搜档网
当前位置:搜档网 › 关于通信电源常见故障及处理

关于通信电源常见故障及处理

关于通信电源常见故障及处理
关于通信电源常见故障及处理

关于通信电源常见故障及处理

【摘要】笔者结合多年现场实际工作经验,对通信电源的常见故障进行了总结分析,并详细介绍了各类故障的通用处理方法,仅供同行业工作人员参考。

【关键词】通信电源;故障;处理

1.引言

电源是通信系统的基础设备,因其采用模块化设计,在发生局部的或单元的故障时一般不会扩散。电源系统故障分为一般性故障和紧急故障。一般性故障指不会影响通信安全的故障,包括交流防雷器雷击损坏、系统内部通信中断、单个模块无输出、监控单元损坏等;紧急故障指影响通信安全的故障,包括交流输入与控制损坏而导致交流停电、直流采样和控制电路损坏而导致直流负载掉电等。如果不能及时有效地对故障进行处理,将导致通信系统的瘫痪,带来严重的损失,因此,必须对通信电源常见的故障与处理给予充分重视。

2.交流配电单元的故障处理

2.1防雷器单元

防雷器是由四个片状防雷单元组成,其中三个防雷单元具有状态显示功能,可以显示防雷单元是否处于完好状态。防雷单元窗口颜色为绿色时,表示防雷单元处于完好状态;某个防雷单元窗口颜色为红色时,则表示该防雷单元已损坏,应尽快更换防雷模块。

如果防雷器没有损坏,而监控单元报防雷器告警,就需要检查

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

三相异步电动机常见故障的原因分析及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 三相异步电动机常见故障的原因分析及预防措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6700-97 三相异步电动机常见故障的原因分析及预防措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科技不断进步,煤矿自动化水平越来越高,电气动力设备越来越多,但三相异步电动机以其独有的优势仍占据相当大的分额。三相异步电动机是利用电磁感应原理将电能转化为机械能的动力设备,是目前煤矿井下和地面生产系统中应用最广泛的一种动力设备,它具有构造简单、价格便宜、运行可靠、坚固耐用等优点。但由于三相异步电动机大多工作环境恶劣,负荷变化大并且启动频繁,所以往往容易发生故障,轻则影响生产,重则还会导致人身触电,给企业造成不可估量的损失。因此在使用过程中加强维护,有些简单故障能现场排除对煤矿安全生产及提高生产效益具有重大意义。 1 异步电动机常见故障及原因

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

6.发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

高压电动机常见的故障分析及处理

高压电动机常见的故障分析及处理 孔祥强安徽华电芜湖发电有限公司 摘要:公司2台66万千瓦机组所属生产区域的高压电机共有90台,已经运行了7年多。近几年来发生的常见问题有电机绝缘电阻低、电机引出线老化断裂、电机定、转子故障、轴承故障、电机振动大、电机温度升高。通过对经常出现的故障细致分析,总结出高压电机常见一般性故障类型及较为实际方便的检修方法。 关键词:高压电机常见故障分析处理方法 一、高压电机经常出现的故障 1、电机绝缘电阻低,绕组绝缘击穿接地及引出线故障 由于工作环境潮湿,电机停运时间长,使电机绝缘受潮,绝缘电阻值不符合规程要求;由于粉尘较大,有磁性物质落在线圈表面上,产生钻孔现象,导致定子绕组的绝缘被击穿接地;电机引出线位置处于定子铁心背部的热风区,长期运行后绝缘热老化,引出线橡胶绝缘变质、龟裂和剥落,外力和机械震动使绝缘瓷瓶破裂或电机引线鼻子松动,导致电机引出线接触不良甚至断裂而出现剧烈的弧光放电现象。 2、电机定子槽楔松动,端部绑扎不良故障 电机定子槽楔松动、绕组端部绑扎不良,当电机在启动和运行时产生振动,线圈相对产生位移,电机电磁声增大,出现异音。 3、电机转子故障

