搜档网
当前位置:搜档网 › d第四章 电路的基本定理

d第四章 电路的基本定理

d第四章 电路的基本定理
d第四章 电路的基本定理

第四章 电路的基本定理

习题解答

4-1 应用叠加定理求图示电路中的电流1i 、2i 和3i 。

解 1S u 单独作用时,有

A 16.66

56520140

6

||520S1

1

-=+?+

-=

+-='u i ()()A 8.26

516.6566||513

=+-?-='-='i i

()()A 36.36

516.6656||512

-=+-?='='i i S2u 单独作用时,有

A 36.96

206

20590

6||2052S 2

=+?+=+=''u i

()A 16.26

2036

.9620

6||202

1

=+?=

''=''i i

()A 2.76

2036.9206

6||202

3

=+?=''=''i i

S i 单独作用时,有

A 6S 21

=='''='''i i i

题4-1图

90V

03

='''i 由叠加定理得

1i =A 2616.216.6111

=++-='''+''+'i i i A 12636.936.3222

2=++-='''+''+'=i i i i A 1002.78.2333

3=++='''+''+'=i i i i 4-2 应用叠加定理求图示电路中的电压U 。

解 6V 、5V 电压源作用时,有

V 2.0564116-=-++?-='U

8V 电压源作用时,有

V 6.11418-=+?-=''U

2A 电流源作用时,有

()V 6.11

41421||42=+??=?='''U

由叠加定理得

V 2.06.16.12.0-=+--='''+''+'=U U U U

4-3 应用叠加定理求图(a)所示电路中的电流I 和电压U 。

题4-2图

题4-3图

(a) I I '2 (b) (c)

I ''2

解 图(b)为10V 电压源单独作用的分电路,图(c)为5A 电流源单独作用的分电路。由图(b)所示电路得

I I I '+'?+'=21210

A 25

10=='I

V 62332=?='='+'='I I I U 由图(c)得 ()0"215"2=+?++''I I I A 155"-=-=I

()V 2122=-?-=''-=''I U

由叠加定理得 ()A 112=-+=''+'=I I I

V 826=+=''+'=U U U

4-4 应用叠加定理求图示电路中的电压u 及受控源的功率。

解 2A 电流源单独作用时,有 ()()i i i i '+'+'='-?23221

()i i u '+'='23

求得 A 61=

'i

V 5.16

1

33=??='u

4V 电压源单独作用时,有

u 题4-4图

()()i i i ''+''+''+=23214

()i i u ''+''=''23

求得 A 31=''i

V 33

1

33=?

?=''u 由叠加定理得 A 5.03161=+=''+'=i i i

V 5.435.1=+=''+'=u u u

受控源的功率为

W 5.45.45.022-=??-=-=iu p

4-5 试求图示梯形电路中各支路电流、结点电压和

S

u u 。已知V 5.167S =u 。 解 设V 20

='u ,则 A 12

220

87

=='='='u i i V 3211073

=+='+?='u i u A 5.06

363

6

=='='u i A 5.15.01675

=+='+'='i i i

V 5.735.133352

=+?='+'='u i u

S u

题4-5图

A 375.020

5.7202

4

=='='u i A 875.15.1375.0543

=+='+'='i i i V 5.375.7875.11616231

=+?='+'='u i u A 5.215

5.37151

2

=='='u i A 375.4875.15.2321

=+='+'='i i i

V 875.415.37375.41111S

=+?='+'?='u i u 则

4875.415

.167S

S =='=

u u K 即各支路电流及各结电电压为假定值的4倍,所以 A 75.1375.441

1=?='=i K i A 105.242

2=?='=i K i A 5.7875.143

3=?='=i K i A 5.1375.044

4=?='=i K i

A 65.145

5=?='=i K i A 25.046

6=?='=i K i A 4147

87=?='==i K i i V 1505.3741

1=?='=u K u V 305.742

2=?='=u K u V 12343

3=?='=u K u V 8240

0=?='=u K u

048.05

.1678S 0==u u

4-6 题4-6图所示电路中,N 为有源线性网络。当V 40S =U ,0S =I 时,A 40=I ;

