搜档网
当前位置:搜档网 › 低功耗实时时钟芯片Ambiq Micro

低功耗实时时钟芯片Ambiq Micro

低功耗实时时钟芯片Ambiq Micro
低功耗实时时钟芯片Ambiq Micro

集成电路低功耗设计方法研究【文献综述】

毕业设计文献综述 电子信息科学与技术 集成电路低功耗设计方法研究 摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。 关键字:低功耗,标准单元,ASIC设计 前言: 自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。 随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。 一、电路功耗的组成 CMOS电路中有两种主要的功耗来源,动态功耗和静态功耗。其中,动态功耗包括负载电容的充放电功耗(交流开关功耗)和短路电流引起的功耗;静态功耗主要是由漏电流引起的功耗,如图1所示。

Nordic超低功耗蓝牙芯片nRF8001

Nordic超低功耗蓝牙芯片nRF8001 11月18日,2010年中国无线世界暨物联网大会在京正式举行,C114中国通信网为本届会议的独家战略合作媒体,进行现场全程直播报道。 主持人:下面有请来自Nordic Semiconductor ASA的Sebastien Mackaie-Blanchi先生做演讲,题目是《纽扣电池续航的蓝牙技术》。 Sebastien Mackaie-Blanchi:今天早晨大家听到了关于蓝牙技术的演进路线,下面我给大家更多地介绍一下蓝牙技术低功耗的特点,特别是在纽扣上面低功耗的技术。 今天我给大家介绍一下纽扣电池为什么需要蓝牙技术呢?在设计这样的设备的时候要有什么考虑呢? 首先我们可以看到纽扣电池已经存在很多年了,比如像你的手表上也会用到纽扣电池,有一些体育运动设备,比如说测量仪表也会使用这个纽扣技术,现在蓝牙技术,特别是4.0的规范给我们提供了很多可能性。无论是什么样的规范我们都在看,而且蓝牙技术也是其中一个选择。蓝牙的低功耗技术将会更好地支持我们的纽扣电池,比如说一些玩具、体育用品以及其他的东西,可能使用的不仅仅是蓝牙技术。我们来看一看到底这个纽扣电池是什么样的呢?它有不同的类型,它们有时候容量很大,有时候容量很小。 请看一下我们的CR1216,它是25毫安,它的容量非常好,这是表标准使用的纽扣电池。大家可以看到,它的平均电流对寿命有着非常大的影响。其中一个非常重要的特征请大家记住,基于25毫安,如果使用这样的功耗的话,每天24小时运行,每周7天来运行,它可以用一年的时间,我们要保证它的平均电流要尽量地低,如果要使用一年的时间,你要保证它的电流要低于25毫安,而且它的峰值电流也是非常重要的,有的时候峰值电流可能是比较高的,如果峰值电流比较高的话,会影响电池的容量。如果它的峰值电流越高的话,它的电池寿命越短。大家在使用纽扣电池的时候,如果它的峰值电流低的话,也意味着它的功耗比较低。在温度不同的情况下使用,它的寿命也是不一样的。所以说在设计纽扣电池的时候我们要考虑两个重要的指标,一个是平均电流,一个是峰值电流。 我们有一个中心的设备,大家可以看到在中间,还有其他的一些外设设备,关键的是可以看到中间的设备它将会保证和传感器的连接,将这个设备连接的时候,中央的设备将会是连接的核心,因为中心的设备将会影响连接的参数,它会决定比如说和传感器多长时间交换一下数据,要和交换器交换多少数据。所以不仅要看传感器的问题,也取决于你的设备,它是不是使用屏幕或者是其他的功能,它的功耗肯定会有所不同。关键的要素在于,如果来看手机的话,它有应用在运行,它就会决定你的连接参数,它会确定出来多快的时间会影响你的功耗。蓝牙技术应该尽量少地使用电能,它们也可以增加包交换的时延,它并不是针对大流量的应用设计的。所以说纽扣电池并不是要以这样的应用,我们只是针对一些非常简单的应用,尽量频率要少的交换数据,比如一些远程的控制或者是其他的一些非常简单的设备。像耳机之类的,这些可能只能使用可充电电池而不能使用纽扣电池。如果从一个设备到另外一个设

