搜档网
当前位置:搜档网 › 动量和能量讲义汇总

动量和能量讲义汇总

动量和能量讲义汇总
动量和能量讲义汇总

第三讲 典型例题解析

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第五、第六章的部分例题和习题。

第五部分 动量和能量

第一讲 基本知识介绍

一、冲量和动量

1、冲力(F —t 图象特征)→ 冲量。冲量定义、物理意义

冲量在F —t 图象中的意义→从定义角度求变力冲量(F 对t 的平均作用力) 2、动量的定义 动量矢量性与运算 二、动量定理

1、定理的基本形式与表达

2、分方向的表达式:ΣI x =ΔP x ,ΣI y =ΔP y …

3、定理推论:动量变化率等于物体所受的合外力。即t

P

??=ΣF 外

三、动量守恒定律

1、定律、矢量性

2、条件

a 、原始条件与等效

b 、近似条件

c 、某个方向上满足a 或b ,可在此方向应用动量守恒定律 四、功和能

1、功的定义、标量性,功在F —S 图象中的意义

2、功率,定义求法和推论求法

3、能的概念、能的转化和守恒定律

4、功的求法

a 、恒力的功:W = FScos α= FS F = F S S

b 、变力的功:基本原则——过程分割与代数累积;利用F —S 图象(或先寻求F 对S 的平均作用力)

c 、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点 五、动能、动能定理

1、动能(平动动能)

2、动能定理

a 、ΣW 的两种理解

b 、动能定理的广泛适用性

六、机械能守恒

1、势能

a 、保守力与耗散力(非保守力)→ 势能(定义:ΔE p = -W 保)

b 、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达 2、机械能

3、机械能守恒定律 a 、定律内容

b 、条件与拓展条件(注意系统划分)

c 、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。 七、碰撞与恢复系数

1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类) 碰撞的基本特征:a 、动量守恒;b 、位置不超越;c 、动能不膨胀。

2、三种典型的碰撞

a 、弹性碰撞:碰撞全程完全没有机械能损失。满足—— m 1v 10 + m 2v 20 = m 1v 1 + m 2v 2 21 m 1210v + 21 m 2220v = 21 m 121v + 2

1 m 222v 解以上两式(注意技巧和“不合题意”解的舍弃)可得:

v 1 =

21201021m m v 2v )m m (++-, v 2 = 1

210

2012m m v 2v )m m (++-

对于结果的讨论:

①当m 1 = m 2 时,v 1 = v 20 ,v 2 = v 10 ,称为“交换速度”;

②当m 1 << m 2 ,且v 20 = 0时,v 1 ≈ -v 10 ,v 2 ≈ 0 ,小物碰大物,

原速率返回;

③当m 1 >> m 2 ,且v 20 = 0时,v 1 ≈ v 10 ,v 2 ≈ 2v 10 ,

b 、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律

c 、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有

v 1 = v 2 =

2

120

2101m m v m v m ++

3、恢复系数:碰后分离速度(v 2 - v 1)与碰前接近速度(v 10 - v 20)的比值,即:

e =

20

101

2v v v v -- 。根据“碰撞的基本特征”,0 ≤ e ≤ 1 。

当e = 0 ,碰撞为完全非弹性; 当0 < e < 1 ,碰撞为非弹性; 当e = 1 ,碰撞为弹性。 八、“广义碰撞”——物体的相互作用

1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位

置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v 1 = v 10 ,v 2 = v 20的解。

2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE = ΔE 内 = f 滑·S 相 ,其中S 相指相对路程。

第二讲 重要模型与专题

一、动量定理还是动能定理?

物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

先用动量定理推论解题。

取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S ·v Δt 的空间,遭遇n ΔV 颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

F = t P ?? = t v M ??? = t v V n m ???? = t

v

t nSv m ???? = nmSv 2

如果用动能定理,能不能解题呢?

