搜档网
当前位置:搜档网 › 加氢裂化装置工艺流程描述

加氢裂化装置工艺流程描述

加氢裂化装置工艺流程描述
加氢裂化装置工艺流程描述

装置工艺流程描述

一、加氢裂化工艺介绍

1、加氢裂化联合装置由如下部分组成:

1)在反应器部分进料油和循环油通过加氢裂化反应转化为轻烃、石脑油、航煤和柴油。2)在分馏部分,把从反应部分来的转化油切割成各种产品。

3)在酸性气处理部分,酸性干气和酸性液化气用醇胺溶液洗涤,以便除掉H2S.

2、反应器部分

1)新鲜进料流程

从油罐来的新鲜进料经过滤器K101除去固体和沉降脱水后,进入缓冲罐D101,再由P101A、B送到换热器E104和E104A、B,同反应器流出物换热,然后,与热循环氢混合一起进入R101.

2)当进料及循环氢通过精制催化剂时,脱硫、脱氧、脱氮和烯烃炮和反应开始发生,并在反应器底部订层完成,这些是放热反应,反应物温度升高。通过控制反应器入口温度及调节急冷氢量,使温度上升受到抑制,以延长催化剂的寿命,同时防止发生飞温。

在R101反应产物流出线上,要设置一个采样阀,以测定氮的转化。在生产期间,要控制流出油的总氮含量在50ppm(wt.)内,就要调节R101的平均床层温度。

如果反应器内的温度超商,用降低第二反应炉F102温度和加大急冷氢仍不能控制裂化反应速度,则器内温度急升会严重地使催化剂结焦,甚至破坏设备结构,使反应器壁过热。如果最大的冷却反应器仍不能控制催化剂床层温度,则反应器和关联设备必须降压。当R102A和B中的任一个反应器温度超过它的正常值28℃时,应立即启动7bar/min泄压系统降压。要严格控制R102A、B的温度,以保证新鲜进料100%地转化成所需要产品。在操作中,新鲜进料和循环油比例要保持不变。

3)反应产物换热器的流程

从Rl028出来的反应产物通过一组换热器(E101—E105)回收热量,最后用空气冷器A101冷却到49度后进入高压分离器Dl02。

空冷器进口注入冲洗水以除氨和防止氨盐沉积.注入处将允许大部分水汽化。注水泵Pll4B注

水注入西面四组空冷,Pll4C注水注入东面四组空冷,Pll4A_互为Pll4B、C备用。

4)气液分离

经冷却的反应产物进入Dl02,在其中进行油、水、气三相分离。烃类产品通过Dl02液位控制

调节阀Ll03A、B进入低压分离器Dl03。为了节能,正常情况下,液体全部经过Ll03A阀到能量回收透平HTl01进Dl03。自D102底排出的水进入炼厂酸性水处理系统。

D103得到的物料大约在1.96MPa下操作,其闪蒸气送到酸性气处理部分,液相烃经与柴油和尾油换热后送分馏部分。

5)循环氢及反应器入口氢系统

由Dl02来的气体进入循环氢脱硫塔入口分液罐V901,再进脱硫塔T901,然后从T901出来进入胺液分液罐V902后,进入压缩机Cl01(在循环氢脱硫系统不投用时,循环氢直接由Dl02顶进入Cl01)。机出口分成两路:第一路与来自新氢压缩机Cl02的新氢混合并通过换热器与反应器流出物换热。经过预热的氢气又分成两路经过反应加热炉(F101和Fl02)加热并与相应物流混合后分别进入R101和Rl02A。Fl01和Fl02控制Rl01和Rl02A的入口温度。

从Cl01出来的第二路气流作急冷氢。用于降低在反应器中急冷点上的反应物温度。本

机备用急冷能力约为用于裂化反应器正常的总急冷流率的一半。反飞动线(管线号:8B-P074-D83)的目的在于维持最小流量,以防止Cl01喘振。具体地说,当Cl01吸入量低于规定流量时,FICV-119阀即由其信号指示自动打开。以维持固定的晟低流量。

6)补充新氢流程

由制氢装置、重整副产氢和乙烯返回氢提供的新氢由Cl02提高压力后,与循环氢混合加热。

这种混合氢成为Rl01和Rl02A的入口氢气。

7)再生

在R101、Rl02A、Rl02B里的催化剂通过在循环气流中控制燃烧而再生。利用现有的工艺设备再生并控制空气流率。

3、分馏部分

分馏部分由四个主要的蒸馏塔和辅助设备组成。从Dl03来的液相烃分为干气、液化气、轻石脑油、重石脑油、航煤、柴油和循环油。循环油返回裂化反应器以便转化成轻产品。 1)脱丁烷塔

脱丁烷塔Tl01有40层浮阀塔板。Dl03液相烃经El05A、B与反应器流出物换热后再·与柴油、尾油换热进入Tl01。进料温度通过调节柴油换热器或尾油换热器El22、El25的旁路来控制。Tl01塔顶气相在塔顶冷凝器Al02和调温冷凝器El06被部分冷凝,然后流入回流罐Dl04·

为了使回流罐的压力稳定,废气在压力控制下排走。所有夹带或溶解在进料中的水从Dl04的脱水包排出,送到酸性水汽提部分,自D104来的绝大部分液体烃经塔顶回流泵Pl05A、B并经过49度后进入高压分离器Dl02。

空冷器进口注入冲洗水以除氨和防止氨盐沉积.注入处将允许大部分水汽化。注水泵Pll4B注水注入西面四组空冷,Pll4C注水注入东面四组空冷,Pll4A_互为Pll4B、C备用。

4)气液分离

经冷却的反应产物进入Dl02,在其中进行油、水、气三相分离。烃类产品通过Dl02液位控制调节阀Ll03A、B进入低压分离器Dl03。为了节能,正常情况下,液体全部经过Ll03A 阀到能量回收透平HTl01进Dl03。自D102底排出的水进入炼厂酸性水处理系统。

D103得到的物料大约在1.96MPa下操作,其闪蒸气送到酸性气处理部分,液相烃经与柴油和尾油换热后送分馏部分。

5)循环氢及反应器入口氢系统

由Dl02来的气体进入循环氢脱硫塔入口分液罐V901,再进脱硫塔T901,然后从T901出来进入胺液分液罐V902后,进入压缩机Cl01(在循环氢脱硫系统不投用时,循环氢直接由Dl02顶进入Cl01)。机出口分成两路:第一路与来自新氢压缩机Cl02的新氢混合并通过换热器与反应器流出物换热。经过预热的氢气又分成两路经过反应加热炉(F101和Fl02)加热并与相应物流混合后分别进入R101和Rl02A。Fl01和Fl02控制Rl01和Rl02A的入口温度。