一种低功耗系统芯片的实现流程

一种低功耗系统芯片的实现流程 一种低功耗系统芯片的实现流程 0引言 随着CMOS半导体工艺的进步,集成电路进入系统芯片(System on Chip,SoC)设计时代,极大地提高了集成度和时钟频率,导致芯片的功耗急剧增加。功耗成为集成电路设计中除面积和时序之外的又一个重要因素,因此低功耗设计成为学术界和产业界关注的焦点。低功耗技术的引入,给芯片的设计和实现提出了新的挑战。这些挑战包括电压域的划分、EDA工具之间数据的交换和管理等。本文基于IEEEl801标准Uni-fied Power Format(UPF),采用Synopsys和Mentor Graphics的EDA工具实现了包括可测性设计在内的“从RTL到GDSII”的完整低功耗流程设计。本论文第1部分描述了低功耗技术和术语。第2部分描述了本文设计的系统芯片的情况。第3部分描述了整个设计的流程和采用的EDA 工具。第4部分为总结。 1低功耗技术数字CMOS电路的功耗主要有三个来源,分别是开关功耗Pswitching、短路功耗Pshort-circuit和泄漏功耗Pleakage,分为动态功耗(Psw itching+Pshort-circuit)和静态功耗(Pleakage)两大类,如式(1)所示。其中,α是开关活动因子,CL是有效电容,VDD是工作电压,fclk是时钟频率,ISC是平均短路电流,Ileak是平均漏电流。目前提出了各种降低功耗的方法,主流的技术有门控时钟(Clock-Gating)、多阈值电压(Multi-threshold),先进的技术包括多电压

(Mulit-Voltage,MV)电源关断(MTCMOS Pwr Gating)、多电压和带状态保持功能的电源关断(MV&Pwr Gating with State Retention)、低电压待机(Low-VDD Stan-dby)、动态或自适应电压和频率调整(Dynamic or Adaptive Voltage&Frequency Scaling,DVS、DVFS、AVS、AVFS)、阱偏置(Well Biasing,VTCMOS)等。为了实现这些技术,需要在设计的时候划分电压域(Power Domain,PD),组成不同的工作模式(Power Mode,PM)和加入特殊器件,比如电源关断器件(Power Switches)、电平转换器件(Level Shifter,LS)、隔离器件(Isolation Cell)和状态保持器件(State Ret-ention Cell)等。在本文的芯片设计中采用了门控时钟、多电压和电源关断技术。 2本次设计的概括本文的芯片设计,有4万个寄存器、20万逻辑门,共分七个电压域,PD TOP(顶层)、PD1、PD2、PD3、PD4、PD5和PD6,其中PD6工作在1.2V,其余的工作在1.8V。在正常工作模式下有三种电压模式,分别为PM1(PD1关断,其余开启)、PM2(PD TOP和PD1开启,其余关断)和PM3(PD TOP开启,其余关断)。电源关断器件和隔离器件的使能信号(ps en和iso en)由处于常开区PD TOP的功耗模式控制器(PMC)产生。 3低功耗设计流程,每个关断电压域的输出要插入隔离器件,以防止该电压域电源关断后输出的不定态影响别的电压域正常工作,由于PD6的工作电压是1.2V,其余的是1.8V,因此要在PD6的输入和输出插入电平转换器件。这些低功耗的设计意图写入UPF文件,EDA工具根据

MRS201低功耗霍尔元件

TMR 超低功耗全极磁开关 概述 是一款集成了隧道磁阻(TMR )传感器和CMOS 技术,为高灵敏度、高速、低功耗、高精度应用而开发的全极磁开关。采用高精度推挽式半桥TMR 磁传感器和CMOS 集成电路,包括TMR 电压发生器、比较器、施密特触发器和CMOS 输出电路,能将变化的磁场信号转化为数字电压信号输出。通过内部电压稳压器来提供温度补偿电源,并允许宽的工作电压范围。以低电压工作、1微安级的供电电流、高响应频率、宽的工作温度范围、优越的抗外磁干扰特性成为众多低功耗、高性能应用的理想选择。采用两种封装形式:SOT23-3和TO-92S 。 功能框图 产品特性 ? 隧道磁电阻 (TMR) 技术 ? 1.5微安超低功耗 ? 高频率响应可达1kHz ? 全极磁开关 ? 高灵敏度,低开关点 ? 宽工作电压范围 ? 卓越的温度稳定性 ? 优越的抗外磁场性能 典型应用 ? 流量计,包括水表、气表和热量表 ? 接近开关 ? 速度检测 ? 线性及旋转位置检测 磁开关MRS201MRS201MRS201MRS201MRS201MRS201

管脚定义 TO-92S SOT23-3 极限参数 性能参数(V CC = 3.0V, T A = 25°C) 注:在以上测试中,电源和地之间需连接一个0.1μF的电容。

磁特性(V CC = 3.0V, T A = 25°C) 电压和温度特性 输出和磁场关系 注:上电时,在工作磁场为零时,输出信号为高电平。 磁场感应方向磁场强度

MRS201应用指南 封装尺寸 SOT23-3封装图: 平行于TMR 传感器敏感方向的磁场超过工作点门限︱B OPS ︱(︱B OPN ︱)时,输出低电平。当平行于TMR 传感器敏感方向的磁场低于释放点︱B RPS ︱(︱B RPN ︱)时,输出高电平。磁场工作点和释放点的差值就是传感器的回差B H 。 为了降低外部噪音,推荐在传感器电源和地之间增加一个滤波电容(靠近传感器)。如应用电路图所示,典型值为0.1μF 。 MRS201