同样针对上面的物理过程,由于飞船要前进x = v Δt 的位移,引擎推力F 须做功W = F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔE k 为零,所以:

W = 2

1

ΔMv 2

即:F v Δt = 2

1

(n m S ·v Δt )v 2 得到:F =

2

1nmSv 2

两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在

动量定理的解题中,由于I = F t ,由此推出的F =

t

P

??必然是飞船对垃圾的平均推力,再对飞船用

平衡条件,F 的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。 (学生活动)思考:如图1所示,全长L 、总质量为M 的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v 将绳子拉直。忽略地面阻力,试求手的拉力F 。

解:解题思路和上面完全相同。

答:L

Mv 2

二、动量定理的分方向应用

物理情形:三个质点A 、B 和C ,质量分别为m 1 、m 2和m 3 ,用拉直且不可伸长的绳子AB 和BC 相连,静止在水平面上,如图2所示,AB 和BC 之间的夹角为(π-α)。现对质点C 施加以冲量I ,方向沿BC ,试求质点A 开始运动的速度。

模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B 质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。

下面具体看解题过程——

绳拉直瞬间,AB 绳对A 、B 两质点的冲量大小相等(方向相反),设为I 1 ,BC 绳对B 、C 两质点的冲量大小相等(方向相反),设为I 2 ;设A 获得速度v 1(由于A 受合冲量只有I 1 ,方向沿AB ,故v 1的反向沿AB ),设B 获得速度v 2(由

于B 受合冲量为1I +2I

,矢量和既不沿AB ,也不沿BC 方向,可设v 2与AB 绳夹角为〈π-β〉,如图3所示),设C 获得速度

v 3(合冲量I +2I

沿BC 方向,故v 3沿BC 方向)。

对A 用动量定理,有:

I 1 = m 1

v 1

B 的动量定理是一个矢量方程:1I +2I = m 22v

,可化为两个分方向的标量式,即:

I 2cos α

I 1

=

m 2

v 2cos

β

I 2sin α= m 2 v 2sin β ③ 质点C 的动量定理方程为:

I - I 2 = m 3 v 3 ④ AB 绳不可伸长,必有v 1 = v 2cos β ⑤

BC 绳不可伸长,必有v 2cos(β-α) = v 3 ⑥

六个方程解六个未知量(I 1 、I 2 、v 1 、v 2 、v 3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——

1、先用⑤⑥式消掉v 2 、v 3 ,使六个一级式变成四个二级式: I 1 = m 1 v 1 ⑴ I 2cos α-I 1 = m 2 v 1 ⑵ I 2sin α= m 2 v 1 tg β ⑶ I - I 2 = m 3 v 1(cos α+ sin αtg β) ⑷

2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

I 1 = m 1 v 1 ㈠ I 2cos α-I 1 = m 2 v 1 ㈡

I = m 3 v 1 cos α+ I 22232m sin m m α

+ ㈢

3、最后对㈠㈡㈢式消I 1 、I 2 ,解v 1就方便多了。结果为: v 1 =

α

+++α

2

3132122sin m m )m m m (m cos Im (学生活动:训练解方程的条理和耐心)思考:v 2的方位角β等于多少? 解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I 1 ,得I 2的表达式,将I 2的表达式代入⑶就行了。

答:β= arc tg (

α+tg m m m 2

2

1)

。 三、动量守恒中的相对运动问题

物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N 个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N 次抛球和将N 个球一次性抛出是完全等效的。

设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V 1 第二过程获得的速度大小为V 2 。

第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N 个球动量守恒。

0 = Nm(-v) + MV 1

得:V 1 = M

Nm

v ①

第二过程,必须逐次考查铅球与车子(人)的作用。

第一个球与(N –1)个球、人、车系统作用,完毕后,设“系统”速度为u 1 。

值得注意的是,根据运动合成法则地车车球地球→→→+=v v v

,铅球对地的速度并不是(-v ),而是(-v + u 1)。它们动量守恒方程为:

0 = m(-v + u 1) +〔M +(N-1)m 〕u 1

得:u 1 =

v Nm

M m

+ 第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 2 。它们动量守恒方程为:

〔M+(N-1)m 〕u 1 = m(-v + u 2) +〔M+(N-2)m 〕u 2

得:u 2 =

v Nm M m + + v m

)1N (M m

-+

第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 3 。

铅球对地的速度是(-v + u 3)。它们动量守恒方程为:

