搜档网
当前位置:搜档网 › 运动控制系统转速电流双闭环VM直流调速系统DOC

运动控制系统转速电流双闭环VM直流调速系统DOC

运动控制系统转速电流双闭环VM直流调速系统DOC
运动控制系统转速电流双闭环VM直流调速系统DOC

运动控制系统课程设计

题目:转速、电流双闭环V-M直流调速系统专业班级:

学号:

姓名:

指导教师:

成绩:

转速电流双闭环直流调速系统

Speed and current double closed-loop V-M DC speed regulating system

学生姓名:

指导教师:

摘要

直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。

关键词:双闭环;晶闸管;转速调节器;电流调节器;Simulink

The design uses thyristors, diodes and other devices designs a speed, current double-loop SCR DC converter system. The system sets up the current detecting aspect, the current regulator ACR and the speed detecting link, speed regulator ASR, composes the current central and the speed central, the former through the feedback of the current components to level off the current, the latter through the feedback of speed detecting device to maintain the speed stably and finally eliminates the deviation of speed bias.,thus allowing the system to the purpose of regulating the current and speed. when the system starts, the speed outer ring saturats non-functional, the current inner ring plays a major role to regulate the starting current to maintain the maximum so that the speed linear change, to reach a given value; when it operates steadily, the speed negative feedback from the outer ring plays a major role ,to let the speed changes with the given speed voltage , at the same time the current inner ring regulates the armature current of motor adjustment to balance the load current. Simulink for system through mathematical modeling and system simulation. Finally display control system model and the results of anti-truth.

Keywords:Double-loop;thyristors,;the speed regulator ;the current regulator;Simulink

摘要 .................................................................................................................................................. I ABSTRACT ......................................................................................................................................... II 第一章绪论 (1)

第二章设计任务与要求 (2)

2.1 性能指标要求 (2)

2.2 设计内容 (2)

2.3 主要设计部分 (2)

第三章原理图设计 (3)

3.1 基本设计思路 (3)

3.2 确定转速、电流反馈系数 (3)

3.3 电流环ACR的设计 (4)

3.4 转速环的设计 (5)

3.5 转速电流双闭环MATLAB仿真 (7)

四.转速电流检测电路的设计 (9)

4.1 电流检测电路的设计 (9)

4.2 转速检测电路的设计 (12)

4.3 转速、电流检测电路的PCB设计 (18)

第五章总结 (20)

第六章心得体会 (20)

参考文献 (21)

第一章绪论

电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,等行业。这些行业中绝大部分生产机械都采用电动机做原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。

20世纪90年代前地大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场互相独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的启动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其他电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺候控制首选。因为它具有良好的线性特征,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。

本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器。并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

第二章设计任务与要求

2.1 性能指标要求

(1)直流电动机:P N = 1.1 kW,n N = 1 000 r/min,U N = 220 V,I N = 6.58 A,GD2 = 0.28 kg.m2,过载倍数λ = 2,电枢绕组的电阻R D= 4 Ω,电感L D = 67 mH;

(2)变压器:副边绕组的电阻R B= 0.65 Ω,电感L B = 4 mH,额定电压U2e = 145 V,额定电流I2e = 5.37 A;

(3)平波电抗器:电阻R p= 0.1 Ω,电感L p = 214 mH;

(4)采用三相全控桥式整流电路,K s = 57;

(5)电流调节器最大给定值U imж = 10 V,转速调节器最大给定值U nmж = 6 V;

(6)电流滤波时间常数T0i = 1 ms,转速滤波时间常数T0n = 5 ms;

(7)设计要求稳态无静差,电流超调量σi% ≤ 5%,空载启动到额定转速时的转速超调量σi% ≤ 10%。

2.2 设计内容

(1)结合系统组成原理图,对起动和抗扰过程进行理论分析;

(2)系统硬件电路设计(硬件电路设计:必须完成电路原理图设计、参数计算、元器件选型,根据时间和兴趣可进一步选做PCB板的设计、制作与调试)

2.3 主要设计部分

(1)电流检测电路的设计

(2)转速检测电路的设计

第三章 原理图设计

3.1 基本设计思路

转速,电流双闭环调速系统属于多环控制系统。对电流双闭环调速系统而言,先从内环(即电流环)出发,根据电流控制要求,确定把电流环校正为那种典型系统。按照调节对象选择调节器及其参数。设计完电流环环节之后,把它等效成一个小惯性环节,作为转速环的一个组成部分。然后用同样的方法进行转速环的设计,每个环的设计都是把该环校正为一个典型系统,以获得预期的性能指标。目前的V-M 调速系统多为带电流内环的速度控制系统。双闭环调速系统的动态结构图如图3-1所示:

图3-1 双闭环直流调速系统动态结构图

3.2 确定转速、电流反馈系数

(1)电势常数Ce

1220 6.584

0.19368min 1000

N N a N U I R Ce V r n ---?=

==?? (2)三相桥式晶闸管整流装置的滞后时间Ts

s mf T S 0017.050

62121=??==

(3)电流反馈系数β

设最大允许电流2dm N I I =,则电流反馈系数为

10

0.76/2 6.58

im dm U V A I β=

==? (4)转速反馈系数α 16

0.006m i n

1000

nm N U V r n α-=

==??? 3.3 电流环ACR 的设计

(1)电流环小时间常数

0.0010.00170.0027i oi s T T T s ∑=+=+= (2)电磁时间常数 0.067

0.016754

l L T s R =

== (3)电流调节器结构的选择 根据设计要求,%5≤i δ,且

10.01675 6.2100.0027

i T T ∑=≈< 因此可按典I 系统设计,且选用PI 调节器,其传递函数为

s

s K s W i i i

ACR ττ1

)(+= (4)确定电流调节器参数

ACR 超前时间常数: 10.01675i T s τ==

电流环开环放大系数I K :要求%5≤i δ时,应按二阶“最佳”系统设计

111185.185220.0027

I i K s T -∑===?

从而,ACR 的比例系数为

0.01675(40.1)

185.1850.28640.7657

i i I

S R K K K τβ?+==?=? (5)校验近似条件

电流环截止频率:1185.185ci I K s ω-== 晶闸管装置传递函数近似条件

S

ci T 31≤

ω

ci S s T ω>=?=-11.1960017

.03131 满足近似条件。 小时间常数近似条件 oi

s ci T T 1

31≤

ω

ci oi s s T T ω>=??=-169.1610025.00017.01

31131

满足近似条件。

忽略反电势对电流环影响的条件 1

1

3

T T m ci ≥ω

1379.06ci s ω-==< (6)17.1

0.2864ASR W S

=+

3.4 转速环的设计

(1)转速环小时间常数

220.00270.0050.01n i on T T T s ∑∑=+=?+=

(2)选择转速调节器结构

根据稳态、动态性能指标的要求,应按典I 系统设计转速环,为此应选用PI 调节器,其传递函数为 s

s K s W n n n

ACR ττ1

)(+= (3)选择转速调节器参数

为了使转速环的跟随性能和抗扰性能都较好,应采用min Mr 准则选择参数,且取h=5,

因此ASR 的超前时间常数为 50.010.05n n hT s τ∑==?=

160.760.193680.095

302250.006 4.65

e m n n h T K h RT εβα+???===???()C

(4)校验近似条件

转速环截止频率 11

2390.0511.95N

cn N n K K s ωτω-=

==?=

电流环传递函数简化条件 i

cn T ∑≤

51ω 而

11190.9550.0027

cn i s T ω-∑==>? 满足近似条件。

小时间常数近似处理条件

on

i cn T T ∑≤

21

31ω

1128.683cn ω-==>

满足近似条件。 (5)600

30ASR W S

=+

(6)校核转速超调量

因为当h=5时

%2.81%max

=?b

C C 而 40.1 6.58139.3/min 0.19368

a N N N e e R R R n I I r C C ++?=

==?= 所以m

n

s N N L dm b T T n n I I I C C ∑?

??-??=2%)(

%max δ 26.5801390.001

81.2%24.7%10%6.581000

0.095

?-=?

???=< 可见,所设计的系统能满足设计要求。

3.5 转速电流双闭环MATLAB 仿真

(1)用MATLAB 对转速电流双闭环建模,具体模型如图3-2所示,并将上列所计算好的参数代入,对其进行仿真分析。

图3-2 转速电流双闭环MATLAB模型

(2)突加给定,让其工作在额定工作状态,其仿真结界如图3-3所示。

图3-3 突加给定的仿真波形

四.转速电流检测电路的设计

转速、电流负反馈双闭环直流调速系统,其原理就是再开环调速系统的基础上增加转速调节器和电流调节器通过当前的转速反馈和电流反馈以改善系统的动态性能和稳态性能,因此反馈信号的准确度很大程度上决定了系统的性能指标。