PST72XX超低功耗高压500mA稳压芯片

PST72XX Series 0.5A Low Power LDO Features ●Low voltage drop:0.17V@100mA ●High input voltage:15V ●Low temperature coefficient ●Large Output Current:>0.5A ●Low Quiescent Current:1.0uA ●Output voltage accuracy:tolerance±2%●Built-in current limiter ●SOT89,SOT89-5,SOT23-3and SOT23-5 packages Applications ●Battery-powered equipment ●Hand-Hold Equipment ●GRS Receivers ●Wireless LAN General Description The PST72XX series is a group of positive voltage output,three-pin regulators,that provide a high current even when the input/output voltage differential is small.Low power consumption and high accuracy is achieved through CMOS and laser trimming technologies.The consists of a high-precision voltage reference,an error amplification circuit,and a current limited output driver.Transient response to load variations have improved in comparison to the existing series.SOT89,SOT89-5,SOT23-3 and SOT23-5packages are available. Selection Table Part No.Output Voltage Package Marking PST7218xx 1.8V SOT89 SOT89-5 SOT23 SOT23-5 SOT23-5B Refer to Marking rule 7228xx 2.8V 7230xx 3.0V 7233xx 3.3V 7236xx 3.6V 7240xx 4.0V 7245xx 4.5V 7250xx 5.0V Order Information PST72①②③④ Designator Symbol Description 1②Integer Output Voltage(1.8~5.0V) ③ P Package:SOT89 P5Package:SOT89-5 M Package:SOT23-3 M5Package:SOT23-5 M5B Package:SOT23-5B ④R RoHS/Pb Free G Halogen Free PST72XX PST PST PST PST PST PST PST

ARM低功耗设计_全面OK

嵌入式系统中的低功耗设计 2008-12-31 18:19:55 作者:电子之都来源:电子之都浏览次数:59 网友评论 0 条 经过近几年的快速发展,嵌入式系统(Embedded system)已经成为电子信息产业中最具增长力的一个分支。随着手机、PDA、GPS、机顶盒等新兴产品的大量应用,嵌入式系统的市场正在以每年30%的速度递增(IDC预测),嵌入式系统的设计也成为软硬件工程师越来越关心的话题。 在嵌入式系统的设计中,低功耗设计(Low-Power Design)是许多设计人员必须面对的问题,其原因在于嵌入式系统被广泛应用于便携式和移动性较强的产品中去,而这些产品不是一直都有充足的电源供应,往往是靠电池来供电,所以设计人员从每一个细节来考虑降低功率消耗,从而尽可能地延长电池使用时间。事实上,从全局来考虑低功耗设计已经成为了一个越来越迫切的问题。 那么,我们应该从哪些方面来考虑低功耗设计呢?笔者认为应从以下几方面综合考虑: 1.处理器的选择 2.接口驱动电路设计 3.动态电源管理 4.电源供给电路的选择 下面我们分别进行讨论: 一、处理器的选择 我们对一个嵌入式系统的选型往往是从其CPU和操作系统(OS)开始的,一旦这两者选定,整个大的系统框架便选定了。我们在选择一个CPU的时候,一般更注意其性能的优劣(比如时钟频率等)及所提供的接口和功能的多少,往往忽视其功耗特性。但是因为CPU 是嵌入式系统功率消耗的主要来源---对于手持设备来讲,它几乎占据了除显示屏以外的整

个系统功耗的一半以上(视系统具体情况而定),所以选择合适的CPU对于最后的系统功耗大小有举足轻重的影响。 一般的情况下,我们是在CPU的性能(Performance)和功耗(Power Consumption)方面进行比较和选择。通常可以采用每执行1M次指令所消耗的能量来进行衡量,即Watt/M IPS。但是,这仅仅是一个参考指标,实际上各个CPU的体系结构相差很大,衡量性能的方式也不尽相同,所以,我们还应该进一步分析一些细节。 我们把CPU的功率消耗分为两大部分:内核消耗功率PCORE和外部接口控制器消耗功率PI/O,总的功率等于两者之和,即P=PCORE+PI/O。对于PCORE,关键在于其供电电压和时钟频率的高低;对于PI/O来讲,除了留意各个专门I/O控制器的功耗外,还必须关注地址和数据总线宽度。下面对两者分别进行讨论: 1、CPU供电电压和时钟频率 我们知道,在数字集成电路设计中,CMOS电路的静态功耗很低,与其动态功耗相比基本可以忽略不计,故暂不考虑。其动态功耗计算公式为: Pd=CTV2f 式中,Pd---CMOS芯片的动态功耗 CT----CMOS芯片的负载电容 V----CMOS芯片的工作电压 f-----CMOS芯片的工作频率 由上式可知,CMOS电路中的功率消耗是与电路的开关频率呈线性关系,与供电电压呈二次平方关系。对于一颗CPU来讲,Vcore电压越高,时钟频率越快,则功率消耗越大。所以,在能够满足功能正常的前提下,尽可能选择低电压工作的CPU能够在总体功耗方面得到