从Cl01出来的第二路气流作急冷氢。用于降低在反应器中急冷点上的反应物温度。本机备用急冷能力约为用于裂化反应器正常的总急冷流率的一半。反飞动线(管线号:8B-P074.D83)的目的在于维持最小流量,以防止Cl01喘振。具体地说,当Cl01吸入量低于规定流量时,FICV-119阀即由其信号指示自动打开。以维持固定的晟低流量。

6)补充新氢流程

由制氢装置、重整副产氢和乙烯返回氢提供的新氢由Cl02提高压力后,与循环氢混合加热。这种混合氢成为Rl01和Rl02A的入口氢气。

7)再生

在R101、Rl02A、Rl02B里的催化剂通过在循环气流中控制燃烧而再生。利用现有的工艺设备再生并控制空气流率。至于再生程序本部分不再叙述。(2000年后不再采用器内再生,目前国内全部加氢裂化装置均采用器外再生技术)

3、分馏部分

分馏部分由四个主要的蒸馏塔和辅助设备组成。从Dl03来的液相烃分为干气、液化气、轻石脑油、重石脑油、航煤、柴油和循环油。循环油返回裂化反应器以便转化成轻产品。 1)脱丁烷塔

脱丁烷塔Tl01有40层浮阀塔板。Dl03液相烃经El05A、B与反应器流出物换热后再与柴油、尾油换热进入Tl01。进料温度通过调节柴油换热器或尾油换热器El22、El25的旁路来控制。Tl01塔顶气相在塔顶冷凝器Al02和调温冷凝器El06被部分冷凝,然后流入回流罐Dl04。

为了使回流罐的压力稳定,废气在压力控制下排走。所有夹带或溶解在进料中的水从Dl04的脱水包排出.送到酸性水汽提部分,自D104来的绝大部分液体烃经塔顶回流泵Pl05A、B并经过流量调节返回脱丁烷塔顶作回流。剩余部分由脱乙烷塔进料泵P106A、B送出,经液位与流量串级调节送至脱乙烷塔T102。

2)脱乙烷塔

脱乙烷塔T102有35层浮阀塔板。从塔顶来的汽相在冷凝器E111中部分冷凝,然后注入塔顶回流罐D105中,通过气相压力控制保持回流缺罐恒压。自D105来的液态烃用P107A、B做回流,回流量由D105的液位来调节。

塔底液体进入塔底重沸器E112,利用航煤产品的热量使其部分汽化。E112是单程热虹吸式重沸器,加热量由脱乙烷塔第29层塔盘(由塔顶算起)的温度来控制。

塔底产品由冷却器E113来冷却,然后经液位调节送到液化气抽提塔T151.

在液化气抽提塔中,液化气中的少量硫化氢用醇胺溶液抽提除去,处理后的液化气送至储罐。

3)第一分馏塔(T103)

脱丁烷塔底产品,经液位与流量串级调节进入第一分馏塔,流量调节由T101的塔底液位来控制,T103有36层浮阀塔板。

从T103塔顶来的汽相在塔顶空冷器A103和调温冷凝器E107AB里全部冷凝,然后流入第一分馏塔回流罐D106.

P111A、B把D106液体抽出,经流量调节返回塔作回流,轻石脑油产品经液位调节送储罐。

重石脑油从第9层塔板抽出。航煤从第19层塔板抽出。塔底产品用P108A、B送出,经流量调节流入第二分馏塔(T106)。流量调节器由塔底液位控制。

塔底产物的一部分经流量调节作为第一、二侧线汽提塔重沸器的热源。塔底产物的剩余部分与从汽提塔重沸器来的产物混合,进入第一分馏塔重沸炉F104.

4)产品汽提

重石脑油流入第一侧线汽提塔(T104)的顶部塔扳。Tl04有10层浮阀塔板。用控制从塔Tl03来的流量来维持汽提塔底液面。Tl04的塔顶气体返回Tl03第8层塔扳。

T104塔底物一部分至El08,(E108是卧式热虹吸式巫沸器)以第一分馏塔底油作加热介质。另一部分由重石脑油泵Pl09A、B送出,经冷却器Al05和Ell0,在流量控制下送入储罐。

航煤进入第二侧线汽塔Tl05顶部塔板。Tl05有10层浮阀塔板。控制从Tl03来的流量

维持汽提塔底液面。从Tl05汽提出的汽体返回Tl03第18层塔板。

T105塔底一部分到E109, (E109是卧式热虹吸式重沸器)以第一分馏塔底油作加热介质。另一部分由航煤泵P110A、B送出,经脱乙烷塔底重沸器E112和冷却器A104及E114,在流量控制下送入储罐。

5)第二分馏塔(T106)

第二分馏塔有16层浮阀塔板。在塔顶有供传热的填料段。该塔在减压条件下操作。

从塔顶填料段(原第l层塔扳位置)来的柴油由泵Pll3A、B抽出,送至Ell9把热量换给锅炉水再经Al06冷却。柴油净产物经由项部塔盘温度给定的流量调节送去储罐。剩余液体返回填料段璜部以冷凝迸入填料段的蒸汽。要控制顶冷回流使塔顶汽相温度恒定和适当真空度。

任何流入的空气或不凝气由第二分馏塔顶抽真空喷射器Kl03A、B抽除。喷射器的蒸汽由Ell7冷凝后,进储罐DIl4,冷凝水由Pll6送Dlll作注水,油相由Pll5送加氢精制储罐或排Dll6。

T106六层抽出由原来第6层板盘位置抽出,经El20A与加热炉用燃料油换热后,再由Pl25A/B抽送出装置到储罐。

塔底油由P1l2A、B抽送一部分至重沸炉Fl05打循环入Tl06,一部分Tl06塔底液体(称为循环油)经液位调节送到循环油缓冲罐Dl07,并经Pl02A、B升压后送回上述的反应器部分。当采用一次通过方案生产时,未转化油则通过冷却器Al07冷却后送至储罐。增加尾油作为El09热源流程,经El09后再返回来转化油空冷器Al07,经Al07冷却后作为乙烯裂解原料或白油料。未转化油作裂解料时,在装置蜀区增设专线。