当V 20S =U ,A 2S =I 时,0=I ;当V 10S =U ,A 5S -=I 时,A 10=I 。当

V 40S -=U ,A 20S =I 时,求?=I

解 设N 内部独立源作用时产生的I 的分量为I ',由叠加定理得

I U K I K I '++=S 2S 1

将题给的条件代入,得 I K '+=24040 I K K '++=212020

I K K '++-=2110510

解之得

75.31-=K ,625.12=K ,A 25-='I

即有

25625.175.3S S -+-=U I I

当V 40S -=U ,A 20S =I 时,有

()A 1652540625.12075.3-=--?+?-=I

4-7 在图示电路中,当3A 的电流源断开时,2A 的电流源输出功率为28W

,这时

S I S U

题4-6图

V 82=U 。当2A 的电流源断开时,3A 的电流源输出功率为54W ,这时V 121=U 。试求

两个电流源同时作用时,每个电流源的输出功率。

解 由题意知,当2A 电流源单独作用时,有

28212A

='='U P V 142

281

=='U

V 82

='U 当3A 电流源单独作用时,有

54323A

=''=''U P V 183

542

==''U V 121

=''U 由叠加定理,2A 电流源和3A 电流源同时作用时,有 V 26121411

1=+=''+'=U U U

V 2618822

2=+=''+'=U U U 2A 电流源和3A 电流源发出的功率分别为 W 52262212A =?==U P

W 78263323A =?==U P

4-8 图示电路为一线性电阻电路,已知 (1) 当01S =U ,0S2=U 时,V 1=U ;

(2) 当V 11S =U ,0S2=U 时,V 2=U ;

题4-7图

(3) 当0S1=U ,V 1S2=U 时,V 1-=U 。 试给出S1U 和S2U 为任意值时电压U 的计算公式。 解 由条件(1)可知网络N 是含源的,设

U U K U K U '++=S22S11

式中U '为N 内部独立源产生的U 的分量。将题给条件代入上式,得 U '=1 U K '+=12

U K '+=-21

求出

V 1='U , 11=K , 22-=K

则S1U 和S2U 为任意值时,电压U 的计算公式为

12S2S1+-=U U U

4-9 图示电路为一非平面电路,电路参数及电源值如图所示。试求电流I 。 解 当1S1=I A 单独作用时,可求出

A 5.02

1

S1-=-='I I

当A 1S2=I 单独作用时,可求出

A 5.02

1

S2-=-

=''I I 当A 3S3=I 单独作用时,可求出

S2U

题4-8图

S1U

A 5.12

1

S3==

'''I I

由叠加定理得 A 5.05.15.05.0=+--='''+''+'=I I I I

4-10 应用叠加定理求题4-10图所示电路中的0U 。欲使A 230=U ,电压源不变,电

流源电流应为多少?若电流源取12A ,则电压源取何值?

解 3A 电流源单独作用时,应用KCL 、KVL 可得

000066

16635U U U U U '+???

??'+'?=??? ??'-'-? 求出

V 50

='U 8V 电压源单独作用时,应用KCL 、KVL 可得

题4-9图

题4-10图

??

? ??''+''?+''=666800

0U U U

V 3

80

=''U 由叠加定理得

V 667.73

8500

0=+=''+'=U U U 电压源不变,则V 3

80

=''U 不变,欲使V 230=U ,则电流源产生的分量X U 0应满足下式

000

U U U X =+'' 得

V 3

61

38230

00=-=''-=U U U X 则电流源应为

A 2.1235

361

S 00S =?='=I U U

I X X

若电流源取值A 12S =X I ,则其产生的0U 分量为

V 2053

12

S S 0

=?='='U I I U X X 此时电压源产生的分量为

V 32023000

=-='-=''X X U U U 则电压源应为

V 983

83

S 0

0S =?=''''=

U U U U X X

4-11 图示电路中,N 为含源线性网络,当改变电阻R 的值时,电路中各处电压和电流都随之改变。已知A 1=i 时,V 20=u ;A 2=i 时,V 30=u ;求当A 3=i 时,?=u