〔M+(N-2)m 〕u 2 = m(-v + u 3) +〔M+(N-3)m 〕u 3

得:u 3 =

v Nm M m + + v m )1N (M m -+ + v m

)2N (M m

-+

以此类推(过程注意:先找u N 和u N-1关系,再看u N 和v 的关系,不要急于化

简通分)……,u N 的通式已经可以找出:

V 2 = u N =

v Nm M m + + v m )1N (M m -+ + v m

)2N (M m

-+ + … +

v m M m + 即:V 2 = ∑

=+N

1

i v im

M m

我们再将①式改写成: V 1 = ∑

=N

1i v M

m

①′ 不难发现,①′式和②式都有N 项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V 1 > V 2 。

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为M 的车上,有n 个质量均为m 的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v 、方向水平向后的初速往车下跳。第一过程,N 个人同时跳下;第二过程,N 个人依次跳下。试问:哪一次车子获得的速度较大?

解:第二过程结论和上面的模型完全相同,第一过程结论为V 1 =

∑=+n

1

i v nm M m

。 答:第二过程获得速度大。

四、反冲运动中的一个重要定式

物理情形:如图4所示,长度为L 、质量为M 的船停止在静水中(但未抛锚),船头上有一个质量为m 的人,也是静止的。现在令人在船上开始向船尾走动,忽

略水的阻力,试问:当人走到船尾时,船将会移动多远?

(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L 吗?本系统选船为参照,动量守恒吗?

模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = v t 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V ),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v) 即:mv = MV

由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

m v

= M V

设全程的时间为t ,乘入①式两边,得:m v t = M V t

设s 和S 分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S ②

受船长L 的约束,s 和S 具有关系:s + S = L

解②、③可得:船的移动距离 S =

m

M m

+L (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律

人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x 表达。根据力矩平衡知识,得:

x =

)

M m (2mL

+),又根据,末态的质量分布与初态比较,相对整体质心是左右对

称的。弄清了这一点后,求解船的质心位移易如反掌。

(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m 和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

答:M

M m +h 。

(学生活动)思考:如图6所示,两个倾角相同的斜面,互

相倒扣着

放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速

释放后,小斜面下滑,大

斜面后退。已知大、小斜面的质量分别为M 和m ,底边长分别为a 和b ,试求:小斜面滑到底端时,大斜面后退的距离。

解:水平方向动量守恒。解题过程从略。

答:m

M m

+(a -b )。

进阶应用:如图7所示,一个质量为M ,半径为R 的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m 的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定

式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。

为寻求轨迹方程,我们需要建立一个坐标:以半球球心O 为原点,沿质点滑下一侧的水平轴为x 坐标、竖直轴为y 坐标。

由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O ′的方位角θ来表达质点的瞬时位置,如图8所示。

由“定式”,易得:

x = m

M M

+Rsin θ ①

而由图知:y = Rcos θ ②

不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

22)R m

M M (x + + 22

R y = 1

这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R 和

m

M M

+R 的椭圆。

五、功的定义式中S 怎么取值?

在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S 是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。

1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?

2、在本“部分”第3页图1的模型中,求拉力做功时,S 是否可以取绳子质心的位移?

3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?

4、如图10所示,双手用等大反向的力F 压固

定汽缸两边的活塞,活塞移动相同距离S ,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S 若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S 若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。

第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S 宜取作用点的位移;

第2例,求拉力的功,在前面已经阐述,S 取作用点位移为佳; 第3例,楼梯不需要输出任何能量,不做功,S 取作用点位移;

第4例,气体内能的增加必然是由人输出的,压力做功,S 取作用点位移。 但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S 取物体质心位移;第2例,动能增量对应S 取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S 取质心位移。(第3例的分析暂时延后。)

以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可

以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生

转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议: 1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。

这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出

能量(生物能)的机构,也是得到能量(机械能)的机构——这里

的物理情形更象是一种生物情形。本题所求的功应理解为广义功为

宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂(形

变,不能简单地看成一个质点。如第2、第3、第4例),要么,施

力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械

能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:

如图12所示,人站在船

上,通过拉一根固定在铁

桩的缆绳使船靠岸。试问:

缆绳是否对船和人的系统

做功?