6)轻烃吸收塔

原来流程来自T101顶回流罐Dl04的气体在压力控制下进入轻烃吸收塔Tl07之第28层塔盘下,由下往上和来自D103的生成油逆流接触,在这个过程中,由Dl04气体携带的C4、C3组分被吸牧油部分吸收,富吸收油在T107的液位与流量串级控制下经Pl27A/B送去和El05的反应流出物换热,之后进入Tl01。Tl07之塔顶气进入Tl52进行脱硫,合格净化气进入瓦斯系统或制氢装置。

4、酸性气处理部分

本部分由液化气抽提塔、气体吸收和醇胺溶液再生三部分组成。

1)液化气抽提

从脱乙烷塔底得到的液化气进入液化气抽提塔T-151的底部,该塔是筛板塔。

液化气在塔中上开与塔顶下流的醇胺溶液混合逆流接触,吸收液化气中的硫化氢。

在塔的项部装有金属网,以减少被液化气携带的醇胺溶液的损失。塔底富液经液位调节与Tl52底的富液—起进入富液闪蒸罐Dl56。Tl51塔顶经处理的液化气送入沉降分离器Dl54,在分离器里,夹在液化气里的醇胺溶液回收利用。

处理后的液化气在压力控制下送入储罐。

2)气体吸收

脱丁烷塔、脱乙烷塔和低压分离器的干气及外来干气经冷却器El55送到气液分离罐Dl51。

D151气体送到酸性气体吸收塔Tl52的底部,然后在塔中上升,与塔顶流下的醇胺贫溶液逆流接触,硫化氢被醇胺溶液吸收除去。

除去硫化氢后,气体进入分液罐Dl52,除去被夹带的醇胺溶液。然后到制氢装置或装置内、外井瓦斯系统。

5、循环氢脱硫部分

由储罐V903来贫胺液经高压泵P901A/B/C抽送至T901顶,与从V901来循环氢逆向接触,吸收脱去循环氢中的硫化氢。从塔底出来的富胺液经减压后至富液闪蒸罐D156,然后经P155A/B送至联合三车间溶剂联合再生。或直接由D156压至T153进行装置内再生。

蜡油加氢裂化装置

180万吨/年蜡油加氢裂化装置 一、工艺流程选择 1、反应部分流程选择 A.反应部分采用单段双剂串联全循环的加氢裂化工艺。 B.反应部分流程选择:本装置采用部分炉前混氢的方案,即部分混合氢和原料油混合进入高压换热器后进入反应进料加热炉,另一部分混合氢和反应产物换热后与加热炉出口的混氢油一起进入反应器。 C.本装置采用热高分流程,低分气送至渣油加氢脱硫后进PSA部分,回收此部分溶解氢。同时采用热高分油液力透平回收能量。因本装置处理的原料油流含量很高,氮含量较高,故设循环氢脱硫设施。 2、分馏部分流程选择 A.本项目分馏部分采用脱硫化氢塔-吸收稳定-常压塔出航煤和柴油的流程,分馏塔进料加热炉,优化分流部分换热流程。采用的流程比传统的流程具有燃料消耗低、投资省、能耗低等特点。 B.液化气的回收流程选用石脑油吸收,此法是借鉴催化裂化装置中吸收稳定的经验,吸收方法正确可靠,回收率搞。具有投资少、能耗低、回收率可达95%以上等特点。 3、催化剂的硫化、钝化和再生 A、本项目催化剂硫化拟采用干法硫化 B、催化剂的钝化方案采用低氮油注氨的钝化方案 C、催化剂的再生采用器外再生。 二、工艺流程简介 1、反应部分

原料油从原料预处理装置和渣油加氢裂化装置进入混合器混合后进入原料缓冲罐(D-101),经升压泵(P-101)升压后,再经过过滤(SR-101),进入滤后原料油缓冲罐(D-102)。原料油经反应进料泵(P-102)升压后与部分混合氢混合,混氢原料油与反应产物换热(E-101),然后进入反应进料加热炉(F-101)加热,加热炉出口混氢原料和另一部分经换热后的混合氢混合,达到反应温度后进入加氢精制反应器(R-101),然后进入加氢裂化反应器(R-102),在催化剂的作用下,进行加氢反应。催化剂床层间设有控制反应温度的急冷氢。反应产物先与部分混合氢换热后再与混氢原料油换热后,进入热高压分离器(D-103)。 装置外来的补充氢由新氢压缩机(K-101)升压后与循环氢混合。混合氢先与热高分气进行换热,一部分和原料油混合,另一部分直接和反应产物换热后直接送至加氢精制反应器入口。 从热高压分离器出的液体(热高分油)经液力透平(HT-101)降压回收能量,或经调节阀降压,减压后进入热低压分离器进一步在低压将其溶解的气体闪蒸出来。气体(热高分气)与冷低分油和混合氢换热,最后由热高分气空冷器(A-101)冷却至55℃左右进入冷高压分离器,进行气、油、水三相分离。为防止热高分气中NH3和H2S在低温下生成铵盐结晶析出,赌赛空冷器,在反应产物进入空冷器前注入除盐水。 从冷高压分离器分理出的气体(循环氢),经循环氢脱硫后进入循环氢压缩机分液罐(D-108),有循环氢压缩机(K-102)升压后,返回反应部分同补充氢混合。自循环氢脱硫塔底出来的富胺液闪蒸罐闪蒸。从冷高压分离器分离出来的液体(冷高分油)减压后进入冷低压分离器,继续进行气、液、水三相分离。冷高分底部的含硫污水减压后进入酸性水脱气罐(D-109)进行气液分离,含硫污水送出装置至污水汽提装置处理。从冷低压分离器分离出的气体(低分气)至渣油加氢装置低压脱硫部分:液体(冷低分油)经与热高分气换热后进入脱硫化氢塔。从热低压分离器分离出的气体(热低分气)经过水冷冷却后至冷低压分离器,液体(热低分油)直接进入脱硫化氢塔。 2、分馏和吸收稳定部分