解 R 所在支路的电流i 已知,根据替代定理可用一个电流源i i =S 替代之,设

u Ki u Ki u '+='+=S

式中u '为N 内部独立源所产生的u 的分量。将已知条件代入上式,得

u K '+?=120 u K '+?=230

解得

10=K ,V 10='u

即有 1010+=i u 当A 3=i 时,由上式可得 V 4010310=+?=u

4-12 图示电路中N S 为线性有源电路,已知当Ω=31R 时,A 11=I ,A 32-=I ;当

Ω=91R 时,A 5.01=I , A 5.72-=I 。如果电流02=I ,则1R 为何值?

解 1R 中的电流为已知,由替代定理,1R 支路可用电流源1S I I =替代,设

212

S 2I KI I KI I '+='+= 上式中2

I '为N S 内部独立源产生的2I 的分量,将题给条件代入,得 213I K '+?=-

2

5.05.7I K '+?=- 解得

K =9,A 122

-='I 故得

12912-=I I

(1)

题4-11图

题4-12图

I

I 2 R R 2

又设1111

S 11U I K U I K U '+='+=,式中1U '为N S 内部独立源产生的1U 的分量。由电路知111R I U =。代入已知条件,得

11131U K '+?=? 1

15.095.0U K '+?=? 解得

31-=K ,V 61

='U 故得

6311+-=I U

(2)

当02=I 时,由式(1)得

A 3

49121==I

将1I 代入式(2)得

V 263

431=+?-=U

则此时的1R 为

Ω===

5.13

42

1

11I U R

4-13 求图(a)所示电路的戴维宁等效电路和诺顿等效电路。

解 可将1A 与Ω3的并联组合等效变成电压源3V 与Ω3的串联组合,见图(b)。则开路电压为

V 5.144313

6abo =?++-=

U

短路电流为

A 75.03

13

6sc =+-=

I 等效戴维宁电阻为

()Ω=+=24||31eq R

图(c)为戴维宁等效电路,图(d)为诺顿等效电路。

4-14 求图(a)所示电路的戴维宁等效电路和诺顿等效电路。

解 用叠加法求开路电压abo U 和短路电流sc I 。1A 电流源单独作用时,有

()V 164

61

6426421abo

=?+?+++??='U

A 314142421sc =?+??='I

4V 、6V 电压源共同作用时,有

V 566426

4abo

=?+++=''U

A 3

54246sc =++=''I

题4-13图

(b)

a

a

b

(a) 题4-14图

I sc

2

a (b)

b

a

(c)

a

b

V 651abo abo

abo =+=''+'=U U U A 23

5

31sc sc

sc =+=''+'=I I I 等效戴维宁电阻为

()Ω=+=36||24eq R

图(b)为戴维宁等效电路,图(c)为诺顿等效电路。 4-15 求图(a)所示电路的戴维宁等效电路和诺顿等效电路。

解 用结点法可求得开路电压abo U 为

V 226131630

6abo

=++

=

U 短路电流为

A 116

30

6sc =+

=I 等效戴维宁电阻为

Ω==23||6eq R

等效电路如图(b)、(c)所示。 4-16 求图(a)所示电路的戴维宁等效电路和诺顿等效电路。

解 用结点法可求得

V 2010

11012105101512=+++='

U

题4-15图 (c)

b

sc (a)

a b (b) a b

开路电压为

V 401021211=+?=''U U

当11'-短路时,应用结点法有

V 320

10

1101101105101512=+++

='

U 短路电流为

A 3

8

10320

210212sc =+=+='U I

等效戴维宁电阻为

Ω=+=1510||1010eq R

等效电路如图(b)、(c)所示。

4-17 求图(a) 、(b)两电路的戴维宁等效电路和诺顿等效电路。

解 (a) 开路电压

0abo =U

短路电流

0sc =I

等效戴维宁电阻为

()()Ω=++=667.264040||2020eq R

(b) 用叠加法求开路电压11'U 及短路电流sc I 。1A 电流源作用时,有

(a)