UM1550系列超低功耗LDO

超低功耗、低压差、小封装LDO 上海英联电子科技有限公司杨永华徐宁一、前言 传统的LDO功耗较大,静态工作电流在100uA左右。对于电池供电的设备,由于大部分时间处于休眠状态,MCU的工作电流仅为几微安,传统LDO的功耗显然不能满足设计要求。 上海英联电子采用低功耗的CMOS工艺,推出了UM1550、UM1560系列,8V静态工作电流仅为2.5uA(V IN=8V),输入电压范围很宽,1.8V~ 8V,输出电流可达250mA。1.8V的超低输入电压,250mV的低压差(I OUT=200mA)可最大限度的使用电池。该系列产品可用于电池供电和电源供电两种模式,为客户省去一个LDO,最小封装仅为DFN 1mmX1mm,降低成本、节省空间、延长电池的使用寿命。 二、UM1550、UM1560的重要参数 英联的UM1550、UM1560系列是超低静态工作电流的电压稳压器,可使用1μF以上的陶瓷电容器作为输出电容。输入电压范围:1.8V~8V,输出电压范围为1.2V~5V。 UM1550系列提供两种封装供客户选择,SOT23-3、SOT89-3、DFN 1X1、DFN 2X2,与市面同类型芯片兼容。UM1560系列带有使能管脚,封装为SOT23-5、DFN 1X1、DFN 2X2。其主要参数如表1所示: 表1 特性参数表 Symbol Parameter Test conditions Min Typ Max Unit V IN Input Voltage Range 1.8 8 V V OUT Output Voltage Range 1.2 5.0 V I Q Quiescent Current I OUT=0mA,V IN=8.0V 2.5 3.5 μA △V DO Dropout Voltage IOUT=200mA 250 330 mV V IH SHDN Input Hi gh Voltage VIN=1.8V to 8V 1.2 I SHDN SHDN Input Current SHDN=VIN or GND 1 μA I OUT Output C urrent 250 mA I LIIMT Current Limit R L=1Ω 280 360 500 mA 1、静态电流Iq 静态电流为输出电流与输如电流的差,LDO的效率与输入、输出电压和静态工作电流有关。效率可由以下公式算出: 效率=Vo×Io (Io+Iq)×Vin×100% 由公式可看出,当LDO处于轻负载情况下,静态电流就显得尤为重要,Iq值越小,效率越高。图1为UM1550、UM1560系列LDO在不同输入电压情况下的Iq值。

实时时钟芯片DS1302

实时时钟芯片DS1302的结构,工作原理及应用(含源程序) 1.ds1302实时时钟简介 现在流行的串行时钟电路很多,如DS1302、DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。本文介绍的实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768kHz晶振。 2 DS1302的结构及工作原理 DS1302是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。 2.1 引脚功能及结构 图1示出DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST 为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST 置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),后面有详细说明。SCLK始终是输入端。 2.2 DS1302的控制字节

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

超低功耗电路的设计原则及设计分析

超低功耗电路的设计原则及设计分析 以手机为代表的电池供电电路的兴起,为便携式仪表开创了一个新的纪元。超低功耗电路系统(包括超低功耗的电源、单片机、放大器、液晶显示屏等)已经对电路设计人员形成了极大的诱惑。毫无疑问,超低功耗电路设计已经对低功耗电路提出了挑战,并将扩展成为电子电路中的一个重要应用领域。 虽然超低功耗设计仍然是在CMOS集成电路(IC)基础上发展起来的,但是因为用户众多,数千种专用或通用超低功耗IC不断涌现,使设计人员不再在传统的CMOS型IC上下功夫,转而选择新型超低功耗IC,致使近年来产生了多种超低功耗仪表。电池供电的水表、暖气表和煤气表近几年能够发展起来就是一个证明。目前,电池供电的单片机则是超低功耗IC的代表。 本文将对超低功耗电路设计原则进行分析,并就怎样设计成超低功耗的产品作一些论述,从而证明了这种电路在电路结构和性价比等方面对传统电路极具竞争力。 1 CMOS集成电路的功耗分析 无论是低功耗还是超低功耗IC,主要还是建立在CMOS电路基础上的。虽然超低功耗IC 对单元电路进行了新形式的设计,但作为功耗分析,仍然离不开CMOS电路基本原理。以74系列为代表的TTL集成电路,每门的平均功耗约为10mW;低功耗的TTL集成电路,每门平均功耗只有1mW。74系列高速CMOS电路,每门平均功耗约为10μW;而超低功耗CMOS 通用小规模IC,整片的静态平均功耗却可低于10μW。传统的单片机,休眠电流常在50μA~2mA范围内;而超低功耗的单片机休眠电流可达到1μA以下。 CMOS电路的动态功耗不仅取决于负载,而且就电路内部而言,功耗与电源电压、集成度、输出电平以及工作频率都有密切联系。因此设计超低功耗电路时不得不对全部元件的内外性质做仔细分析。 CHMOS或CMOS电路的功耗特性一般可以表示为: P=PD+PA