工艺流程及其描述

xx有限公司沙棘籽油软胶囊生产工艺流程图及其说明 生产工艺流程图 货退※不合格脱原料采购原料验收包 确定混料工艺入库消合格工艺毒目200过

量称药液区存放滤过乳化罐※ 入库明胶采购原料验收量脱合格抽真空称化胶甘油采购包 不合格货退不合格过120目消过静置滤毒验化入合格库石蜡油采购石蜡油验收合格※打胶泵转笼传输带压丸 循环泵 不合格合格合格丸选光抛排盘干躁测定水分不合格废报铝塑包装脱包消毒 内包检验入库退货合格合格不合格脱抛光带验收抛光带采购包打码外包装消包装物采购包装物验收产品验收毒不合格 合格药用PVC、铝箔库入货退入库 表示洁净区点CCP:※号为注表示洁净加工工序表示普通工序 生产工艺流程描述 2.1原料的采购 采购计划初步拟定:由销售部根据市场需要和产品库存制定生产计划,并确认原辅料库存,若原辅料库存数量不能满足生产需要时,应及时通知采购人员进行采购。 2.2原料验收: 库管员及时通知质量部取样,质量部依据《原辅料检验标准》进行检测,库管员凭质量部出具的检验报告单,办理入库手续,不合格则通知采购员作退货处理。 2.3组织生产: 2.3.1由销售部向质量部下达《生产、包装指令》,质量部根据产品工艺配方向生产部下达《生产指令》,由生产工艺员再次确认工艺配方,然后向生产各工序下达分解指令。 2.3.2混料:工序接到生产指令后,根据指令领取物料,在进入洁净区前进行脱包灭菌(用紫外灯或臭氧发生器进行灭菌),称量放入乳化罐混匀,乳化好后用200目的筛网过滤,将其中可能存在的杂质过滤清除,混好料液贮存于料液罐中置于药液区存放待生产。 溶胶:溶胶工序操作人员接到指令领取明胶、甘油等,首先在进入洁净2.3.3区前进行脱包灭菌,灭菌后按工艺要求将明胶、甘油、纯化水按比例称量入罐目的120溶胶,溶好的胶液抽真空后对其黏度检测(2-4OE)放胶。放胶时要用 80℃,-筛网过滤将其中可能存在的杂质滤除,在溶胶过程中因溶胶温度在76℃此温度足可以杀死原料中可能存在的细菌。将溶好的胶液放置在胶罐中保温静置待用。 压丸:压丸工序根据指令选择模具,安装调试后,把混好的料液和备好2.3.4的胶液进行上机操作,上机时要注意胶皮的厚度、内容物的装量等,同时要随时监视胶丸的丸形、装量,防止胶丸漏夜。 定型干燥:胶囊压丸后进入转笼内经过一定时间风吹干燥,失去部分水2.3.5。分,使胶丸定形,定形时间:≥340-50r/min小时,转笼转速: 排盘干燥:将在干燥笼中初步干燥后的软胶囊,放在一定尺寸的干燥盘 2.3.6上使其分布均匀,再在风室中通过一定的温度、湿度,进行干燥,使软胶囊的27℃、相对湿度:≤50%20-。风室温度:水分达到要求(胶皮水分≤14%)

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

加氢裂化工艺流程概述

加氢裂化工艺流程概述 全装置工艺流程按反应系统(含轻烃吸收、低分气脱硫)、分馏系统、机组系统(含PSA系统)进行描述。 1.1反应系统流程 减压蜡油由工厂罐区送入装置经原料升压泵(P1027/A、B)后,和从二丙烷罐区直接送下来的轻脱沥青油混合,在给定的流量和混合比例下原料油缓冲罐V1002液面串级控制下,经原料油脱水罐(V1001)脱水后,与分馏部分来的循环油混合,通过原料油过滤器(FI1001)除去原料中大于25微米的颗粒,进入原料油缓冲罐(V1002),V1002由燃料气保护,使原料油不接触空气。 自原料油缓冲罐(V1002)出来的原料油经加氢进料泵 (P1001A,B)升压后,在流量控制下与混合氢混合,依次经热高分气/混合进料换热器(E1002)、反应流出物/混合进料换热器(E1001A,B)、反应进料加热炉(F1001)加热至反应所需温度后进入加氢精制反应器(R1001),R1001设三个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物进入加氢裂化反应器(R1002)进行加氢裂化反应,两个反应器之间设急冷氢注入点,R1002设四个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物设有精制油取样装置,用于精制油氮含量监控取样。 由反应器R1002出来的反应流出物经反应流出物/混合

进料换热器(E1001)的管程,与混合原料油换热,以尽量回收热量。在原料油一侧设有调节换热器管程出口温度的旁路控制,紧急情况下可快速的降低反应器的入口温度。换热后反应流出物温度降至250℃,进入热高压分离器(V1003)。热高分气体经热高分气/混合进料换热器(E1002)换热后,再经热高分气空冷器(A1001)冷至49℃进入冷高压分离器(V1004)。为了防止热高分气在冷却过程中析出铵盐堵塞管路和设备,通过注水泵(P1002A,B)将脱盐水注入A1001上游管线,也可根据生产情况,在热高分顶和热低分气冷却器(E1003)前进行间歇注水。冷却后的热高分气在V1004中进行油、气、水三相分离。自V1004底部出来的油相在V1004液位控制下进入冷低压分离器(V1006)。自V1003底部出来的热高分油在V1003液位控制下进入热低压分离器(V1005)。热低分气气相与冷高分油混合后,经热低分气冷却器(E1003)冷却到40℃进入冷低压分离器(V1006)。自V1005底部出来的热低分油进入分馏部分的脱丁烷塔第29层塔盘。自V1006底部出来的冷低分油分成两路,一路作为轻烃吸收塔(T1011)的吸收油,吸收完轻烃的富吸收油品由T-1011的塔底泵P-1016再打回进冷低分油的进脱丁烷塔线。依次经冷低分油/柴油换热器(E1004)、冷低分油/减一线换热器(E1005A,B)、冷低分油/减二线换热器(E1014)和冷低分油/减底油换热器(E1015),分别与柴油、减一线油、减二

加氢裂化装置说明、危险因素及防范措施

仅供参考[整理] 安全管理文书 加氢裂化装置说明、危险因素及防范措施 日期:__________________ 单位:__________________ 第1 页共18 页

加氢裂化装置说明、危险因素及防范措施 一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,高压 第 2 页共 18 页

加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化分离器的操作压力一般为9.OMPa左右。 加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器,但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多为此种流程,本节所述的流程即为此种流程。 二、重点部位及设备 (一)重点部位 1.加热炉及反应器区 加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。 第 3 页共 18 页