4.1 电流检测电路的设计

方案一:由于电路通过可控整流给直流电机供电,主电路流过的电流为直流,因此可在主电中串入康铜丝采样电阻,取出采样电阻两端的电压,串入比例调节器加以放大,

其具体计算如下:

康铜丝采样电阻取0.33Ω,电路中流过最大电流为2 6.5813.16A

?=

此时采样电阻两端电压为0.3313.16 4.3428V

?=

则比例调节器的比例系数为

10

K==

2.3

4.3428

此方法虽然原理简单,但是由可控整流电路中的谐波较大,因此测量结果不是很

准确,且容易受到电阻阻值温漂的影响。

方案二:通过康铜丝采样,再将采样电压通过电流检测芯片,通过比例调节器较准,这样设计电路稍微复杂一些,但是测得电流较为准确。

因此采用方案二

电流检测芯片采用TI公司的INA282,INA282系列是电压输出电流并联监控器,此监控器能够感测共模电压上-14V至+80V与电源电压无关。零漂移架构的低偏移使得电流感测在整个分流器上的最大压降低至10mV的量程。这个电流分流监控器由+2.7V至+18V 电源供电,使用最大900μA的电源电流。此芯片通过在+IN和-IN之间接入一个采样电阻(电阻值很小约0.01Ω为宜)当有电阻上有电流流过时采样电阻上将会产生压降,通过+IN 与-IN口进入,再由芯片内部的差分放大,抑制共模信号放大差模信号,由OUT口输出,通过REF1,REF2引脚控制输出模式。具体电路如图4-1所示:

图4-1 电流检测电路

当采样电阻为0.02Ω测试报告如表4-1所示

表4-1 电流检测报告

由表4-2可知:电流检测芯片检测电流,输出电压为(0.20.1)i U I V =+ 当电流为13.16A 时,13.160.20.1 2.732i U V =?+=

则比例调节器的比例系数为

10

3.662.732

K =

= 因此可调电位器取值应为36.6K 为宜。

4.2 转速检测电路的设计

方案一:采用直流测速发电机,将转速转化为电压值,通过分压电阻分压后再反馈到ACR 。

该方案电路比较简单,但是测量不够精确。

测速发电机采用ZCF 系列,具体参数如表4-2所示

表4-2 ZCF 直流发电机

选取ZCF221A 直流发电机,根据表中参数,当然1000/min n r =,1000

5121.252400

U V =

?=,可调电阻总阻值取50K ,则采样分压电阻阻值6

501421.25R K =

?=

具体电路如图4-2所示:

图4-2 测速发电机转速检测电路

方案二:采用光电编码器对速度进行检测,通过51单片机采集光电编码器产生的脉冲信号,并进行处理,同时通过数码管将转速显示出来,同时通过DA数模转换器将

速度信号转换成模拟信号输送至ASR调节器,该方案电路比较复杂,但测速比较

准确。因此选择该方案较好。

4.21 器件选型

(1)光电编码器选择

光电编码器采用ZKT6012空心旋转编码器K6012光电编码器,1024码盘,每转产生1200个脉冲,工作电压为直流DC5-12V。

(2)单片机选择

单片机采用STC89C52,该单片机是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash存储器。STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

(3)DA数模转换器选择

数模转换器采用PCF8591,它是单片、单电源低功耗8位CMOS数据采集器件,具有4个模拟输入、一个输出和一个串行I2C总线接口。3个地址引脚A0、A1和A2用于编程硬件地址,允许将最多8个器件连接至I2C总线而不需要额外硬件。器件的地址、控制和数据通过两线双向I2C总线传输。器件功能包括多路复用模拟输入、片上跟踪和保持功能、8位模数转换和8位数模拟转换。最大转换速率取决于I2C总线的最高速率。

(4)运算放大器的选择

运算放大器采用TI公司的LM358,LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

4.22 总体转速检测电路设计

采用光电编码器对转速进行检测,检测及显示电路如图4-3所示,数模转换反馈电路如图4-4所示

图4-3 转速检测及显示电路

图4-4 数模转换电路

4.23 转速检测的Proteus仿真

(1) 转速检测仿真电路设计如图4-5所示

图4-5 转速检测仿真电路

(2)具体参数计算

假定转速检测能测最大转速为1500r/min,数模转换器为8位,最多能测出82256

=个

点,数模转换器供电电压为5V,当1000/min

n r

=时,

1000

5 3.33

1500

n

U V

=?=,仿真结果如

图4-6所示

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

转速电流双闭环直流调速系统 课程设计

课程设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:U N=220V,I N=205A,=575r/min , R a=0.1,电枢电路总电阻R=0.2,电枢电路总电感L=7.59mH,电流允许过载倍数,折算到电动机轴的飞轮惯量。 晶闸管整流装置放大倍数,滞后时间常数 电流反馈系数( 转速反馈系数() 滤波时间常数取,。 ;调节器输入电阻R0=40。 设计要求: 稳态指标:无静差; 动态指标:电流超调量;空载起动到额定转速时的转速超调量。