解:分析同上面的“第

3例”。

答:否。

六、机械能守恒与运动合

成(分解)的综合

物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够

长。质量分别为m

1和m

2

的A、B两个有孔小球,串在杆上,且被长为L的轻绳相

连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v

2

模型分析:A 、B 系统机械能守恒。A 、B 两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去

寻求。

(学生活动)A 球的机械能是否守恒?B 球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a 、“微元法”判断两个W T 的代数和为零;b 、无非弹性碰撞,无摩擦,没有其它形式能的生成)?

由“拓展条件”可以判断,A 、B 系统机械能守恒,(设末态A 球的瞬时速率为v 1 )过程的方程为:

m 2g 2

L = 211v m 21 + 222v m 21 ①

在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:

v 1 = v/cos30°, v 2 = v/sin30°

两式合并成:v 1 = v 2 tg30°= v 2/3 ② 解①、②两式,得:v 2 =

2

12m m gL

m 3

七、动量和能量的综合(一)

物理情形:如图14所示,两根长度均为L 的刚性轻杆,一端通过质量为m 的球形铰链连接,另一端分别与质量为m 和2m 的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试

求:两杆夹角为90°时,质量为2m 的小球的速度v 2 。

模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?

设末态(杆夹角90°)左边小球的速度为v 1(方向:水平向左),球形铰链的速度为v (方向:和竖直方向夹θ角斜向左),

对题设过程,三球系统机械能守恒,有:

mg( L-2

2L) = 21m 2

1v + 21mv 2 +

2

1

2m 22v ① 三球系统水平方向动量守恒,有:

mv 1 + mvsin θ= 2mv 2

左边杆子不形变,有:

v 1cos45°= vcos(45°-θ) ③ 右边杆子不形变,有:

vcos(45°+θ) = v 2cos45° ④

四个方程,解四个未知量(v 1 、v 2 、v 和θ),是可行的。推荐解方程的步骤如下——

1、③、④两式用v 2替代v 1和v ,代入②式,解θ值,得:tg θ= 1/4

2、在回到③、④两式,得:

v 1 = 35v 2 , v = 3

17v 2

3、将v 1 、v 的替代式代入①式解v 2即可。结果:v 2 =

20

)

22(gL 3-

(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?

解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。

答:0 、gL 2 、0 。

(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少? 解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。 答:

L 8

2

3 。 进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m 滑到方位角θ时(未脱离半球),质点的速度v

的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。

据运动的合成,有: 半球点→v = 地点→v + 半球地→v = 地点→v

-

地半球→v

其中地半球→v

必然是沿地面向左的,为了书写方

便,我们设其大小为v 2 ;半球点→v

必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v 相 。根据矢量减法的三角形法则,可以得到地点→v

(设大小为v 1)的示意图,如图16所示。同时,我们将v 1的x 、y 分量v 1x 和v 1y 也描绘在

图中。

由图可得:v 1y =(v 2 + v 1x )tg θ ① 质点和半球系统水平方向动量守恒,有:Mv 2 = mv 1x ②

对题设过程,质点和半球系统机械能守恒,有:mgR(1-cos θ) = 21

M 22v + 2

1m 21v ,即: mgR(1-cos θ) = 21M 22v + 2

1m (2x 1v + 2

y 1v ) ③ 三个方程,解三个未知量(v 2 、v 1x 、v 1y )是可行的,但数学运算繁复,推荐步骤如下——

1、由①、②式得:v 1x = m

M

v 2 , v 1y = (m M m +tg θ) v 2

2、代入③式解v 2 ,得:v 2 =θ

+++θ-2222tg )m M (Mm M )

cos 1(gR m 2

3、由

21

v =

2x

1v +

2

y

1v 解v 1 ,得:v 1

+++θ+θ+θ-222222sin )m M (m Mm M )

sin m sin Mm 2M )(cos 1(gR 2

v 1的方向:和水平方向成α角,α= arctg x

1y 1v v = arctg (

θ+tg M

m

M ) 这就是最后的解。

〔一个附属结果:质点相对半球的瞬时角速度 ω =

R

v 相 =

)

sin m M (R )

cos 1)(M m (g 22

θ+θ-+ 。〕 八、动量和能量的综合(二)