电机频繁启动和过载运行时产生的热效应力、电磁力和机械离心力的作用引起交变应力而造成电机鼠笼转子的短路环与铜条焊接处开焊,转子铜条在槽内松动,运行中定子电流摆动大,电机振动剧烈,电机电磁声增大并出现放电现象。 4、电机轴承故障 轴承安装不正确,配合公差太紧或太松,润滑脂添加不合适。运行时轴承发热、温升过高、振动大、轴承处声音异常发出很大的响声。轴承过热容易发展成轴承损坏、电机转子与定子扫膛、线圈烧损等重大事故。 5、电机振动 由于制造、使用、维修不当或运行时间长等原因,电机的端盖、轴承、轴承套、转子轴颈、笼条以及定子铁芯等零部件都会发生磨损变形而丧失了应有的形位精度和尺寸精度,使电机在运行中产生振动,当振动值超标时,将影响设备的健康、安全运行。 6、电机温度升高 当电动机的工作温度超过规定温度或允许温升时,就应该认为是不正常状态。电机温度升高,长期运行,电机绝缘就会老化,影响电机使用寿命。 7、电机声音异常 电动机发出的声音大致可分为通风噪声、电磁噪声、轴承噪声和其他声音。正常的声音是均匀连续的,没有忽高忽低的金属性声音。经常监听电机的声音,即使细微的声音变化也能辨别出来。监听这些

喷雾干燥机经常发生的故障及解决方法

喷雾干燥机经常发生的故障及解决方法 喷雾干燥机是最广泛使用的颗粒的形成和干燥的工业过程。喷雾干燥机是干燥固体从液体原料的粉末,颗粒或附聚物颗粒形式适合于连续生产。喷雾干燥是理想的,当最终产品必须符合精确的质量标准,关于粒度分布,残留水分含量,堆积密度和粒子形态。但是偶尔喷雾干燥机会发生故障,下面就为大家介绍解决。 1.喷雾干燥机塔系统的故障 故障表现:干燥机运行过程中冒烟、报警。 原因及排除: 系统进风过滤器燃烧,应立即断喷雾干燥机电,扑灭火源。因为系统长期处于粉尘环境,长时间后,粉尘会粘附于进风过滤器的滤芯上,致使进风速度达不到工艺设计要求,从而使加热箱内的温度升高,当温度达到滤芯的自燃温度时,滤芯就会发生自燃。这时加热调节器发生断路,使得它无法实现自动调节。所以,可以把加热器的进风管引出来,这样可以避免过滤器被粉尘堵塞,从而保证加热箱的进风速度。还可以对加热箱温度测试仪的安装方式进行改变,把探头置于加热箱内,并加上阻燃保护,也可以防止滤芯自燃。此外,我们还可以把加热器温控器的控制回路,串联到设备的主控制回路中,也可以起到作用。 2.喷雾干燥机的常见故障 故障一:主塔内壁粘附湿粉 原因及解决办法: (1)物料的进料速度过快,量过大,致使不能完全干燥,解决办法是放慢加料的速度和数量,对进料泵进行适当的调节。 (2)未按照说明书上的要求进行操作,主塔没有进行加热,解决办法是提高干燥机的进出口温度。 故障二:产品中存在大量杂质 原因及解决办法: (1)喷雾干燥机物料中含有杂质,在过滤时没有过滤掉,解决办法是对空气过滤器进行检查,过滤网根据情况进行更换。 (2)物料料液的纯度不高,解决办法是对料液进行抽样检测,把料液中的杂质过滤掉。 (3)设备内存有杂质,解决办法是定期对设备进行全面的清洗,去除杂质。 故障三:跑粉现象严重,产品的回收率低 原因及解决办法: (1)旋风分离器出现问题,解决办法是对旋风分离器进行检查,查看是否有缺口,以及气密性是否完好。 (2)除尘性能低,解决办法是适当增加二级除尘。 故障四:设备运行噪声很大 原因及解决办法: 一般来讲,喷雾干燥机雾化盘和轴承是产生噪音的主要部位,所以应对这两个部位进行检查,主要是看雾化盘是否处于平衡状态、轴承工作是否正常以及润滑油的添加是否正确,如果发现有损坏,应立即修理或更换。