(b) (c)

题4-16图

1'

I sc

1

1'

1'

()V 3

5

334114324321111

=?+??+++?+?=''U

()[]()A 9

5

111||31||32121||3||411sc

=??+?+?-='I

20V 电压源作用时,有

()V 3

40424232011

=+?++='''U

()A 9

40

111||61||6320sc

=??+=''I

V 15340

351111

11=+=''+'='''U U U A 5940

95sc sc sc =+=''+'=I I I

等效戴维宁电阻为

()Ω=++=33||421eq R

图(a)所示电路的戴维宁和诺顿等效电路如图(c)、(d)所示,为一个电阻。图(b)所示电路的戴维宁和诺顿等效电路如图(e)、(f)所示。

题4-17图

(e)

(f)

(b)

I sc

1

1'

1

1'

1

1'

(c)

(d)

(a) a

b

a

b

I sc

a

b

4-18 求图(a) 、(b)所示两电路的戴维宁等效电路和诺顿等效电路。

解 (a)设11'-端口电压为U ,电流为I ,应用KCL 及KVL 得

()1036.0120+?++=I I U

整理得

I U 8.2130+=

即得

V 30oc =U ,Ω=8.21eq R ,A 376.18

.2130

sc ==

I (c)、(d)为其等效戴维宁电路和诺顿电路。

(b) 设11'-端口电压为U ,电流为I ,应用KCL 及KVL 得

I I

U I U +=-+--16

3353 整理得

I U 5333.5+=

即得

V 333.5oc =U ,Ω=5eq R ,A 067.15

333

.5sc ==

I (e)、(f)为其等效戴维宁电路和诺顿电路。 4-19 求图(a) 、(b)所示两个含源一端口的戴维宁或诺顿等效电路。

解 (a) 设11'-端口电压为u ,电流为i ,应用KCL 及KVL ,得

(c)

(d)

(a)

'

'

'

1 题4-18图

(e)

(f)

(b)

1'

1

'

'

1032331+??

?

??+?-??? ??--?=i u i u i u

整理得

V 5=u

即端口11'-的电压恒为5V ,其等效电路为一电压源,如图(c)所示,所以不存在诺顿等效电路。

(b) 设11'-端口电压为u ,电流为i ,应用KCL 及KVL 得

11448u u u i u +??

? ??--?=

1512446111+???

?

?---?=u u u i u 整理得

A 5.7-=i

即端口11'-的电流恒为7.5A ,其等效电路为一电流源,如图(d)所示,所以不存在戴维宁等效电路。 4-20 图(a)电路是一个电桥测量电路。求电阻R 分别是Ω1、Ω2和Ω5时的电流i 。 解 将R 拿掉,形成含源一端口,其开路电压为

V 236

312

22212abo =?+-?+=

U 等效戴维宁电阻为

题4-19图 (d) (a) (b) (c)

1'

'

' 1 1'

Ω=+=36||32||2eq R

其等效电路见图(b)。当Ω=1R 时,有

A 5.0312

eq abo =+=+=

R R U i

当Ω=2R 时,有

A 4.0322

eq abo =+=+=

R R U i

当Ω=5R 时,有

A 25.03

52

eq abo =+=+=

R R U i

4-21 用戴维宁定理求3V 电压源中的电流1I 和该电源吸收的功率。

解 将3V 电压源拿掉,形成含源一端口,其等效戴维宁参数求解如下:应用KCL 、KVL 得

()I I I 6214+-=-

题4-20图

(a)

(b)

R i

题4-21图

(a)

(b) 3V 3V

求出

A 5.0=I

开路电压为

V 35.066abo =?==I U

用外加电源法可求出

Ω=6eq R

等效电路如图(b)所示。则

A 16

3

33eq abo 1=+=+=

R U I 3V 电压源吸收的功率为

W 31331-=?-=-=I P (实际发出功率3W)

4-22 图示电路中,当?=R 时,R 可获得最大功率,并求出最大功率max P 。

解 将R 拿掉,形成含源一端口,其开路电压为

V 4254202abo =?++=U

等效戴维宁电阻为

Ω=+=1046eq R

则当Ω==10eq R R 时,可获得最大功率,其值为

W 1.4410

44242eq 2abo max

=?==R U P

4-23 在图示电路中,求当R 为多大时,R 获得最大功率?此最大功率是多少?

