练、正确地使用。 一、制冷剂R 134a的主要特点 ①.R 134a不含氯原子,对大气臭氧层不起破坏作用; ②.R 134a具有良好的安全性能(不易燃,不爆炸,无毒,无剌激性无腐性); ③.R 134a的传热性能比较接近,所以制冷系统的改型比较容易。 ④.R 134a的传热性能比R 12好,因此制冷剂的用量可大大减少。 二、 R 134a与R12制冷系统的主要区别

①.存放R 134a的容器为浅蓝色,而存放R 12的容器为白色。 ②.R 134a制冷系统连接软管是用橡胶和尼龙特制的,并且在其处部有汽车工程学会的印记(S.A.E.#J2196);而 R12制冷系统连接软管常用一般橡胶管。 ③.R 134a制冷系统连接管有颜色标记(低压管是蓝色带黑色条纹,高压管是红色带黑色条纹,普通管是黄色带黑色条纹)而R 12制冷系统连接管则无标记。 ④.R 134a制冷剂入口处使用的是快速接头,而R 12制冷系统估用的是螺纹接口。 ⑤.R 134a制冷系统连接软管与仪表的接头具有1/2in英寸螺纹,且高压口的接头比低压口的大;而R12制冷系统连接软管与仪表的接头具有7/16in螺纹。 ⑥.与R12制冷系统相比R134a制冷系统具有较高的压力和温度,需要较大的冷却风扇。 三、 R134a的使用及维修注意事项。 A).用于R 134a的仪器,设备和量具等不能与用R 12的互换,因若在R 134a中混有R12会使压缩面损坏,并且也可能使用仪器和调备损坏。 B).R 134a与R 12制冷剂的冷冻机油不能混用,因为R 134a 与R 12制冷系统的冷冻机油不相容。R12制冷系统一般用国产的18号、25号冷冻机油或日本产的SUNISO3GS、SUNISO4GS、SUNISO5GS

常用制冷剂简介

常用制冷剂简介 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿(C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 热力学的要求 1 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 2 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 3 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 4 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 5 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 制冷剂分子式分子量u 正常蒸发温度ts(℃) 凝固点tf(℃) 临界温度tkp(℃) 临界压力PKP绝对压力绝热指数K 水(R718) H2O 18.02 +100 ±0 +374.1 225.6 1.33 氨(R717) NH3 17.03 -33.4 -77.7 +132.4 115.2 1.31 R11 CFCL3 137.39 +23.7 -111 +198 44.6 1.17 R12 CF2CL2 120.92 -29.8 -155 +111.5 40.86 1.15 R13 CF3CL 104.47 -81.5 -180 +28.8 39.4 -

空调系统加注制冷剂的方法

空调系统 1.空调系统在加注制冷剂前要抽真空的原因及方法 空调系统在加注制冷剂前抽真空是为了清除系统中的空气及水分,并进一步检查系统在真空情况下的密封性,系统中若混有空气和水分会产生一系列不良后果: (l)由于空气绝热指数大于制冷剂的绝热指数,就导致压缩机排气温度高于制冷剂气体温度。 (2)空气进入系统后,制冷剂冷凝压力也会升高。 (3)由于空气存在,冷凝器传热管内表面上形成的气层,起了增加热阻的作用,降低了冷凝器的散热能力。 (4)水在系统中与制冷剂作用产生酸性物质,从而腐蚀管道和设备。 (5)水在系统中与制冷剂不相溶,而会在膨胀阀节流孔处形成“冰堵”现象。 所以必须将系统中空气及水分减少到最低限度,必须对系统抽真空到真空度为 98.7kPa(740mmHg),使水沸腾蒸发后排出。 抽真空步骤: (1)将歧管压力表中黄色(中间)软管的90°弯头接到真空泵上,将蓝色(低压)软管的90°弯头接到低压管路维修阀口上或压缩机低压维修阀上(标志为S或SUC),将红色(高压)软管接头接到高压管路维修阀口上或压缩机高压维修阀上(标志为D或DIS)。 (2)打开歧管压力表,打开高低压手动阀,启动真空泵。 (3)抽真空到低压表的负压值高于l00kPa(750mmHg)。 (4)关闭高低压手动阀,其低压侧表针在10分钟内不得有明显回升。若无,则可向系统内充注制冷剂;若有,就应向系统内充入少量制冷剂进行查找、检修泄漏点,并重新抽真空。 2.向系统内加注制冷剂的方法 在系统抽真空后,即可灌注制冷剂,一般采用下述两种方法: (1)向系统注入液态制冷剂 1)将压力表黄色软管90°弯头从真空泵上接到倒置于磅秤上的制冷剂钢瓶接口上。 2)拧开钢瓶阀门,拧松压力表黄色软管螺母,直到有制冷剂气体外泄约2-3秒种,然后拧紧螺母。 3)拧开压力表高压手动阀,向系统中加入液态制冷剂,直到规定量;若不能加注到规定量,可按