三相异步电动机的绕组常见故障分析与处理方法(精)

班级:07自动化 学号:0709111016 姓名:高顺 三相异步电动机的绕组常见故障分析与处理方法 关键词:断路电流不平衡短路绝缘损坏磁场不均绕组接地绕组接错 一、绕组开路 由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 1. 故障现象 电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 2. 产生原因 (1)在检修和维护保养时碰断或制造质量问题。 (2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。 (4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 3. 检查方法 (1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。(2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。 (4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。 (5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。 (6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障; (7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

电机常见故障及解决方法

异步电动机常见故障解决方法 电机在日常生活中起着重要的作用,像交流、直流电机等。电机在长期的运行下,会发生各 样的故障、主要的故障可分为电气和机械故障两大类。电机在机械方面的故障主要有、机座、轴承、风扇罩,前后端盖、和电机的转轴等故障、电机在电气一般都有定转子绕组、定转子 铁心等故障。电机一但出现故障就会影响生产,降低经济效益等。所以我们一定要掌握一定 的相关专业知识并进行相应的处理,保证并防止事故扩大,保证电机高效稳定正常运行。 现场的电机在日常连续运行中经常一般都会出现以下问题。1电机通电后电机不能起动,没声音无异味冒烟2通电后电机不转,3电机运转时声音不正常有异音振动较大轴承过热、4.电机过热冒烟、匝间短路5.电机三相电源不平衡6.电机的绝缘阻值低、7.电机起动困难.8 电机起动困难带负载时低于额定转速振动较大9电机跳闸等,发现查出原因应及时解决问题。 像当电动机出现通电后不能启动但又无冒烟时,这时就应该检查电机电源是否接通,检 查接线盒处是否有断线等、或是现场电机保护定值小等原因,如果现场保护定值过小,就会 造成电机在现场起动不了,如果电机定值过小应调整保护定值与电机相符合。熔丝熔断电机 出现这种情况是一般应该是电机过电流、熔丝过小、缺相、负荷过重或其它原因,发现缺相 时应及时找出电源回路断线处恢复接线,检查是否因为电机的熔丝规格过小而造成电机起动 不了、如果是因为熔丝过小应更换的熔丝规格应与电机相符,此外造成电机起动不了的原因 一般还有起动方面、机械故障方面、电机本身的电气故障等原因。 电机运转时振动大声音不对有异音主要可以从两个方面分析,一般电磁和机械两大类,机械一般的主要故障为定子与转子相互摩擦,使电机产生剧烈振动和电磁声音,严重可以造 成扫膛,扫膛的原因主要是电机的轴承过度磨损或轴承的保持架散架破裂、轴弯曲、装配时 异物落在定子内等一系列的原因所造成的扫膛。发现有扫膛迹象时,应及时检修,轴弯曲可 以利用液压机床进行矫正,或必要时可以车小转子,电机检修完毕后,应认真检查电机内无 异物时方可回装电机,预防电机扫膛主要可以加强日常的巡检力度,在巡检时多注意电机的 温度及电机轴承的声音和振动、发现电机轴承声音不对或振动超标时,及时检修以防造成电 机的扫膛、或电机的风叶松动与端盖碰撞所造成的、可以更换或是安装风扇或是风扇罩。其 次电机声音不对在机械方面还有因为轴承缺油、油中有杂质、轴承磨损严重滚珠损坏所造成的、因电机缺油造成的声音不对,可以适当的给电机轴承补油,但要随时注意轴承的温度,当电机出现因加油过多而发热时应及时处理,处理的主要方法有高压电机一般有排油孔,可 以从排油孔进行掏油,或是用轴流风机对准发热轴承部位进行通风冷却,另外电机或是电机 轴承加入不干净的油脂造成的,这时就应更换轴承的油脂,更换或清洗轴承并换新油。清洗 轴承要先将轴承中旧油除去,然后用毛刷加清洗剂来清洗。一定要清洗干净,正在刷扫时轴 承不要转动,避免有毛刷上的毛夹入轴承滚道,一般润滑脂占轴承内腔容积的1/2~1/3为宜。轴承磨损间隙过大也会造成电机不正常的振动,对于电机轴承滚珠磨损严重应及时更换 同型号的轴承,一般造成电机运转时的声音不对和振动的的原因还有电机的地角螺丝松或是 电机的地基不牢所造成的,从而造成不正常的振动,发现电机不正常的振动时应及时解决,紧固电机地角,防止事态扩大造成设备损坏,在电磁方面造成的不正常的声音和振动主要原 因有以下几个方面;电机定子与转子铁心松动或是电机的定子的笼条断裂,造成电机在运转 时发出嗡嗡的声音,同时也会增大电机的振动,或是由于电机的电源电流不平衡、或是缺相 运行、过载等一系列原因,主要平时多巡检时多注意电机的声音,电流的变化。 电机过热、冒烟其一般主要的故障原因有;电源电压过高或过低、定转子铁芯相擦、电 机冷却风扇损坏通风不良,电机散热筋污物多、堵转、频繁起动过载、匝间短路、等一系列 的原因。消除故障方法,当电机过热时电机会过热报警从而使电机跳闸,当返现电机过热报 警时,应道现场查看电机控制开关,是否跳开,检查是否过电流或是其它造成的原因,检查 开关上口是否缺相,电源电压使其恢复正常、检修铁芯使之不能相互摩擦,排除故障、检查