ASIC低功耗设计

三、低功耗技术 1. 功耗分析 (1)由于电容的充放电引起的动态功耗 V DD C l i VDD v out 图(20)充放电转换图 如图(20)所示:PMOS 管向电容L C 充电时,电容的电压从0上升到DD V ,而这些能量来 自于电源。一部分能量消耗在PMOS 管上,而剩余的则保存在电容里。从高电压向低转换的过程中,电容放电,电容中储存的能量消耗在NMOS 管上。 我们来推导一下:考虑从低电压转换到高电压的情况,NMOS 和PMOS 不同时导通。在转换过程中电源提供的能量为C E ,而是转换后储存在电容里的能量。 ???====∞∞VDD DD L out DD L out L DD VDD VDD V C dv V C dt dt dv C V dt t i E 0 002)( ???====∞∞VDD DD L out out L out out L out VDD C V C dv v C dt v dt dv C dt v t i E 02002 )( 这两个等式说明电源提供的能量只有一半储存在电容里。另一半被PMOS 管消耗掉了。 为了计算总体能量消耗,我们不得不考虑器件的翻转。如果门每秒钟翻转10?→? f 次,那么 102 ?→?=f V C P DD L dyn 10?→?f 表示能量消耗的翻转频率。 随着数字电路集成度的提高,能量问题将成为人们关注的焦点。从以上分析看出,dyn P 跟电源电压的平方成正比,因此降低供电电压对降低功耗有非常显著的意义。 但是,降低供电电压对电路性能有一定的影响,这时我们可以考虑减小有效电容和减少翻转率。电容主要是由于晶体管的门和扩散电容引起的,因此降低由于电容的充放电引起的动态功耗方法之一是将晶体管设计得尽可能小,这种方法同样对提高电路的性能有很大的帮助。

PCF8563 实时时钟日历芯片详细资料(中文版——权威)

PCF8563 实时时钟日历芯片选型指南 1. 概述 PCF8563是低功耗的CMOS实时时钟日历芯片。它提供一个可编程时钟输出一个中断输出和掉电检测器所有的地址和数据,通过I2C总线接口串行传递最大总线速度为400Kbits/s,每次读写数据后内嵌的字地址寄存器会自动产生增量。 2. 特性 低工作电流典型值:0.25 A,VDD=3.0V Tamb=25 时; 世纪标志; 大工作电压范围:1.0V--5.5V; 低休眠电流典型值为:0.25 A(VDD=3.0V,Tamb=25 ); 400KHz 的I2C 总线接口:VDD=1.8 5.5V 时; 可编程时钟输出频率为:32.768KHz、1024Hz、32Hz、1Hz; 报警和定时器; 内部集成的振荡器电容片内电源复位功能掉电检测器; I2C 总线从地址:读0A3H 写0A2H; 开漏中断引脚。 3. 应用 复费率电度表IC、卡水表IC、卡煤气表 便携仪器 传真机移动电话 电池电源产品 4.简明参考数据