物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg 的平板车左端放有质量为m = 2 kg 的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s 向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s 2 ,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。

模型分析:本模

型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以

动力学分析,综合程度较高。

由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。

规定向右为正向,将矢量运算化为代数运算。 车第一次碰墙后,车速变为-v ,然后与速度仍为v 的铁块作用,动量守恒,

作用完毕后,共同速度v 1 = M

m )

v (M mv +-+ = 3v ,因方向为正,必朝墙运动。

(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位

移S = a 2v 2

,反向加速的位移S ′= 1

21a 2v ,其中a = a 1 = M mg μ,故S ′< S ,所

以,车碰墙之前,必然已和铁块达到共同速度v 1 。

车第二次碰墙后,车速变为-v 1 ,然后与速度仍为v 1的铁块作用,动量守恒,作用完毕后,共同速度v 2 = M m )v (M mv 11+-+ = 3v 1 = 23

v

,因方向为正,必朝墙

运动。

车第三次碰墙,……共同速度v 3 =

3v 2 = 33

v

,朝墙运动。 ……

以此类推,我们可以概括铁块和车的运动情况——

铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……

平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……

显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。

1、全程能量关系:对铁块和车系统,-ΔE k =ΔE 内 ,且,ΔE 内 = f 滑 S 相 ,

即:2

1

(m + M )v 2 = μmg ·S 相

代入数字得:S 相 = 5.4 m

2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故

第一次:S 1 = a

2v 2

第二次:S 2 = a

2v 21 = a 212

2

3v 第三次:S 3 = a

2v 22

= a 21423v

……

n 次碰墙的总路程是:

ΣS = 2( S 1 + S 2 + S 3 + … + S n )= a v 2

( 1 + 231 + 431 + … + )

(1n 23

1- ) = M

mg v 2μ( 1 + 231 + 431 + … + )(1n 23

1

- ) 碰墙次数n →∞,代入其它数字,得:ΣS = 4.05 m

(学生活动)质量为M 、程度为L 的木板固定在光滑水平面上,另一个质量为m 的滑块以水平初速v 0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?

解:由第一过程,得滑动摩擦力f = L

2mv 20

第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另

一端,和木板具有共同速度,设为v ),设新的初速度为0v '

m 0v ' =( m + M )v

21m 2

0v ' - 2

1( m + M )v 2 = fL 解以上三式即可。

答:0v '=

M

M

m +v 0 。

(完整word版)电磁兼容知识点总结,推荐文档

填空题 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶4.指形簧片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI 滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB 的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。 10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。 11、谐波电流的抑制方法 1、电流侧设置LC 滤波器 2、采取有源功率因数校正 3、采用PWM 整流器 4、多绕组变压器的多脉整流

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

初中七年级数学竞赛培优讲义全套专题07 整式的加减

专题07 整式的加减 阅读与思考 整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点: 1.透彻理解“三式”和“四数”的概念 “三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数. 2.熟练掌握“两种排列”和“三个法则” “两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则. 物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项. 例题与求解 [例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______. (江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手. [例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b (“希望杯”初赛试题) 解题思路:采用赋值法,令a=1 2 ,b=- 1 2 ,计算四个式子的值,从中找出值最大的 式子. [例3]已知x=2,y=-4时,代数式ax2+1 2 by+5=1997,求当x=-4,y=- 1 2 时, 代数式3ax-24by3+4986的值. (北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值. (北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式. [例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

如何提高电磁兼容性

如何提高电磁兼容性 电磁兼容性设计是老生常谈的话题,但在电磁环境日益复杂的今天,电磁兼容设计依然很重要,不是么?这里分享几点“过来人”总结的电磁兼容设计策略,或许这已经是您电路设计践行的准则,那就让我们一起多多分享这些设计经验,努力提高电磁兼容性,构建“和谐”电磁环境吧! 1、选择合理的导线宽度 由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在 1.5mm 左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。 2、采用正确的布线策略 采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。 3、为了避免高频信号通过印制导线时产生的电磁辐射,在印制电路板布线时,还应注意以下几点: (1)尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。 (2)时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。 (3)总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。 (4)数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。