吸干机安全操作规程(通用版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 吸干机安全操作规程(通用版)

吸干机安全操作规程(通用版) 导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1开停机的顺序: 1.1开机顺序:空压机、吸干机、吸干机进口阀。 1.2停机顺序:空压机、吸干机进口阀、吸干机、排气。 1.3注意事项: 1.3.1吸干机进口阀打开要缓慢,使压缩气体流量慢慢加大。 1.3.2停机要放空管道内空气。 2开机前的准备 2.1确认管道中的残存空气排空; 2.2确认旁路阀及进气阀关闭,出口阀打开; 2.3确认吸干机前后配置的过滤器按装正确; 2.4确认安全防护装置完好。 3运行中的检查 3.1检查出口阀及进口阀是否打开,旁路阀是否关闭; 3.2检查各个换气阀门是否正常;

3.3检查平衡管中是否储存污水; 3.4检查安全防护装置是否完好。 4停机后的维护保养 4.1每半年后更换吸附剂; 4.2检查各阀门是否完好; 4.3检查各紧固件是否紧固; 4.4检查安全防护装置是否完好。 5常见故障及排除方法 5.1压缩空气压力下降太大 原因:压缩空气管路或阀门未全开、处理风量能力超过空压机额定风量而致处理风量太小; 处理方法:检查阀门是否正常工作。 5.2除水效果不良 原因:压缩空气量太大; 排水效果不良(排水管高于排水器、排水器倾斜、排水阀堵塞或工作不良、); 配管系统异常(旁路阀未全关、空气未通过干燥器、干燥器未放平);

电动机常见故障分析与维修..

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工 作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这个任务的装置。在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。可见,换向器和电刷是直流电机中不可缺少的关键性部件。 当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导