题4-22图

R

电路分析第四章习题参考答案

4-2 试用外施电源法求图题4-2 所示含源单口网络VCR ,并绘出伏安特性曲线。 解:图中u 可认为是外加电压源的电压。 根据图中u 所示的参考方向。可列出 (3)(6)(5)20(9)50u i i A V A i V =Ω+Ω++=+ 4-5试设法利用置换定理求解图题4-5所示电路中的电压0u 。何处划分为好?置 换时用电压源还是电流源为好? 解:试从下图虚线处将电路划分成两部分,对网路N 1有(节点法) 11 11967 (11)u u u u i ???+-=? ?+????-++=-? 整理得: 1511714u i =- 对网络2N 有 2 5 1133u i i i =?+?= 解得3i A =,用3A 电流源置换N 1较为方便,置换后利用分流关系,可得: ()121031V 1V u +=??=

4-9 求图题4-7所示电路的输入电阻R i ,已知0.99α= 解: 施加电源t u 于输入端可列出网孔方程: 12335121(25100)100 (1) 100(100100101010)100.990(2)t i i u i i i +-=-++?+?-?= 将(2)代入(1)得135t i u R i ==Ω 4-14求图题4-10所示各电路的等效电路。 解 解: 图(a):因电压的计算与路径无关,所以

[5(1)]4(13)4ad ac cd ad ab bd u u u V V u u u V V =+=---=-=+=--=- 图(b): 流出a 点的电流(521)8a i A =++=,流入b 点多的电流(541)8b i A =+-=。 所以ab 之间的等效电路为8A 的电流源,电流从b 端流出。 图(c):导线短接。 4-23 电路如图题4-15 所示,已知非线性元件A 的VCR 为2u i =。试求u ,i ,i 1. 解: 断开A ,求得等效内阻:1o R =Ω 开路电压a u 所满足的方程: ()(11)12111/21 c a c a u u u u +-?=???-?++=?? 求得2a u V =,最后将A 接到等效电源上,如上图所示。 写出KVL :220i i +-=12A i A ?=-或 当1i A =时,1u V =,21120.5,[2(0.5)1] 1.52i A A i A -==-=---= 当2i A =-时,4u V =,21421,[212]32i A A i A -===-+= 4-25 试求图题4-17所示电路中流过两电压源的电流。

《电路》第五版-第4章答案

第四章 电路定理 4-1应用叠加定理求图示电路中电压ab u 。 2Ω 1Ω +- ab u a b 题4-1图 解:画出两个电源单独作用时的分电路如题解4-1图所示。 对(a)图应用结点电压法可得: 1 1 15sin 13211n t u ??++= ?+?? 解得: 13sin n u tV = ()1 1 1sin 21 n ab u u tV = ?=+ 题解4-1图 +- (a) () 1ab u + - (b) ()2ab u 对(b)图,应用电阻分流公式有 11 11351321 t t e i e A --=?=+++ 所以 ()21 15 t ab u i e V -=?= ()()121 sin 5 t ab ab ab u u u t e V -=+=+

4-2应用叠加定理求图示电路中电压u 。 题4-2图 - V 解:画出电源分别作用的分电路图 ①(a) (b) 题解4-2图 - V u 对(a)图应用结点电压法有 1 111136508240108210n u ??++=+ ?++?? 解得: ()1 182.667n u u V == 对(b)图,应用电阻串并联化简方法,可得: 104028161040310403821040si u V ??? ?+ ? +??=?=??? ++ ?+?? ()28 23 si u u V -= =- 所以,由叠加定理得原电路的u 为 ()()1280u u u V =+=