七年级秋季培优讲义整式专题

2018年七年级秋季培优讲义——整式专题(一) 【知识解读】 整式加减: 1. 代数式的概念 代数式是用基本的运算符号(运算符号包括加、减、乘、除以及乘方、开方)把数字或字母连接而成的式子,单独一个数或一个字母也可以看成代数式. 2. 代数式的值 用具体的数值代入代数式中得到的计算结果叫代数式的值. 3. 整式的加减 (1)单项式:数与字母的积的代数式叫单项式,数字因数叫单项式的系数,所有字母的指数的和叫单项式的次数;单个的字母或单个的数也叫单项式. (2)多项式:几个单项式的和叫多项式,多项式中次数最高的单项式的次数叫多项式的次数,单项式的个数也就是多项式的基数. (3)单项式和多项式统称为整式. (4)同类项,两个单项式中,如果所含有的字母相同且相同字母的指数也相等,那么这两个单项式叫同类项. (5)整式的加减:整式的加减的本质也就是合并同类项,合并同类项的法则是:把系数相加减,字母和字母的指数不变. 本章的主要内容是单项式、多项式、整式的概念,合并同类项,去括号以及整式加减运算等. 整式的加减运算是学习“一元一次方程”的直接基础,也是以后学习分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具. 整式加减涉及的概念 准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点: 1. 理解四式(单项式、多项式、整式、n 次m 项式)、三数(系数、次数、项数)和二项(常数项、同类项) 2. 掌握三个法则(去括号法则、添括号法则、合并同类项法则). 3. 熟悉两种排列(升幂排列、降幂排列). 整式加减的一般步骤 1. 根据去括号法则去括号. 2. 合并同类项. 【例题精讲】 【例1】(1)已知关于x 、y 的单项式234x y 与单项式1218m n x y ---的和为一个单项式,求mn . (2)已知关于x 、y 的单项式4b c x y 与单项式1218m n x y ---的和为4n m ax y ,求abc . 【例2】(1)先化简,再求值:224[62(42)]1x y xy xy x y ----+,其中1 2 x =-,y =2. (2)已知4m n -=,1mn =-,求(223)(322)(4)mn m n mn n m mn n m -++-+--++的值. 【例3】已知多项式3223(3)(2)5m x x x n x x x -++++-是关于x 的二次多项式,当x =2时的值为-17,求当x =-2时,此多项式的值. 【例4】已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 的取值无关,求代数式22223(2)(4)a ab b a ab b ---++的值.

大学物理动量与角动量练习题与答案

一、选择题 [ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 提示:假设斜面以V 向右运动。由水平方向动量守恒得 0(cos )0m V m V v θ+-= ,而0v =,得0V = [C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2m v . (B) 2 2)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与 摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 提示:对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。 对重物用动量定理: 0' ' ' =--? ?? ++dt T mgdt dt T t t t t t 下上 ' t 为下拉力作用时间,由于' t t >>,因此,上面的细线也不断。 二、填空题 5.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v 从第一只船上跳到其右边的第二只船上,然后又以 同样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v 1= 图3-11 图3-15

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

(完整版)初一数学培优专题讲义

初一数学基础知识讲义 第一讲和绝对值有关的问题 一、知识结构框图: 数 二、绝对值的意义: (1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: () () () ||0 a a a a a a ? ?? =? ? - ?? 当为正数 当为0 当为负数 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。 三、典型例题 例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A )A.-3a B. 2c-a C.2a-2b D. b

解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a 分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( C ) A .是正数 B .是负数 C .是零 D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示: 所以 分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。 例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。 解:设甲数为x ,乙数为y 由题意得:y x 3=, (1)数轴上表示这两数的点位于原点两侧: 若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6 (2)数轴上表示这两数的点位于原点同侧: 若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12 若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 例4.(整体的思想)方程x x -=-20082008 的解的个数是( D ) A .1个 B .2个 C .3个 D .无穷多个 分析:这道题我们用整体的思想解决。将x-2008看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值. ()()()()()() 1111 112220072007ab a b a b a b ++++++++++L 0)()(=--+-+=--+++y x z y z x y x z y z x