发电机常见故障原因及对策分析

发电机常见故障原因及对策分析 [摘要]近年来,随着我国社会经济的快速发展,科技技术、自动化技术等都有了进一步的发展。目前,发电机广泛应用于各行各业,若发电机出现故障,将严重影响着企业的正常运营,甚至给企业带来巨大的经济损失与社会损失。文中就常见的发电机故障展开分析,重点探讨其故障原因,针对其原因所在,有针对性的提出了相应的解决对策,避免发电机事故的发生。 [关键词]发电机常见故障故障原因对策 作为大型动力设备的发电机,不仅具备体积小的优点,而且具有功率大、转速高、运行平稳、安全性高的优势。但其运行过程中难免会出现一些故障,如何才能更好的防治、解决发电机运行中的常见故障,这对真正提高发电机的运行效率及运行安全性能具有重要的意义,下面将就此展开分析、论述。 1发电机常见故障及其原因分析 1.1绝缘电阻低于标准或产品技术条件规定的数值 出现绝缘电阻低于标准或产品技术条件规定的数值故障的原因:(1)原动机转速过低;或是由于二极管被击穿。(2)励磁回路中的电阻高于正常规定值;或是励磁电刷偏离中性线。(3)运输、存放、长时间停机或有水滴入电机内使线圈受潮或变形。(4)电机刷压力过小,接触面积过小,使其发生接触不良的现象。 1.2发电机电压过低 出现发电机电压过低的故障原因:(1)原动机转速太低,励磁回路电阻过大。(2)定子绕组或励磁绕组中有短路或接地故障。 1.3发电机电压过高 出现发电机电压过高的故障原因:(1)转速过高,分流电抗器铁心气隙过大。(2)磁场变阻器短路,发电机事故飞车。 1.4发电机线圈损坏故障 (1)一般使用年限较久的发电机极为容易出现线圈损坏的故障,即发电机的线圈绝缘出现局部损坏的现象,或是由于其线圈绝缘被击穿而出现故障。(2)若定子线圈处的绝缘层与绝缘线圈常年受外部环境中的土尘、水泥等颗粒性物质及水和油污等物质浸湿,而且在槽口拐弯部位浸漆的不完全,都容易损坏定子线圈的绝缘层,进而引发电压击穿或接地烧毁等故障,严重影响发电机的对正常及安全运行。(3)此外,在使用发电机的过程中,由于发电机在其运转工作的过程中其轴承会产生一定的磨损,若未定期对其进行必要的检测、维修与保养,当其

双锥回转真空干燥机常见问题与解决方法

1、装料量过多 由于干燥机的装料量与物料的堆密度(指单位体积的物料质量)有关,在一般情况下,干燥机设计时物料比重按0.6 g/cm3来计算,如果超出这个比重,一方面会影响物料的干燥效率;另一方面长时间运转,会降低电机、涡轮减速机以及链轮、链条、轴承等的使用寿命。在一般情况下,双锥回转真空干燥机充填率(实际填充容积与干燥筒体容积之比)通常为30%~ 50%之间,且不能盖住双锥干燥机内的真空罩,否则影响干燥速率。 2、“放空”时空气气流过大 在实际生产应用中,在填真空时,双锥回转真空干燥机会出现如真空管弯曲、密封套损伤、过滤头变形乃至断裂等现象,这是因为在干燥过程中放 入空气进入罐体反冲过滤头,此时罐体内已达到较高的真空度,会引起正负气流的强大冲击而损坏真空系统。所以,在物料干燥完毕后需要放空罐体,排空时一定要用排空阀来控制其流量,即先把阀门少许打开,待罐内真空度逐渐降低后再慢慢加大;或者是添加减压阀,进而控制放入空气的流量。 3、真空度过低或过高 双锥回转真空干燥机在干燥过程中经常会出现真空度过低或过高的问题,这不但会影响物料干燥的效率和物料的品质,还会影响车间的生产安全。虽然真空度越高,越有利于水分在低温下汽化,但真空度过高不利于热传导,影响对物料的干燥效果。导致真

空过低或过高,可能有4个方面的原因: (1)真空端的机械密封泄露; (2)真空管道的泄露或堵塞; (3)过滤器堵塞; (4)因热水或蒸汽温度过低,物料溶剂难以蒸发。解决此类问题,需要考虑干燥机的热水和蒸汽的温度,并且在使用过程中定期进行检查,同时要进行维护保养、清洗等。 4、筒体内胆的外层脱落 在实际生产中,对于回转筒体的搪玻璃的内胆,若使用和维护不正确,极容易损坏。特别是对于偏酸性和碱性的物料,干燥出料不干净,物料易结壁,损害筒体内胆,影响干燥机的使用寿命。解决此类问题,只需要根据物料的性质选择合适的干燥机,在使用过程中物料出料干净,定期进行检查,同时要进行维护保养、清洗等。 5、噪声过大 在干燥机使用过程中,由于干燥机的地脚松动、蜗轮减速机(变速箱)损坏、轴承损坏、链条太松或太紧等原因而引起噪声过大,对于减速机、轴承和链条等的损坏,只需定期检查,注意添加润滑油,及时排除故障,做好预防性维护。 6、进出料口泄漏 进、出料口泄漏一般是由于密封条粘料或损坏所致,只要将表面上的物料清理干净或者是更换密封条。在车间的实际生产管理中,需做好预防维护工作,提前更换易损件。