机械加工工艺标准流程过程描述

机械加工工艺流程详解 1.机械加工工艺流程 机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产。机械加工工艺规程一般包括以下内容:工件加工的工艺路线、各工序的具体内容及所用的设备和工艺装备、工件的检验项目及检验方法、切削用量、时间定额等。 1.1 机械加工艺规程的作用 (1)是指导生产的重要技术文件 工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶。所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件。正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品。但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续。 (2)是生产组织和生产准备工作的依据 生产计划的制订,产品投产前原材料和毛坯的供应、工艺装备的设计、制造与采购、机床负荷的调整、作业计划的编排、劳动力的组织、工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的。 (3)是新建和扩建工厂(车间)的技术依据 在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类、数量和规格,车间的面积、机床的布置、生产工人的工种、技术等级及数量、辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定。除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产。 1.2 机械加工工艺规程制订的原则 工艺规程制订的原则是优质、高产和低成本,即在保证产品质量的前提下,争取最好的经济效益。在具体制定时,还应注意下列问题: 1)技术上的先进性在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备。 2)经济上的合理性在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案。此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低。

加氢装置

加氢装置 拼音:jiaqingliehuazhuangzhi 英文名称:hydrocracker 说明:加氢裂化的工业装置有多种类型。按反应器中催化剂的态不同分为固定床和沸腾床加氢裂化工艺,目前前者是主流。按反应器的作用又分为一段法和两段法。两段法包括两级反应器,第一级作为加氢精制段,除掉原料油中的氮、硫化物。第二级是加氢裂化反应段。一段法的反应器只有一个或数个并联使用。一段法固定床加氢裂化装置的工艺流程是原料油、循环油及氢气混合后经加热导入反应器。反应器内装有粒状催化剂,在 9.8-14.7兆帕(100-150公斤/厘米2)压力,氢油比约为1500:1,400℃左右条件下进行反应。反应产物经高压和低压分离器,把液体产品与气体分开,然后液体产品在分馏塔蒸馏获得产品石油馏分。一段法裂化深度较低,一般以减压蜡油为原料,生产中间馏分油为主。二段法裂化深度较深,一般以生产汽油为主。 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 装置简介 (一)装置的发展 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 (二)装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。

煤焦油加氢工艺流程图和主要设备一览表.doc

百度文库 - 让每个人平等地提升自我 煤焦油加氢项目 煤焦油 离心、过滤、换热 减压塔 沥青至造粒设施 加氢精制进料缓冲罐 加氢裂化进料缓冲罐 加氢精制反应器( A 、B 、C ) 加氢裂化反应器( A 、B ) P=16.8MPa P=16.8MPa ° ° t=410 C( 初期) t=402 C( 初期) 精制热高分罐 油 裂化冷高分罐 化 转 氢 气体 液体 未 液体 气体 环 制 精 循 制 精制冷高分罐 精制热低分罐 裂化冷低分罐 裂化 精 体 循环氢 气 压缩机 气体 液体 液体 硫 气 液 脱 精制 精制冷 至 体 体 裂化稳定塔 氢 循环氢 低分罐 体 体 新 压缩机 气 气 充 液体 硫 液 硫 补 氢 脱 油 至 精制 脱 新 化 化 体 至 充 稳定塔 裂 转 补 体 液体 未 新氢 气 新氢 硫 精制分馏塔 裂化分馏塔 压缩机 脱 至 石脑油 柴油 氢 环 循 化 裂

煤焦油加氢装置主要生产设备表 序设备操作条件数量规格介质名称主体材质压力 号名称备注 温度(℃)(台) ( MPa) 一、反应器类 1 加氢精制Ф煤焦油、 H2、 H 2S 反应器 A 1500X13400 加氢精制 Φ 反应器煤焦油、 H2、 H 2S 1800X14678 B/C 加氢裂化 Φ 反应器煤焦油、 H、 H S 1500X10110 2 2 A/B 二、塔类 1 减压塔Ф 2000/2400/1 轻质煤焦油、 Q345R 200 X 25250 重油、水汽 2 精制稳定Ф 600X16000 反应油、 H 、 H S Q245R 塔 2 2 3 精制分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 4 精制柴油 Ф 800X10000 柴油、蒸汽Q245R 汽提塔 5 裂化稳定Ф 400/800X18 反应油、H2 2 Q245R 塔440 、 H S 6 裂化分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 7 裂化柴油 Ф 500X8800 柴油、蒸汽Q245R 汽提塔 三、加热炉类 1 减压塔进400X104 煤焦油1Cr5Mo 料加热炉kcal/h 2 精制加热200X104 精制进料油、 H 2 TP347H 炉kcal/h 3 裂化加热200X104 裂化进料油、 H 2 TP347H 炉kcal/h 精制分馏200X104 1Cr5Mo/ 4 精制尾油 15CrMo 塔再沸炉kcal/h 5 裂化分馏200X104 裂化尾油 1Cr5Mo 塔再沸炉kcal/h 四、换热类原料油 /减壳程 减压循 Q345R 环油 1 压循环油25-4I 20+Q345R 换热器管程原料油 减顶油水 / 壳程减塔中 Q345R 段油 2 减压循环25-4I 减顶油、 油换热器管程20+Q345R 水147/385 1 126/271 1 ▲120/368 1 212/206 1 72/263 1 ▲122/365 1 198/185 1 395 1 ▲315 1 ▲405 1 ▲388 1 ▲385 1 ▲217/178 75/147 1 ▲ 228/217 1 ▲87/150