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

EMC测试基础知识

EMC的基本概念 电磁兼容EMC(Electromagnetic compatibility), 对于设备或系统的性能指标来说,直译为“电磁兼容性” 但作为一门学科来说,应该译为“电磁兼容”。 国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。” 该标准等同采用IEC60050(161)。 电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。 EMC的测试项目 EMC的测试项目 EMC: Electromagnetic Compatibility 电磁兼容 EMI: Electromagnetic Emission 电磁发射 EMS: Electromagnetic Susceptibility 电磁敏感度 CE: Conducted Emission 传导发射 RE: Radiated Emission 辐射发射 CS: Conducted Susceptibility 传导敏感度 RS: Radiated Susceptibility 辐射敏感度

CE:Conducted emission 任何一个非便携式设备都和其他设备有电缆互连关系,无论是通过电源电缆还是信号电缆,只要有这种互连关系的存在,设备就有一个途径将自身的共模电流传导给与其互连的设备,这种现象就叫传导干扰,又成为传导发射。 CE:测试设备通过自己的电源端口向交流电网或直流配电网络传送的干扰,测试频段为 150kHz~30MHz,(原来直流的测试频段起始频率为20MHz,新版的欧洲386标准将其改为150kHz,此外FCC标准中测试频段也已经和CISPR 22一致了)。 n通信端CE、测试频段同上,此处描述的通信端指得是针对接驳到公网的端口,如网口、ISDN 口等才有CE测试要求,而对于接终端的信号端口如音视频端口则无CE要求。 n LISN:Line impedance stabilization network线路阻抗稳定网络,用来 n进行电源端CE测试时的阻抗稳定,并且该网络上面有一取样端子, n EUT沿电源线向外的干扰就从此端子取出,送至接收机进行检波。 n RE主要是考察设备在正常工作时自身对外界的辐射干扰强度,测试频段根据不同的标准要求不同,在CISPR 14中,测试频段为30~300MHz,值得注意的是设备进行RE测试时标准要求尽可能满配置、满负荷的运行。RE问题是EMC中的难点。主要因为RE设计产品EMC设计的各个环节:屏蔽、滤波、接地。 Harmonics:交流电源谐波 n设备的输入电压为正弦波(50Hz或者60Hz),当该电压的输入负载为非线性电路时,将会使得输入电流发生畸变,即输入电流不为正弦波,根据傅利叶变换,非正弦波信号在频域将会存在谐波,这些谐波电流将会降低设备电源的使用效率,并且会倒灌至电网,对电网产生污染。 n测试标准:IEC 61000-3-2。 n测试上限为基频的40次谐波频率。 Flickers:交流电源闪烁 n考察设备电源模块引起输入电源的频率变化能力,该中频率变化从设备端口反灌入电网,会引起电网频率的波动,导致对人体的伤害。 n测试标准:IEC 61000-3-3。 ESD:Electrostatic discharge n ESD:静电放电,考察设备在接收外界静电源(如带电人体、带电设备等)所产生的直接放电或静电场干扰时的抵抗能力。 n测试标准:IEC 61000-4-2。 n静电波形及参数

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

初一数学培优专题讲义一--有理数及其运算

初一数学培优专题讲义一有理数及其运算 一、 有理数的基本概念梳理与强化: (一)几个小知识点的梳理与强化:小知识点是常考的考点,也是易错点。理清小知识点,减少失误 1.字母可以表示任意有理数,不能说a 一定是正数,-a 也不一定是负数 2.相反数等于本身的数是;平方等于本身的数是;立方等于本身的数是;倒数等于本身的数是。 3.互为相反数的两个数的绝对值相等。若|-x |=|2 1-|,则x =______;若|x |=|-4|,则x =____; 若-|x|=-|2|,那么x=___;若-|-x|=-|2|,那么x=____ 4.互为相反数的两个数的平方相等。如果 ,那么a=____;若x 2=(-2)2,则x =_______. 5.注意乘方中括号的作用。(-2)3的底数是_______,结果是_______;-32的底数是_______,结果 是_______;n 为正整数,则(-1)2n =___,(-1)2n +1=___。计算: (1) =;(2) =;(3) =;(4) =(5)= 6.a 的相反数是;a+b 的相反数是;a-b 的相反数是;-a+b-c 的相反数是; 变式训练:若a <b ,则∣a-b ∣=,-∣a-b ∣= (二)突破绝对值的化简: 7.绝对值即距离,则0≥a 8.绝对值的代数定义用式子可表示为:(体现分类讨论的思想) (a >0) |a| = (a =0) (a <0) 9.绝对值的非负性: (1)若|a|=0,则a ;(2)若|a|=a ,则a ;(3)若|a|=—a ,则a ; (4), 则______||=a a ;(5)0