8.功能描述 PCF8563内有16个8位的地址递增寄存器,一个32.768 kHz片上集成电容振荡器,一个实时时钟源(RTC)的分频器,可编程的时钟输出,一个定时器,报警器,一个低压检测器和400KHz的I2C接口。 所有16个寄存器被设计成可寻址的8位并行寄存器,虽然不是所有的位都有效。前两个寄存器(内存地址00H和01H),用于控制与/或状态寄存器。内存地址02H至08H是时钟功能的计数器,用于(秒、分、时、日、月、年计数器)。内存地址09H至0CH包含定义报警的条件的报警寄存器。内存地址0DH控制CLKOUT的输出频率。0EH和0FH分别是定时控制器和定时器。 秒、分钟、小时、天、月、年、以及每分钟报警、小时报警、日报警寄存器都以BCD 格式编码。平日和星期报警寄存器不以BCD格式编码。 当一个RTC寄存器被读取,所有的寄存器的内容被冻结。因此可以避免在读指令跳转期间,读取时钟/日历时发生错误。 8.1 报警功能模式 通过清除一个或多个报警寄存器最高有效位(位AE=报警启用),相应的报警条件将被激活。这种方式可以产生从每分钟至每周一次的报警。报警条件设置报警标志,AF(控制/状态寄存器2的第3位),AF可用于产生一个中断(INT),AF只能通过软件清零。 8.2 定时器模式 8位减数计时器(地址0FH)由定时控制寄存器(地址0EH,参见表25)控制。定时控制寄存器可以选择定时器的时钟源频率(4096,64,1,或1/60Hz)和启用/禁用计时器。从软件加载的8位二进制值的倒计时,在每个倒计时结束时,定时器设置的定时器标志TF(见表7)。定时器标志位TF只能由软件清零。根据定时器标志位TF可以产生一个中断(INT)。每个倒计时阶段都可能会产生中断脉冲信号,作为一个永久的积极信号,如TF条件下。TI/ TP(见表7)用于控制这种模式的选择。当读取定时器,当前的倒计时数值作为返回值。 8.3 CLKOUT输出 CLKOUT引脚有可编程方波。由CLKOUT频率寄存器(地址0DH;见表23)控制操作。时钟频率32.768KHz(默认),1024,32和1Hz的频率可以作为系统时钟,单片机的时钟,输入到电荷泵,或校准振荡器。CLKOUT开漏输出,上电时启用。如果禁用它变为高阻抗。8.4 复位低电压检测器和时钟监视器 PCF8563的包括内部复位电路,振荡器停止时,复位电路激活。在复位状态下,I2C总线初始化,所有寄存器和地址指针被清零,VL、TD1、TD0、TESTC和AE被设置为逻辑1。8.5 低电压检测器和时钟监视器 PCF8563芯片的低电压探测器。当VDD低于Vlow,VL位(秒寄存器第7位)设置表明可靠的时钟/日历信息将不再保证。VL标志只能由软件清零。 位VL用于检测在电池供电情况下,VDD慢慢降低到Vlow的情况。在VDD低于Vlow之前应该把VDD从新拉高。这种情况下,时间可能被损坏。 8.6 寄存器结构

低功耗物门控时钟的三种功耗分析

低功耗物门控时钟的三种功耗分析 电路在功能仿真通过后,开始进行寄存器级综合。采用高阈值标准单元库和多级门控时钟技术相结合,在RTL阶段插入门控时钟单元,并在布局布线时在IC Comp iler中进行了基于门控时钟的布局布线优化,布局布线正确完成仿真通过后,在PT中做静态时序分析并进行最终的功耗分析。 1、时钟门控的RTL级实现 在RTL级,门控时钟的实现不需要对设计本身进行修改,而只需在综合脚本中加入一些控制项。 控制项set_clock_gating_ STyle是门控时钟的核心。它的参数大小决定门控时钟的质量,对功耗的优化效果和对CTS的影响。目前尚无完备的体系介绍如何设置控制项以使门控效果达到最优。 首先确定时序单元的类型。为了避免非Latch单元易产生毛刺的缺点,此处选定时序单元的类型为Latch。由于库中提供基于锁存器的门控单元,固正边沿逻辑positive_edge_ logic采用工艺库提供的专用单元。采用集成单元的优势在于不仅不需要设置门控单元输入端建立时间和保持时间,因为集成单元的时序信息在单元库中已有说明,而且有效缓解了插入门控单元对延时带来的不利影响。

fanout的大小对功耗和时序都有影响。数值越大则表示一个门 控单元可承受较多的负载,即代表越节省功耗,需要的门控单元也越少,但对门控单元输入端建立时间的要求也就更加严格。位宽决定一组寄存器能被门控的最小宽度。级数则确定多级门控时钟的最大级数。这三个参数主要是依据设计本身对功耗的要求,结合综合时的时序约束和单元库中门控单元的时延信息加以估计,确定一个粗略的数值范围。 2、时钟门控的版图级实现 在布局布线阶段,基于门控时钟的功耗优化流程主要如下:在布 局之前,设置set_power_op tiONs–clock_gating true,之后在布局、时钟树综合和布线阶段的主要命令中添加选项- power即可。设置可实现最基本的门控时钟布局布线,但在设计中生成的时钟网络分布不均匀,而且skew很大。需要采取额外的优化措施来消除其带来的不利影响。 门控单元的加入给CTS带来的影响主要有两个方面,一方面会 造成整个时钟网络分布不平衡,另一方面导致时钟偏移增大。单采用上述措施,时钟偏移最大可达到1. 11,严重偏离了不采用门控时钟时的偏移量0. 12。在优化时钟偏移上,目标有三个方面:构造一个 相对平衡的时钟网络,使得在各个层上,层的各个分支上的单元数目相近;减小时钟偏移至可承受范围;尽量保持功耗同只采用门控时钟 而不优化时钟偏移状况下的功耗相近或更小。