加氢裂化装置技术问答

第一章基础知识 1.1基础知识 什么是不饱和烃? 不饱和烃就是分子结构中碳原子间有双键或三键的开链烃和脂环烃。与相同碳原子数的饱和烃相比,分子中氢原子要少。烯烃(如烯烃、丙烯)、炔烃(如乙炔)、环烯烃(如环戊烯)都属于不饱和烃。不饱和烃几乎不存在于原油和天然气中,而存在于石油二次加工产品中。 原料油特性因数K值的含义?K值的高低说明什么? 特性因数K常用以划分石油和石油馏分的化学组成,在评价原料的质量上被普遍使用。它是由密度和平均沸点计算得到,也可以从计算特性因数的诺谟图求出。K值有UOP K值和Watson K值两种。特性因数是一种说明原料石蜡烃含量的指标。K值高,原料的石蜡烃含量高;K值低,原料的石蜡烃含量低。但它在芳香烃和环烷烃之间则不能区分开。K的平均值,烷烃约为13,环烷烃约为11.5,芳烃约为10.5。特性因数K大于12.1为石蜡基原油,K为11.5~12.1为中间基原油,K为10.5~11.5为环烷基原油。另外非通用的分类法还有沥青基原油,K小于11.5;含芳香烃较多的芳香烃基原油。后两种原油在通用方法中均属于环烷基原油。 原料特性因素K值的高低,最能说明该原料的生焦倾向和裂化性能。原料的K值越高,它就越易于进行裂化反应,而且生焦倾向也越小;反之,原料的K值越低,它就难以进行裂化反应,而且生焦倾向也越大。 什么是油品的比重和密度?有何意义? 物质的密度是该物质单位体积的质量,以符号ρ表示,单位为千克/米3。 液体油品的比重为其密度与规定温度下水的密度之比,无因次单位,常以d表示。我国以油品在20℃时的单位体积重量与同体积的水在4℃时的重量之比作为油品的标准比重,以d420表示。 由于油品的实际温度并不正好是20℃,所以需将任意温度下测定的比重换算成20℃的标准比重。 换算公式:d420=d4t+r(t-20) 式中:r为温度校正值 欧美各国,油品的比重通常用比重指数或称API度表示。可利用专用换算表,将API度换算成引d15.615.6,再换算成d420,也可反过来查,将d420换算成API比重指数。 油品的比重取决于组成它的烃类分子大小和分子结构,油品比重反映了油品的轻重。馏分组成相同,比重大,环烷烃、芳烃含量多;比重

加氢裂化装置设计能力简介.

加氢裂化装置设计能力简介 1.1装置概况 1.1.1 装置简介 中国石油乌石化分公司炼油厂新建100万吨/年加氢裂化装置于2005年5月10日破土动工,2007年9月30日实现装置中交。由中油第一建筑公司、中油第七建筑公司共同承建。其基础设计部分由中国石化工程建设公司(原北京设计院)完成,详细设计部分由中国石化工程建设公司(SEI)和乌石化总厂设计院(UPDI)共同完成。 100万吨/年加氢裂化装置位于炼油厂建南生产规划区,建东侧与消防二队相邻,建西侧与重催装置隔路相望,建北侧与二套低温热装置毗邻,建南侧为规划预留地。装置占地面积17927.5m2。 加氢裂化装置由反应、分馏吸收稳定两部分组成。装置采用“双剂串联尾油全循环”的加氢裂化工艺。反应部分采用SEI成熟的炉前混氢方案;催化剂的硫化采用干法硫化;催化剂的钝化采用低氮油注氨的钝化方案;催化剂再生采用器外再生方案。分馏部分采用脱硫化氢塔+常压塔出柴油方案,设脱硫化氢塔底重沸炉、分馏进料加热炉;吸收稳定部分采用重石脑油作吸收剂的方案。 加氢裂化装置主要原料为炼油厂二套常减压装置的减压蜡油(VGO)和焦化装置的焦化蜡油(CGO),主要产品为轻石脑油、重石脑油、轻柴油,副产品为干气、低分气。加氢裂化装置设计能力为100万吨/年(尾油全循环方案),年开工时间为8400小时。 1.1.2 工艺原理 1.1. 2.1加氢精制 加氢精制是馏份油在氢压下进行催化改质的统称。是指在催化剂和氢气存在下,石油馏分中含硫、氮、氧的非烃组分和有机金属化合物分子发生脱除硫、氮、氧和金属的氢解反应,烯烃和芳烃分子发生加氢饱和反应。通过加氢精制可以改善油品的气味、颜色和安定性,提高油品的质量,满足环保对油品的使用要求。 石油馏分加氢精制过程的主要反应包括:含硫、含氮、含氧化合物等非烃类的加氢分解反应;烯烃和芳烃(主要是稠环芳烃)的加氢饱和反应;此外还有少量的开环、断链和缩合反应。这些反应一般包括一系列平行顺序反应,构成复杂的反应网络,而反应深度和速率往往取决于原料油的化学组成、催化剂以及过程的工艺条件。一般来说,氮化物的加氢最为困难,要求条件最为苛刻,在满足脱氮的条件下,也能满足脱硫、脱氧的要求。 (1)加氢脱硫反应 硫的存在影响了油品的性质,给油品的加工和使用带来了许多危害。硫在石油馏分中的含量一般随馏分沸点的上升而增加。含硫化合物主要是硫醇、硫醚、二硫化物、噻吩、苯并噻吩和二苯并噻吩(硫芴)等物质。含硫化合物的加氢反应,在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原子被脱掉。几种含硫化合物的加氢精制反应如下: 硫醇通常集中在低沸点馏分中,随着沸点的上升硫醇含量显著下降,>300℃的馏分中几乎不含硫醇。硫醇加氢时发生C-S键断裂,硫以硫化氢形式脱除。 硫醚存在于中沸点馏分中,300—500℃馏分的硫化物中,硫醚可占50%;重质馏分中,硫醚含量一般下降。硫醚加氢时首先生成硫醇,再进一步脱硫。

加氢裂化工艺的进展和发展趋势

辽宁石油化工大学 中文题目加氢裂化工艺的进展和发展趋势 教学院研究生学院 专业班级化学工程0904 学生姓名张国伟 学生学号 01200901030412 完成时间 2010 年6月20日

加氢裂化工艺的进展和发展趋势 张国伟 (辽宁石油化工大学抚顺113001) 摘要:加氢裂化是油料轻质化的有效方法之一,且原料适应性强,他可以将馏分油到渣油的各种油料转化为更轻的油品,随世界范围内原油变重,重油加氢裂化技术发展较快。本文主要介绍了重油高压和中压加氢裂化技术的特点,阐述了固定床、沸腾床、移动床、悬浮床重油加氢裂化技术在世界范围内工艺发展趋势。 关键字:加氢裂化;工艺;技术特点; 发展趋势 Hydrocracking process of development and trends Zhang guowei (Liaoning petrochemical industry university fushun 113001) Abstract:The hydrocracking is one of effective methods which transfer fuel oils to light one , and raw material is uncompatible.Tt may transform range from the fraction oil to residual oil of each kinds of fuel oils to a lighter oil quality. Accompanying with the crude oil change heavy ,the heavy oil hydrocracking technological development is pretty quick.This article mainly introduce the characteristics of the heavy oil hydrocracking technology in high pressure and mid-presses, The article elaborates the fixed bed, the ebullition bed, the moving bed, hang the floating floor heavy oil hydrocracking technology in the worldwide scale and the craft trend of development. Key word:hydrocracking; artwork; tech- characteristic; development tendency