目录 课程设计任务书 (1) 第一章直流双闭环调速系统原理 (3) 1.1系统的组成 (3) 1.2 系统的原理图 (4) 第二章转速、电流双闭环直流调速器的设计 (6) 2.1 电流调节器的设计 (6) 2.2 转速调节器的设计 (13) 第三章系统仿真 (21) 心得体会 (26) 参考文献 (27)

第一章直流双闭环调速系统原理 1.1系统的组成 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PI调节的单个转速闭环调速系统可以在保证系统稳定的前提下实现转速无静差。但是对系统的动态性能要求较高的系统,单闭环系统就难以满足需要了。 为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。所以,我们希望达到的控制:启动过程只有电流负反馈,没有转速负反馈;达到稳态转速后只有转速负反馈,不让电流负反馈发挥作用。故而采用转速和电流两个调节器来组成系统。 为了实现转速和电流两种负反馈分别起作用,可以在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-1所示。把转速调节器的输出当作电流调节器的输入,再把电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

电流转速双闭环直流调速系统matlab仿真实验

仿真设计报告

转速、电流双闭环直流调速系统的Simulink仿真设计 一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时以最大电流给定值使电流调节器输出移相信号直流电压迅速上升,电流也随即增大直到最大给定值,电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化校正和补偿电动机的转速偏差。另外电流调节器的小时间常数,还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

直流电动机转速电流双闭环调速系统设计

直流电动机调速系统课程设计 班级:电气0802 姓名:刘志勇 学号: 08140218

目录 第一章:设计内容 (2) 1.1设计内容: (2) 第二章:设计要求 (2) 2.1设计要求 (2) 2.2设计参数: (2) 第三章:双闭环直流调速系统设计 (3) 3.1转速、电流双闭环直流调速系统的成 (3) 3.2系统电路结构 (4) 3.3调节器的设计 (7) 第四章单闭环直流调速系统设计 (14) 4.1闭环系统调速的组成及其静特性 (14) 4.2 稳态参数计算 (16) 第五章相关原理图设计波形图 (19) 5.1.主电路图 (19) 5.2.控制电路图 (20) 第六章设计总结及参考文献 (23) 6.1设计总结 (23) 6.2 参考资料 (23) 1

第一章:设计内容 1.1设计内容: (1)根据给定参数设计转速电流双闭环直流调速系统 (2)根据给定参数设计转速单闭环直流调速系统,使用模拟电路元件实现转速单闭环直流调速系统 第二章:设计要求 2.1设计要求 2.1.1根据设计要求完成双闭环系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结构图 2.1.2直流调速系统的调节器,选择调节器结构、利用伯德图完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘系统动态结构图 2.1.3设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电路及主电路电路图 2.1.4测试单闭环调速系统的PWM驱动信号波形、电压电流波形、转速反馈波形和直流电动机转速及控制电路各单元的相关波形。 2.2设计参数: =1.8Ω 2.2.1电枢电阻R a 电枢电感L =9.76mH、GD2=16.68N·cm2、Tm=35ms a 2

VM双闭环直流调速系统课程设计报告

V M双闭环直流调速系统 课程设计报告 This model paper was revised by LINDA on December 15, 2012.

实训报告课程名称:专业实训 专业:班级: 学号:姓名: 指导教师:成绩: 完成日期: 2015 年 1月15 日

任务书

1 单闭环直流调速系统 主电路设计 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。 图 单闭环直流调速系统原理框图 直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。 整流变压器额定参数的计算 为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压 U 2 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。 (1)二次侧相电流和一次侧相电流 在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。 表 几种整流线路变压器电压计算系统