超低功耗控制电路及程序设计思路

浅谈低功耗控制电路和程序设计思路 一:首先了解芯片的内部功耗 芯片制作完整过程包括芯片设计、晶片制作、封装制作、成本测试等几个环节,其中晶片片制作过程尤为的复杂。首先是芯片设计,根据设计的需求,生成的"图样"开发一个手持设备,有一个设计重点问题是必须要重视和解决的。那就是在待机状态下如何做到最省电,即在待机状态下如何做到尽可能的低功耗,比如用芯唐科技的Cortex-M0内核的NUC100做手持电台的开发, 1、首先要了解的就是该芯片在深度休眠或睡眠模式下功耗是多少(即该模式下的工作电流时多大,注一般的芯片都是uA级别的)。 通过查看NUC100芯片资料(在每个芯片手册电气特性或DC电气特性一节会有说明)了解到该芯片的工作最大电流(体积小、低功耗、效率高、低闸极数、指令精简的处理器,8位机价格,32位机效能,C-语言,与Cortex-M3开发工具以及二进制程序代码兼容,便利的开发环境Keil?RVMDK和IAR EWARM,180uLL制程并运用ARM标准单元资源库,低闸极数的空间内,功耗低到85microwatts/MHz以下,NUC1xx系列包括:NUC100/ NUC120/NUC130/NUC140,NUC100Cortex?-M0内核系列最高可运行至50MHz外部时钟。)和深度休眠模式下的最低功耗(最低功耗有Ipwd1,Ipwd2,Ipwd3,Ipwd4,表示NUC100内部的模块工作需要外部提供四个VDD接口,计算功耗时要把他们累加起来,这里给出了每个VDD接口的休眠模式下最低功耗值,当然如果芯片可以关闭某个模块的对应的VDD,那就可以降低更多不必要的功耗了)

集成电路

集成电路设计综述 杨超 (湖南工学院电气与信息工程学院湖南衡阳421000)【摘要】本文介绍了集成电路设计的各个阶段及其基本的特征,把集成电路设计流程划分为三个阶段: 需求分析系统设计、逻辑设计、物理设计, 并通过对每一阶段的叙述, 同时介绍了集成电路设计的方法和基本知识。最后描述了集成电路设计面对的问题和前景,集成电路技术遵循摩尔定律发展进入了纳米尺度, 功耗带来的挑战日益突出, 已经成为制约集成电路发展的瓶颈问题. 微电子技术的发展已经进入了“功耗限制” 的时代, 功耗成为集成电路设计和制备中的核心问题。降低功耗有可能替代原来提高集成度、缩小器件尺寸成为未来集成电路发展的驱动力。低功耗集成电路的实现是一项综合的工程, 需要同时考虑器件、电路和系统的功耗优化, 需要在性能和功耗之间进行折中. 随着集成电路进入纳米尺度, 适于低功耗应用的CMOS 技术平台由于MOSFET 泄漏导致的电流增大、寄生效应严重等问题愈发突出,目前的许多低功耗技术成为了“治标” 的解决方案, 难以从根本上解决集成电路发展中遇到的“功耗限制” 问题, 一定程度上影响了纳米尺度集成电路的可持续发展,本文在深入分析影响集成电路功耗的各个方面的基础上, 介绍了超低功耗集成电路的工艺、器件结构以及设计技术。 【关键词】集成电路设计,低功耗,微电子器件,逻辑设计,物理设计 1、引言 集成电路技术遵循摩尔定律发展进入了纳米尺度, 功耗带来的挑战日益突出, 已经成为制约集成电路发展的瓶颈问题,微电子技术的发展已经进入了“功耗限制”的时代, 功耗成为集成电路设计和制备中的核心问题,降低功耗有可能替代原来提高集成度、缩小器件尺寸成为未来集成电路发展的驱动力,低功耗集成电路的实现是一项综合的工程,需要同时考虑器件、电路和系统的功耗优化, 需要在性能和功耗之间进行折中。随着集成电路进入纳米尺度, 适于低功耗应用的CMOS 技术平台由于MOSFET 泄漏导致的电流增大、寄生效应严重等问题愈发突出,目前的许多低功耗技术成为了“治标” 的解决方案, 难以从根本上解决集成电路发展中遇到的“功耗限制” 问题, 一定程度上影响了纳米尺度集成电路的可持续发展. 本文在深入分析影响集成电路功耗的各个方面的基础上,介绍了超低功耗集成电路的工艺、器件结构以及设计技术,目前这种发展趋势至少可以持续到2026 年, 其器件的特征尺寸将缩小至 6 nm,因此, 在未来的较长一段时期内,硅基集成电路仍将是微电子技术的主流,传统集成电路设计, 以更小的面积、更快的速度完成运算任务是不懈努力的目标. 然而随着硅基集成电路技术发展到纳米尺度,面积与时间已经不再是集成电路设计中需要考虑的唯一目标, 功耗带来的挑战日益突出, 已经成为制约集成电路发展的瓶颈问题。 2、集成电路往低功耗方向发展 近50年来, 硅基集成电路技术一直沿着摩尔定律高速发展,根据2011 年国际半导体技术发展蓝图(ITRS) 的预测, 目前这种发展趋势至少可以持续到2026 年, 其器件的特征尺寸将缩小至 6 nm。 因此, 在未来的较长一段时期内, 硅基集成电路仍将是微电子技术的主流,传统集成电路设计, 以更小的面积、更快的速度完成运算任务是不懈努力的目标. 然而随着硅基集成电路技术发展到纳米尺度,面积与时间已经不再是集成电路设计中需要考虑的唯一目标, 功耗带来的挑战日益突出, 已经成为制约集成电路发展的瓶颈问题,在诸如手持和便携设备等产品中功耗指标甚至成为第一要素,例如, 苹果公司iPhone4S 手机的双核A5 处理器和三星公司Galaxy S3 手机的四核Exynos 4412 处理器均基于ARM 多核、超低功耗架构Cortex-A9,