加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明、危险因素及防范措施一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工 过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构 化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术, 其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司 开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得 到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜 利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966 年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型

加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢 处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化, 高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化 分离器的操作压力一般为9.OMPa左右。 加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂 化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制 和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器 装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加 氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器, 但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具 有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比 较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多 为此种流程,本节所述的流程即为此种流程。 二、重点部位及设备 (一)重点部位

工艺流程及其描述

xx 有限公司沙棘籽油软胶囊生产工艺流程图及其说明 生产工艺流程图 注:※号为CCP 点 表示洁净区 表示普通工序 表示洁净加工工序

生产工艺流程描述 2.1原料的采购 采购计划初步拟定:由销售部根据市场需要和产品库存制定生产计划,并确认原辅料库存,若原辅料库存数量不能满足生产需要时,应及时通知采购人员进行采购。 2.2原料验收: 库管员及时通知质量部取样,质量部依据《原辅料检验标准》进行检测,库管员凭质量部出具的检验报告单,办理入库手续,不合格则通知采购员作退货处理。 2.3组织生产: 2.3.1由销售部向质量部下达《生产、包装指令》,质量部根据产品工艺配方向生产部下达《生产指令》,由生产工艺员再次确认工艺配方,然后向生产各工序下达分解指令。 2.3.2混料:工序接到生产指令后,根据指令领取物料,在进入洁净区前进行脱包灭菌(用紫外灯或臭氧发生器进行灭菌),称量放入乳化罐混匀,乳化好后用200目的筛网过滤,将其中可能存在的杂质过滤清除,混好料液贮存于料液罐中置于药液区存放待生产。 2.3.3溶胶:溶胶工序操作人员接到指令领取明胶、甘油等,首先在进入洁净区前进行脱包灭菌,灭菌后按工艺要求将明胶、甘油、纯化水按比例称量入罐溶胶,溶好的胶液抽真空后对其黏度检测(2-4OE)放胶。放胶时要用120目的筛网过滤将其中可能存在的杂质滤除,在溶胶过程中因溶胶温度在76℃-80℃,此温度足可以杀死原料中可能存在的细菌。将溶好的胶液放置在胶罐中保温静置待用。 2.3.4压丸:压丸工序根据指令选择模具,安装调试后,把混好的料液和备好的胶液进行上机操作,上机时要注意胶皮的厚度、内容物的装量等,同时要随时监视胶丸的丸形、装量,防止胶丸漏夜。 2.3.5 定型干燥:胶囊压丸后进入转笼内经过一定时间风吹干燥,失去部分水分,使胶丸定形,定形时间:≥3小时,转笼转速:40-50r/min。 2.3.6排盘干燥:将在干燥笼中初步干燥后的软胶囊,放在一定尺寸的干燥盘上使其分布均匀,再在风室中通过一定的温度、湿度,进行干燥,使软胶囊的水分达到要求(胶皮水分≤14%)。风室温度:20-27℃、相对湿度:≤50% 2.3.7选丸:干燥后的软胶囊对其外观进行挑选,将有缺陷的胶囊剔除,同时将其表面可能存在的杂质去除。 2.3.8抛光:擦去胶丸表面的油脂,使胶丸表面光滑有光泽。 2.3.9上工序处理好的软胶囊质量部对其进行取样检测,若合格交下工序包装;不合格交上工序处理。(微生物不合格由上工序用酒精清洗,清洗后由质量部重

工艺流程及其描述

xx有限公司沙棘籽油软胶囊生产工艺流程图及其说明生产工艺流程图

表示普通工序CCP:※号为表示洁净区表示洁净加工工序注点 生产工艺流程描述 2.1原料的采购 采购计划初步拟定:由销售部根据市场需要和产品库存制定生产计划,并确认原辅料库存,若原辅料库存数量不能满足生产需要时,应及时通知采购人员进行采购。 2.2原料验收: 库管员及时通知质量部取样,质量部依据《原辅料检验标准》进行检测,库管员凭质量部出具的检验报告单,办理入库手续,不合格则通知采购员作退货处理。 2.3组织生产: 2.3.1由销售部向质量部下达《生产、包装指令》,质量部根据产品工艺配方向生产部下达《生产指令》,由生产工艺员再次确认工艺配方,然后向生产各工序下达分解指令。 2.3.2混料:工序接到生产指令后,根据指令领取物料,在进入洁净区前进行脱包灭菌(用紫外灯或臭氧发生器进行灭菌),称量放入乳化罐混匀,乳化好后用200目的筛网过滤,将其中可能存在的杂质过滤清除,混好料液贮存于料液罐中置于药液区存放待生产。 2.3.3溶胶:溶胶工序操作人员接到指令领取明胶、甘油等,首先在进入洁净区前进行脱包灭菌,灭菌后按工艺要求将明胶、甘油、纯化水按比例称量入罐溶胶,溶好的胶液抽真空后对其黏度检测(2-4OE)放胶。放胶时要用120目的筛网过滤将其中可能存在的杂质滤除,在溶胶过程中因溶胶温度在76℃-80℃,此温度足可以杀死原料中可能存在的细菌。将溶好的胶液放置在胶罐中保温静置待用。 2.3.4压丸:压丸工序根据指令选择模具,安装调试后,把混好的料液和备好的胶液进行上机操作,上机时要注意胶皮的厚度、内容物的装量等,同时要随时监视胶丸的丸形、装量,防止胶丸漏夜。 2.3.5 定型干燥:胶囊压丸后进入转笼内经过一定时间风吹干燥,失去部分水分,使胶丸定形,定形时间:≥3小时,转笼转速:40-50r/min。 2.3.6排盘干燥:将在干燥笼中初步干燥后的软胶囊,放在一定尺寸的干燥盘上使其分布均匀,再在风室中通过一定的温度、湿度,进行干燥,使软胶囊的水分