4-3应用叠加定理求图示电路中电压2u 。 3Ω 题4-3图 2u 解:根据叠加定理,作出电压源和电流源单独作用时的分电路,受控源均保留在分电路中。 (a) (b) 3 Ω 题解4-3图 () 123 Ω A (a) 图中 ()112 0.54 i A = = 所以根据KVL 有 ()()1 1 213221u i V =-?+=- (b) 图中 ()2 10i = ()2 2339u V =?= 故原电路电压 ()()1 2 2228u u u V =+= 4-4图示电路中,当电流源1s i 和电压源1s u 反向时(2s u 不变),电压ab u 是原来的0.5倍;当电流源1s i 和电压源1s u 反向时(1s u 不变),电压ab u 是原来的0.3倍。问:仅 1s i 反向时(1s u ,2s u 不变),电压ab u 应为原来的多少倍?

第四章 电路定理

第四章 电路定理 4-1 试用叠加定理求题4-1图所示电路中各电阻支路的电流I 1、I 2、I 3和I 4。 4-2 试用叠加定理求题4-2图所示电路中的电压U 和电流I x 。 题 4-1 图 题 4-2 图 4-3 试用叠加定理求题4-3图所示电路中的电流I 。 4-4 试用叠加定理求题4-4图所示电路中的电压U x 和电流I x 。 题 4-3 图 题 4-4 图 4-5 在题4-5图中,(a) N 为仅由线性电阻 构成的网络。当u 1 =2 V , u 2 =3 V 时,i x =20 A; 而 当u 1 = -2 V , u 2 = 1 V 时,i x = 0。求u 1=u 2=5 V 时 的电流i x 。(b)若将N 换为含有独立源的网络, 当u 1 = u 2 = 0时,i x = -10 A ,且上述已知条件仍 然适用,再求当u 1 = u 2 = 5 V 时的电流i x 。 4-6 对于题4-6图所示电路, (1) 当u 1 = 90 V 时,求u s 和u x ; (2) 当u 1 = 30 V 时,求u s 和u x ; (3) 当u s = 30 V 时,求u 1和u x ; (4) 当u x = 20 V 时,求u s 和u 1; 4-7 已知题4-7图所示电路中的网络N 是 由线性电阻组成。当i s =1 A ,u s =2 V 时,i =5 A ; 当i s = -2 A ,u s = 4 V 时,u = 24 V 。试求当i s = 2 A ,u s = 6 V 时的电压u 。 4-8 对于题4-8图所示电路,已知U 0 =2.5 V ,试用戴维宁定理求解电阻R 。 题 4-5 图 题 4-6 图

电路分析第4章4 互易定理

特勒根定理 设有电路,A B ,满足:(1)两者的拓扑图完全相同,均有n 个节点b 条支路;(2)对应的支路和节点均采用相同的编号,其中B 电路的电流、电压加“^”号;(3)各支路电流、电压参考方向均取为一致,则有: 功率守恒定理: 01 b U I k k k =∑= ??01b U I k k k =∑= 似功率守恒定理: ?01 b U I k k k =∑= 1 ?0b k k k U I ==∑

适用于各种电路:直流、交流;线性、非线性; 被称为基尔霍夫第三定律。 §2-2互易定理 在线性电路中,若只有一个独立电源作用,网络只含有线性电阻(不含受控源),则在一定的激励与响应的定义下,二者的位置互易后,响应与激励的比值不变。 互易定理的证明需要特勒根定理(或二端网络等效的概念)。 根据激励和响应是电压还是电流,互易定理有三种形式: 1、互易定理的第一种形式

S u S u ?+- 电路在方框内仅含线性电阻,不 含任何独立电源和受控源。电压源s u 接在端子1-1',支路2-2'短路,其电流为2i 。如果把激励和响应位置互 换,此时?s u 接于2-2',而响应则是接于1-1',短路电流1?i 。 21??s s i i u u =,若 ?s s u u =,则21?i i =。 对一个仅含线性电阻的电路,在单一电压源激励而响应为电流时,激励和响应互换位置,不改变同一激励产生的响应。 2、互易定理的第二种形式