电路模式 单相全波 单相桥式 三相半波 三相桥式 A C 所以变压器二次侧相电压为:2 1.35200.930U V =?÷= 变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。 表 几种整流线路变压器电流Id/I2 电路模式 电阻性负载 电感性负载 单相全控桥 1 三相全控桥 查表得, 1A =。 变压器的二次侧电流:2 7d I I A == 变压器的一次侧电流I 1的计算公式: 一次侧电流:2112/7302200.95I I U U A =*=?÷= (2)变压器容量

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真 摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。 关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。 课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

转速电流双闭环直流调速系统

课程设计说明书 课程名称:电力拖动自动控制系统 设计题目:转速电流双闭环直流调速系统 院系: 学生姓名: 学号: 专业班级: 指导教师:

2010年12 月30 日

转速电流双闭环直流调速控制系统 摘要:此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 关键词:双闭环,晶闸管,转速调节器,电流调节器

目录 第一章.直流拖动控制系统总体设计 (1) 一、直流调速系统拖动方案的对比 (1) 二、直流调速系统控制方案的确定 (2) 三、直流电动机的调速方式 (2) 第二章.主电路参数计算和保护环节设计 (3) 一、整流变压器额定参数的计算 (3) 二、主电路器件的计算与选择 (3) 三、主电路保护环节的设计与计算 (3) 四、电抗器参数计算与选择 (4) 第三章.调速系统控制单元的确定和调整 (4) 一、检测环节 (4) 二、调节器的选择与调整 (5) 三、系统的给定电源 (11) 第四章.触发电路的设计 (12) 第五章.调速系统动态参数的工程计 (12) 心得体会 (12) 参考文献 (13) 附件.课程设计要求 (13)

VM双闭环不可逆直流调速系统设计

VM双闭环不可逆直流调速系统设计

运动控制系统 课程设计 题目:某V-M双闭环不可逆直流调速系统设计 专业班级: 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

目录 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的与意义 (1) 2 课程设计概述与要求 (2) 2.1 课程设计概述 (2) 2.2课程设计要求............................................... 错误!未定义书签。 3 转速、电流双闭环直流调速系统的组成 (3) 4 调速系统主电路元部件的确定及其参数计算4 4.1变压器参数选取 (4) 4.1.1变压器二次侧电压U2的计算 (4) 4.1.2一次、二次侧相电流I1、I2的计算 (4) 4.1.3 变压器容量S的计算5 4.2 平波电抗器参数计算5 4.2.1电流连续的临界电感量L1的计算5 4.2.2限制输出电流脉动的临界电感量L2的计算5 4.2.3电动机电感量L D的计算6 4.2.4实际串入平波电抗器的电感量L的计算6 4.3可控晶闸管参数计算6 4.3.1晶闸管的额定电压计算6 4.3.2晶闸管的额定电流计算7 4.3.3三相桥式全控整流电路原理7

4.3.4 整流电路及晶闸管保护电路设计8 4.4 过电压保护和du/dt限制9 4.5 过电流保护和di/dt限制10 5 控制系统设计10 5.1 双闭环调速系统的动态结构10 5.2 电流调节器的设计11 5.2.1 电流环结构框图的化简11 5.2.2 电流环结构框图小惯性环节近似处理12 5.2.3 电流调节器结构的选择12 5.2.4 电流调节器的实现13 5.2.5 电流调节器的参数计算13 5.3转速调节器的设计15 5.3.1 转速环结构框图的化简15 5.3.2转速调节器结构的选择1 6 5.3.3转速调节器的实现17 5.3.4 转速调节器的参数计算17 6 触发电路的选择与原理图19 7 双闭环直流调速系统MATLAB仿真22 8 设计总结23 9参考文献24附录V-M双闭环不可逆直流调速系统电气原理图25

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

转速、电流双闭环直流调速系统设计

运动控制课程设计 专业:自动化 班级: 姓名: 学号: 指导教师: 2015年07月 16 日

转速、电流双闭环直流调速系统设计 1.设计目的 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。故采用转速、电流双闭环控制系统。 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路;基本数据如下: (1)直流电动机:220V、160A、1460r/min、Ce=0.129Vmin/r,允许过载倍数λ=1.5; (2)晶闸管装置放大系数:K s=40; (3)电枢回路总电阻:R=0.5Ω; (4)时间常数:T l=0.03s,T m=0.19s; (5)电流反馈系数:β=0.042V/A; (6)转速反馈系数:α=0.0068Vmin/r; 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 3.设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统: (1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; (2)分析电流环不同参数下的仿真曲线; (3)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线 (5)进行Simulink仿真,验证设计的有效性。 4.设计内容 4.1双闭环直流调速系统的组成

相关主题