三相异步电动机常见故障分析与排除示范文本

三相异步电动机常见故障分析与排除示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

三相异步电动机常见故障分析与排除示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 三相异步电动机应用广泛,但通过长期运行后,会发 生各种故障,及时判断故障原因,进行相应处理,是防止 故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和 冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔 断(至少两相熔断);③过流继电器调得过小;④控制设 备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是 否有断点,修复;②检查熔丝型号、熔断原因,换新熔 丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小;⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;②查出短路点,予以修复;③消除接地;④查出误接,予以更正;⑤更换熔丝; ③消除接地点。 三、通电后电动机不转有嗡嗡声 l.故障原因①定、转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反; ③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。 2.故障排除①查明断点予以修复;②检查绕组极性;

大型汽轮发电机常见故障的检查及状态监测

大型汽轮发电机常见故障的检查及状态监测 内容预览 李伟清 东北电力科学研究院,辽宁沈阳 110006 近十几年来,已并网发电的200 MW以上汽轮发电机组大部分能达到额定出力并持续运行,各项技术参数和性能也基本上能满足各种正常或非正常运行方式的要求。据原电力部可靠性中心统计,1991~1995年国产200 MW机组的等效可用率(EAF)由80.54%提高至86.68%;300 MW机组由76.82%提高至81.86%。尽管如此,由于设计及工艺原因,特别是制造工艺和质量检验等存在问题较多,导致发电机各类事故频繁,延续时间长,性质严重,损失巨大;其次,电机的安装、检修质量及运行维护水平也存在诸多问题,常常成为事故发生的诱因。以下论述汽轮发电机运行中常见故障的检查处理方法以及状态监测技术。 1 水内冷定子绕组漏水 国产及引进200~600 MW汽轮发电机采用水氢氢冷却方式的比重很大,定子水内冷绕组渗漏水是一种常见故障,严重者往往导致接地和相间短路事故。这类事故发生的主要原因是设计、工艺及材质等问题。渗漏部位多为空心导线并头套封焊处,聚四氟乙烯绝缘管交叉碰磨处,或因空心铜线材质不好(有砂眼或裂隙)和在运行中断裂等。如渗漏部位系微细裂纹或孔洞,则压力较高的氢气往往渗入水中,并可在定子内冷水箱顶部发现氢气;渗漏部位的裂缝或孔洞较大时,则水渗出与氢渗入并存,极易造成定子接地事故。 多年来,现场一直采用水压试验法来检查线棒漏水,但这种方法对由空心导体金属组织致密性差,而引起的微泄漏现象就显得灵敏度不够,常常无法查出。如某电厂对一台300 MW发电机进行1 MPa、8 h水压试验,未发现漏点,后提高至1.2 MPa,8 h亦未找出漏点,但进行1 MPa

发电机常见故障及解决方案汇总样本

双馈发电机简介及常见故障 一: 双馈电机简介及工作原理 ( 1) 简介: 双馈异步风力发电机( DFIG, Double-Fed Induction Generator) 是一种绕线式感应发电机, 是变速恒频风力发电机组的核心部件, 也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成, 冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连, 转子绕组经过变流器与电网连接, 转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节, 机组能够在不同的转速下实现恒频发电, 满足用电负载和并网的要求。由于采用了交流励磁, 发电机和电力系统构成了"柔性连接", 即能够根据电网电压、电流和发电机的转速来调节励磁电流, 精确的调节发电机输出电压, 使其能满足要求。 ( 2) 工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应 发电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。 ”双馈”的含义是定子电压由电网提供, 转子电压由变流器提供。该系统允许在限定的大范围内变速运行。经过注入变流器的转子电