2' 2 1' 1 21??s s u u i i = 若?s s i i =,则21?u u =。 3 互易定理的第三种形式 2 1??s s i u i u = 若数值上?s s i u =,则数值上21?i u =。 例 用互易定理求下图中电流i 。

第四章 电路定理

第四章 电路定理 电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。需要指出,在很多问题中定理和方程法往往又是结合使用的。 4-1 应用叠加定理求图示电路中电压ab u 。 解:首先画出两个电源单独作用式的分电路入题解4-1图(a )和(b )所示。 对(a )图应用结点电压法可得 1sin 5)121311( 1t u n = +++ 解得 15sin 3sin 53n t u t V == (1) 111113sin sin 2133n ab n u u u t t V =?==?=+ 对(b )图,应用电阻的分流公式有 1132111135t t e i e A --+=?=++ 所以 (2) 110.25t t ab u i e e V --=?== 故由叠加定理得 (1)(2)sin 0.2t ab ab ab u u u t e V -=+=+

4-2 应用叠加定理求图示电路中电压u 。 解:画出电源分别作用的分电路如题解(a )和(b )所示。 对(a )图应用结点电压法有 105028136)101401281( 1++=+++n u 解得 (1)113.65 0.10.0250.1n u u +== ++ 18.624882.6670.2253V === 对(b )图,应用电阻串并联化简方法,可求得 10402(8) 32161040331040183(8)2 1040si u V ??++=? =?=?+++ (2)16182323si u u V -==-?=- 所以,由叠加定理得原电路的u 为 (1)(2)2488 8033u u u V =+= -= 4-3 应用叠加定理求图示电路中电压2u 。

电路第4章习题电路定理

第4章 电路定理 4-1XX 简单题 4-2XX 叠加定理 4-3XX 戴维宁定理 4-201、 试用叠加定理计算下图所示电路中US2=2V 时,电压U4的大小。若US1的大小不变,要使U4=0,则US2应等于多少? 答案 U4=-0.4V, Us2=1.2V 4-202、电路如图所示。(1)用叠加定理求各支路电流;(2)求电压源发出的功率。 答案 I1=-50mA, I2=15mA, I3=60mA (2)电压源发出的功率为:P=25I1=-1.25W 4-204、 4-205、求题3-22图示电路的电压U 和电流I 。 例4-4 用叠加定理求图4-5(a)电路中电压u 。 图4-5 解:画出独立电压源u S 和独立电流源i S 单独作用的电路,如图(b)和(c)所示。由此分别求得u’和u”,然后根据叠加定理将u’和u”相加得到电压u 4-206、例4-1 利用叠加定理求图(a )所示电路中的电压U 。 (a ) (b) (c) 解:首先画出分电路图如图(b)、(c)所示。 当12V 电压源作用时,应用分压原理有:V 43912)1(-=?-=U 当3A 电流源作用时,应用分流公式得:V 633636)2(=?+?=U 则所求电压:V 264=+-=U 4-207、 例4-2利用叠加定理求图(a )所示电路中的电压u 和电流i 。 (a ) (b) (c) 解:首先画出分电路图如图(b)、(c)所示。 当 10V 电源作用时:)12/()210()1()1(+-=i i 解得:A i 2)1(=,V i i i u 6321)1()1()1()1(==+?= 当5A 电源作用时,由左边回路的KVL :02)5(12)2()2()2(=++?+i i i 解得:A i 1)2(-=,V i u 22)2()2(=-= 所以: V u u u 8)2()1(=+= A i i i 1)2()1(=+= 注意:受控源始终保留在分电路中。 4-208、 S 4242"S 424' i R R R R u u R R R u +=+=)(S 2S 424"'i R u R R R u u u ++=+=

电路 第4章习题 电路定理

第4章电路定理 4-1XX 简单题 4-2XX 叠加定理 4-3XX 戴维宁定理 4-201、试用叠加定理计算下图所示电路中US2=2V时,电压U4的大小。若US1的大小不变,要使U4=0,则US2应等于多少? 答案U4=-0.4V, Us2=1.2V 4-202、电路如图所示。(1)用叠加定理求各支路电流;(2)求电压源发出的功率。 答案I1=-50mA, I2=15mA, I3=60mA (2)电压源发出的功率为:P=25I1=-1.25W 4-204、