常用制冷剂种类及特性

说明 制冷剂又称制冷工质, 1987 HCFC 制冷剂的要求 热力学的要求 在大气压力下, 要求制冷剂在常温下的冷凝压力 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在

凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 物理化学的要求 制冷剂的粘度应尽可能小,以减少管道流动阻力、提换热设备的传热强度。制冷剂的导热系数应当高,以提高换热设备的效率,减少传热面积。 制冷剂与油的互溶性质:制冷剂溶解于润滑油的性质应从两个方面来分析。如 应具有一定的吸水性, 应具有化学稳定性:不燃烧、不爆炸,使用中不分解,不变质。同时制冷剂本

安全性的要求 由于制冷剂在运行中可能泄漏,故要求工质对人身健康无损害、无毒性、无刺激作用。 制冷剂的分类 在压缩式制冷剂中广泛使用的制冷剂是氨、 无机化合物制冷剂:这类制冷剂使用得比较早,如氨( 氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素饱和碳氢化合物:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯( 共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例混合而成高温、中温及低温制冷剂:是按制冷剂的标准蒸发温度和常温下冷凝压力来分

氨( 氨( 氨的临界温度较高 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮氨在常温下不易燃烧,但加热至 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组氟里昂对水的溶解度小,

常见制冷剂热力性质表

附录: 附表1:R12饱和液体及蒸汽热力性质表 附表2:R13饱和液体及蒸汽热力性质表 附表3:R22饱和液体及蒸汽热力性质表 附表4:R134a饱和液体及蒸汽热力性质表 附表5:R152a饱和液体及蒸汽热力性质表 附表6:R600a饱和液体及蒸汽热力性质表 附表7:R407c饱和液体及蒸汽热力性质表 附表8:R123饱和液体及蒸汽热力性质表 附表9:R410a饱和液体及蒸汽热力性质表

附表1:R12饱和液体及蒸汽热力性质表 R12饱和液体及蒸汽热力性质表 温度绝对压力密度密度比焓比焓比熵比熵t pρ′ρ″h′h″s′s″℃MPa kg/m3kg/m3kJ/kg kJ/kg kJ/kg·K kJ/kg·K -1000.00118851679.10.099959113.32306.090.60771 1.721 -990.00130441676.50.10908114.14306.540.61242 1.7172 -980.00142981673.90.1189114.96306.980.61711 1.7135 -970.00156531671.30.12945115.78307.430.62178 1.7098 -960.00171171668.60.14077116.6307.880.62642 1.7062 -950.001869616660.15291117.42308.320.63105 1.7026 -940.00203971663.40.16592118.24308.770.63564 1.6992 -930.00222281660.70.17983119.06309.230.64022 1.6958 -920.00241971658.10.19471119.88309.680.64477 1.6925 -910.00263111655.50.21059120.71310.130.6493 1.6892 -900.0028581652.80.22754121.53310.590.65381 1.6861 -890.00310131650.20.24561122.36311.040.6583 1.6829 -880.00336171647.50.26485123.18311.50.66277 1.6799 -870.00364041644.90.28532124.01311.960.66722 1.6769 -860.00393831642.20.30708124.83312.410.67164 1.6739 -850.00425651639.60.33019125.66312.870.67605 1.6711 -840.00459591636.90.35471126.49313.340.68044 1.6683 -830.00495781634.30.38072127.32313.80.68481 1.6655 -820.00534321631.60.40827128.15314.260.68916 1.6628 -810.005753416290.43743128.98314.720.69349 1.6602 -800.00618961626.30.46827129.81315.190.6978 1.6576 -790.00665291623.60.50087130.64315.650.7021 1.655 -780.007144916210.53531131.47316.120.70637 1.6525 -770.00766671618.30.57164132.31316.580.71063 1.6501 -760.00821981615.60.60996133.14317.050.71487 1.6477 -750.00880561612.90.65034133.98317.520.7191 1.6454 -740.00942561610.30.69286134.81317.990.7233 1.6431 -730.010*******.60.73761135.65318.460.72749 1.6409 -720.010*******.90.78466136.49318.930.73167 1.6387 -710.0115061602.20.83411137.33319.40.73583 1.6365 -700.0122781599.50.88605138.17319.870.73997 1.6344 -690.0130921596.80.94056139.01320.340.74409 1.6323 -680.013951594.10.99774139.85320.820.7482 1.6303 -670.0148541591.4 1.0577140.69321.290.7523 1.6283 -660.0158051588.7 1.1205141.54321.760.75638 1.6264

相关主题