流, 变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间, 发电机的运转状态由变流器及其控制器管理。 变流器由两部分组成: 转子侧变流器和电网侧变流器, 它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器经过控制转子电流分量控制有功功率和无功功率, 而电网侧变流器控 制直流母线电压并确保变流器运行在统一功率因数( 即零无功功率) 。 功率是馈入转子还是从转子提取取决于传动链的运行条件: 在超同步状态, 功率从转子经过变流器馈入电网; 而在欠同步状态, 功率反方向传送。在两种情况( 超同步和欠同步) 下, 定子都向电网馈电。 ( 3) 优点: 首先, 它能控制无功功率, 并经过独立控制转子励磁电流解耦有功功率和无功功率控制。其次, 双馈感应发电机无需从电网励磁, 而从转子电路中励磁。最后, 它还能产生无功功率, 并能够经过电网侧变流器传送给定子。可是, 电网侧变流器正常工作在单位功率因数, 并不包含风力机与电网的无功功率交换。 二: 电机常见故障及解决办法 1: 电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: ( 1) 磁场不对称;

电动机常见故障有哪些电动机常见故障及处理

电动机常见故障有哪些电动机常见故障及处理 在现代企业中,电机的运用和发展日新月异。但是在生产当中电动机故障运行而造成的各种事故在生产中占有很 大的比例,全面提高电动机的使用效率,延长电机的使用寿命已成为迫切面临的问题。根据本人的工作实际和相关材料,对此做出以下总结,望各位老师和同行多多提供建议,为企业降低生产成本,做出应有贡献。一、电动机单相运行产生的原因及预防措施1、熔断器熔断⑴故障熔断:主要是由于电机主回路单相接地或相间短路而造成的熔断器熔断。预防措施:选择适应周围环境条件的电动机和正确安装的低压电器及线路,并要定期加以检查,加强日常维护保养工作,及时排除各种隐患。⑵非故障性熔断:主要是熔体容量选择偏小,在启动电动机时,受启动电流的冲击,超过熔丝承受能力而发生熔断,还有就是熔断器接装质量差导致使用寿命短。熔断器非故障性熔断是可以避免的,不要片面认为在能躲过电机的启动电流的情况下,熔体的容量尽量选择小一些的,这样才能够保护电机。我们要明确熔断器只能保护电动机的单相接地和相间短路事故,它绝不能作为电动机的过负荷保护。过负荷只能选用热继电器或电机综合保护器等相关配件。2、正确选择熔体的容量一般熔体额定电流选择的公式为:额定电流=K×电动机的额定电流⑴耐

热容量较大的熔断器(有填料式的)?K值可选择1.5~2.5。 ⑵耐热容量较小的熔断器K值可选择4~6。对于电动机所带的负荷不同,?K值也相应不同,如电动机所用电负荷大的,?那么K值可选择大一些,如电动机的负荷不大,K值可选择小一些,具体情况视电机所带的负荷来决定。 此外,熔断器的熔体和熔座之间必需接触良好,否则会引起接触处发热,使熔体受外热而造成非故障性熔断。在安装电动机的过程中,应采用恰当的接线方式和正确的安装方法。⑴对于线接头,能用线鼻子尽可能使用,如果没有一定要压紧压实,防止节点松动,造成不良接头外局部高热,烧毁导线引起单项运行,对电机造成损毁。⑵对于容量较大的插入式熔断器,?在接线处可加垫薄铜片(0.2mm),这样增加接触面,分散电流达到减小热效应的目的。⑶检查、调整熔体和熔座间的接触压力。⑷接线时避免损伤熔丝,紧固要适中,接线处要加装弹簧垫圈。3、主回路方面易出现的故障⑴接触器的动静触头接触不良。其主要原因是:接触器选择质量差,触头的灭弧能力小,?使动静触头粘在一起,三相触头动作不同步,造成缺相运行。预防措施:选择质量合格国家认证的接触器。⑵使用环境恶劣如潮湿、?振动、有腐蚀性气体和散热条件差等,造成触头损坏或接线氧化,接触不良而造成缺相运行。预防措施:选择满足环境要求的电器元件,防护措施要得当,强制改善周围环境,

相关主题