加氢裂化装置工艺流程描述

装置工艺流程描述 一、加氢裂化工艺介绍 1、加氢裂化联合装置由如下部分组成: 1)在反应器部分进料油和循环油通过加氢裂化反应转化为轻烃、石脑油、航煤和柴油。2)在分馏部分,把从反应部分来的转化油切割成各种产品。 3)在酸性气处理部分,酸性干气和酸性液化气用醇胺溶液洗涤,以便除掉H2S. 2、反应器部分 1)新鲜进料流程 从油罐来的新鲜进料经过滤器K101除去固体和沉降脱水后,进入缓冲罐D101,再由P101A、B送到换热器E104和E104A、B,同反应器流出物换热,然后,与热循环氢混合一起进入R101. 2)当进料及循环氢通过精制催化剂时,脱硫、脱氧、脱氮和烯烃炮和反应开始发生,并在反应器底部订层完成,这些是放热反应,反应物温度升高。通过控制反应器入口温度及调节急冷氢量,使温度上升受到抑制,以延长催化剂的寿命,同时防止发生飞温。 在R101反应产物流出线上,要设置一个采样阀,以测定氮的转化。在生产期间,要控制流出油的总氮含量在50ppm(wt.)内,就要调节R101的平均床层温度。 如果反应器内的温度超商,用降低第二反应炉F102温度和加大急冷氢仍不能控制裂化反应速度,则器内温度急升会严重地使催化剂结焦,甚至破坏设备结构,使反应器壁过热。如果最大的冷却反应器仍不能控制催化剂床层温度,则反应器和关联设备必须降压。当R102A和B中的任一个反应器温度超过它的正常值28℃时,应立即启动7bar/min泄压系统降压。要严格控制R102A、B的温度,以保证新鲜进料100%地转化成所需要产品。在操作中,新鲜进料和循环油比例要保持不变。 3)反应产物换热器的流程 从Rl028出来的反应产物通过一组换热器(E101—E105)回收热量,最后用空气冷器A101冷却到49度后进入高压分离器Dl02。 空冷器进口注入冲洗水以除氨和防止氨盐沉积.注入处将允许大部分水汽化。注水泵Pll4B注 水注入西面四组空冷,Pll4C注水注入东面四组空冷,Pll4A_互为Pll4B、C备用。 4)气液分离 经冷却的反应产物进入Dl02,在其中进行油、水、气三相分离。烃类产品通过Dl02液位控制 调节阀Ll03A、B进入低压分离器Dl03。为了节能,正常情况下,液体全部经过Ll03A阀到能量回收透平HTl01进Dl03。自D102底排出的水进入炼厂酸性水处理系统。 D103得到的物料大约在1.96MPa下操作,其闪蒸气送到酸性气处理部分,液相烃经与柴油和尾油换热后送分馏部分。 5)循环氢及反应器入口氢系统 由Dl02来的气体进入循环氢脱硫塔入口分液罐V901,再进脱硫塔T901,然后从T901出来进入胺液分液罐V902后,进入压缩机Cl01(在循环氢脱硫系统不投用时,循环氢直接由Dl02顶进入Cl01)。机出口分成两路:第一路与来自新氢压缩机Cl02的新氢混合并通过换热器与反应器流出物换热。经过预热的氢气又分成两路经过反应加热炉(F101和Fl02)加热并与相应物流混合后分别进入R101和Rl02A。Fl01和Fl02控制Rl01和Rl02A的入口温度。 从Cl01出来的第二路气流作急冷氢。用于降低在反应器中急冷点上的反应物温度。本

炼铁工艺流程图描述

熔炼工艺流程及简介 1 熔炼炉生产概况 熔炼炉是制铁工艺流程的主体,它是由耐火砖砌筑的竖立圆筒炉体,外壳钢枝制作,外壳与耐火砖之间有冷却设备,我公司450m3熔炼炉冷却壁共有348块,共分12层冷却壁;一层冷却板;1-3层为光板冷却壁、材质耐热铸铁冷却壁;4-12层为镶砖冷却壁材质是铁素体球墨铸铁冷却壁;6-7层冷却壁之间有一层冷却板,炉喉有18块水冷炉喉钢砖,炉缸有一个铁口、2个渣口、14个风口;从其上部装入矿石,熔剂和燃料向下运动,下部鼓入被加热的空气。熔炼炉生产的主要产品是生铁,副产品有炉渣和煤气,炉渣可用来制作水泥,保温材料、建筑材料和肥料,煤气可以做为燃料供给各用户。 1.1熔炼炉生产的主要工艺过程: 1.1.1供料 熔炼炉冶炼用的主要原燃料:块矿、烧结矿、石灰石、焦炭,有K1、J1皮带机把原燃料送到1#转运站,经K2、J2皮带机、分料车运到指定的矿槽。 1.1.2上料 由料仓输出的原料,燃料和熔剂,经仓下给料机、振动筛、经筛分、称量后,用料车按一定比例一批一批有序地送到熔炼炉炉顶,并卸入炉顶受料斗。 1.1.3装料 炉顶装料设备的任务就是把提升到炉顶的炉料,按一定的工作制度装入熔炼炉炉喉。 1.1.4冶炼 熔炼炉冶炼主要是还原过程,把铁氧化物还原成含有碳、硅、锰、硫、磷、镍、铬等杂质的铁合金。由鼓风机连续不断地把冷风送到热风炉加热到1100~1250℃,再通过炉缸周围的风口进入熔炼炉,由炉顶加入的焦炭和风口鼓入的热空气燃烧燃料,产生大量的煤气和热量,使矿石源源不断地熔化还原,产生的铁水和熔渣贮存在熔炼炉炉缸内,定期地由铁口和渣口排出。 1.1.5产品处理 在渣铁处理中,出铁前先从渣口放出溶渣,流入冲渣沟进行粒化后,以脱水器脱水,有皮带运到渣仓。设有一个应急用干渣坑,出铁时,用液压开口机打开铁口,使铁水流入铁水罐车运到铸铁机铸成铁块,出完铁后用液压泥炮把铁口堵上。 经熔炼炉顶部导出的煤气通过重力除尘器、布袋除尘过滤后,经调压阀组调压后输往各煤气用户使用,从重力除尘器、布袋除尘器排出的炉尘,经过处理回收运往焙烧厂作为烧结原料。

加氢裂化—装置重点部位设备说明及危险因素及防范措施

加氢裂化—装置、重点部位设备说明及危险因素及防范措施 一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工 过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构 化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术, 其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司

开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得 到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜 利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966 年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢 处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化, 高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化 分离器的操作压力一般为9.OMPa左右。

加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂 化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制 和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器 装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加 氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器, 但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具 有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比 较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多 为此种流程,本节所述的流程即为此种流程。

相关主题