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料 1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得 2670x x ++=,再直接用开平方法; 2(3)2x +=(2)公式法;(3)因式分解法。 这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为 即可,或原方程 22(3)0x +-=经配方化为,再求解时, 2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。由此可见,对因式分解法应予以足够的重视。因式分解法还可推广到高次方程。 2.我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。事实上,过去代数的中心问题就是对方程的研究。我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。 下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题. 上面的问题选自杨辉所著的《田亩比类乘除算法》。原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解. 3. 掌握数学思想方法,以不变应万变。 本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。 (1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。因此,转化思想就是解方程过程中思维活动的主导思想。在本章,转化无所不在,无处不有, 可以说这是本章的精髓和特色之一,其表现主要有以下方面: ①未知转化为已知,这是解方程的基本思路: ②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③特殊转化为一般,一般转化为特殊。例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。 掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”. 练习: ;222 1 1.510a x x a a -+=+ 是方程的一根,求的值 2421032. a x a ?--=--是方程x 的一根,求a 的值 2 2 42 3101 x x x x x --=-+、若,求的值。 (2)类比思想 本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识. 如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤. 类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。

电磁兼容基础知识

电磁兼容基础知识 近年来铁路机车所用技术迅猛发展,对铁道技术的电磁兼容性要求日益提高。采用了微处理器的牵引、制动及列车的控制装置以及分布在全列车上的数据总线系统,都更重视设备的抗干扰性能。随着机车电传动方式由交直向交直交的变迁,机车车辆的牵引和辅助驱动采用大功率、高电压和高电流上升率以及极高开关频率的现代变流技术,从而提高了功率部分的干扰电势。此外,机车车辆中设备的安装面积很有限,这一方面迫使控制装置和功率部分挨得很近,另一方面也使功率部分和通信与信号装置等靠的很近,由此导致了铁路技术对电磁兼容性有着特殊的要求。 目前我司产品涉及到的电磁兼容相关铁标如下: GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T 17626.6-2008 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度试验基于此,特对电磁兼容相关资料进行整合,以期给从事技术及相关工作的同事带来一些帮助,抛砖引玉。 一、名词解释 电磁骚扰:任何可能引起设备、装置或系统性能降低或者有生命或者无生命物质产生损害作用的电磁现象。 电磁兼容(EMC):一个设备或系统在其电磁环境中能正常工作,且不会对其工作环境中的任何事物产生不可承受的的电磁骚扰的能力。 电磁干扰(EMI) :电磁骚扰引起的设备、传输通道或系统性能的下降。 骚扰抗扰性度:装置、设备或系统面临电磁骚扰不降低运行性能的能力。 瞬态:在两相邻稳定状态之间变化的物理量或物理现象,其变化时间小于所关注的时间尺度。 脉冲:在短时间突变,随后又迅速返回其初始值的物理量。 冲激脉冲:针对某给定用途,近似于一单位脉冲或狄拉克函数的脉冲。 尖峰脉冲:持续时间较短的单向脉冲。 骚扰限值(允许值):对应于规定测量方法的最大电磁骚扰允许电平。 干扰限值(允许值):电磁骚扰使装置、设备或系统最大允许的性能降低。 差模电压:一组规定的带电导体中任意两根之间的电压。 共模电压:每个导体与规定参考点(通常是地或机壳)之间的相电压的平均值。

相关主题