基于门控时钟的CMOS电路低功耗设计

基于门控时钟的C MOS 电路低功耗设计 罗 罹 (安徽大学计算机科学与技术学院,安徽合肥 230039) 摘 要:阐述了如何运用门控时钟来进行C MOS 电路的低功耗设计。分析了门控时钟的实现 方式,如何借助E DA 工具在设计中使用门控时钟,并且附有部分脚本程序,以一个watchdog ti m er 模块为例,给出了相关的功耗分析报告和优化结果。这样,可以借助E DA 工具的帮助,在综合时 插入门控时钟,较大幅度地降低功耗,同时附带减小面积,为使用门控时钟进行低功耗设计者提供 有益的参考。 关键词:低功耗;门控时钟;泄漏 中图分类号:T N431.2 文献标识码:A 文章编号:1000-2162(2005)03-0021-04 通常在C MOS 电路设计中,面积和速度是最为重要的性能指标。目前,随着嵌入式设备和手持设备的普及,由于电池的大小和重量的限制,决定了电池的供电量有限,因此降低功耗成为很紧迫的问题。设备功耗中的很大一部分是采用C MOS 工艺设计的芯片所引起的。因此,降低C MOS 电路的功耗很有意义,功耗也成为C MOS 电路设计中一个重要的性能指标。C MOS 电路的低功耗设计的概念和方法学应运而生,成为目前超大规模集成电路设计中的一个重要方向。 C MOS 电路的低功耗设计有很多方法,主要有:降低供电电压、使用门控时钟等。但是降低供电电压,会带来很多副作用:首先,降低供电电压,会导致速度下降,减小电容充放电的电流或负载驱动电流;其次,会导致较低的输出功率或较低的信号幅度,从而产生噪声和信号衰减的问题。相比之下,门控时钟是一个很有效的方法。门控时钟可以有效地对某些较少使用的时序逻辑进行开关控制,从 而大大降低功耗[1]。本文将以一个watchdog ti m er 模块为例,使用Synop sys 公司的综合工具Design Comp iler,详细阐述如何在设计中插入门控时钟,并且给出了使用的脚本,通过详细的分析报告,特别是使用门控时钟前后的功耗对比,相信可以为工程师使用门控时钟进行低功耗设计提供有益的参考。1 功耗和门控时钟的的基本概念 1.1 功耗的基本概念 电路中耗散的能量可以分为静态功耗(static power )和动态功耗(dyna m ic power )。静态功耗的主要原因是:晶体管中从源到漏的亚阈值泄漏(subthreshold leakage ),就是指阈值电压的降低阻止了栅的关闭。动态功耗分为开关功耗(s witching power )和内部功耗(internal power )。开关功耗是由于器件的输出端的负载电容的充放电引起的。负载电容包括了门和线的电容。内部功耗指在器件内部耗散的能量,主要由瞬时短路所引起的。 1.2 门控时钟的的基本概念 通常,门控时钟的实现方式有4种:基于“与”门、基于“或”门、基于触发器和基于latch 。以图1中基于latch 的门控时钟为例,基于latch 的门控时钟的实现原理是:在cl ock 为高电平时latch 不会锁存数据,在cl ock 的上升沿捕获enable 信号。 特别需要注意的是,门控时钟的使用可能会带来时序上的问题。特别当集成电路的设计已经进入深亚微米级时代,线延时占据了总延时的70%。以基于latch 的门控时钟为例,布局 收稿日期:2005-03-18 作者简介:罗 罹(19812),男,安徽黄山人,安徽大学助教,中国科技大学硕士研究生. 2005年5月 第29卷第3期安徽大学学报(自然科学版)Journal of Anhui University Natural Science Editi on May 2005Vol .29No .3

相关主题