4-205、求题3-22图示电路的电压U和电流I。 + - 2 I1 10V + - 3A - + U 4Ω 6Ω9Ω I1 题3-22图 I 例4-4 用叠加定理求图4-5(a)电路中电压u。 图4-5 解:画出独立电压源u S和独立电流源i S单独作用的电路,如图(b)和(c)所示。由此分别求得u’和u”,然后根据叠加定理将u’和u”相加得到电压u 4-206、例4-1 利用叠加定理求图(a)所示电路中的电压U。 (a) (b) (c) 解:首先画出分电路图如图(b)、(c)所示。 当12V电压源作用时,应用分压原理有:V 4 3 9 12 )1(- = ? - = U 当3A电流源作用时,应用分流公式得:V 6 3 3 6 3 6 )2(= ? + ? = U 则所求电压:V 2 6 4= + - = U S 4 2 4 2 " S 4 2 4 'i R R R R u u R R R u + = + = ) (S 2 S 4 2 4 " 'i R u R R R u u u+ + = + =

电路第4章习题电路定理

第4章电路定理 4-1XX简单题 4-2XX叠加定理 4-3XX戴维宁定理 4-201、试用叠加定理计算下图所示电路中US2=2V时,电压U4的大小。若 US1的大小不变,要使U4=0,则US2应等于多少? 答案U4=-0.4V,Us2=1.2V 4-202、电路如图所示。(1)用叠加定理求各支路电流;(2)求电压源发出的功率。 答案I1=-50mA,I2=15mA,I3=60mA(2)电压源发出的功率为:P=25I1=-1.25W 4-204、

4-205、求题3-22图示电路的电压U和电流I。 I 69 + 10V - 3A +U - I1 + 2I1 - 4 题3-22图 例4-4用叠加定理求图4-5(a)电路中电压u。 图4-5 解:画出独立电压源u S和独立电流源i S单独作用的电路,如图(b)和(c)所示。由此分别求得u’和u”,然后根据叠加定理将u’和u”相加得到电压u RRR '4"24iuuu SS RRRR 2424 u ' u " u R 4 R 2 R 4 (uSR2iS) 4-206、例4-1利用叠加定理求图(a)所示电路中的电压U。 (a)(b)(c) 解:首先画出分电路图如图(b)、(c)所示。 12(1) 当12V电压源作用时,应用分压原理有:34V U 9

63 则所求电压:U462V 2

第四章电路定理练习题 4-207、 例4-2利用叠加定理求图(a)所示电路中的电压u和电流i。 (a)(b)(c) 解:首先画出分电路图如图(b)、(c)所示。 当10V电源作用时:i(1)(102i(1))/(21) 解得:i(1)2A,u(1)1i(1)2i(1)3i(1)6V 当5A电源作用时,由左边回路的KVL:2i(2)1(5i(2))2i(2)0 解得:i(2)1A,u(2)2i(2)2V 所以:uu(1)u(2)8V i(1)(2)1 iiA 注意:受控源始终保留在分电路中。 4-208、 例4-4封装好的电路如图,已知下列实验数据:当uV s1,i s1A时,响应i2A,当 u s1,i s2A时,响应i1A,求:u s3V,i s5A时的电流i。 V 解:根据叠加定理,有:ik1i s k2u s 代入实验数据,得:k 1 2k 1 k 2 k 2 2 1 解得:k 1 k 2 1 1 因此:ii s u s352A 本例给出了研究激励和响应关系的实验方法。

电路第四章练习

一、选择题 1. 图示二端网络的等效电阻R ab 为()。 A 、5Ω B 、4Ω C 、6Ω D 、8Ω 2. 图示单口网络的短路电流sc i 等于()。 A 、1A B 、 C 、3A D 、-1A 3. 图示单口网络的开路电压oc u 等于()。 A 、3V B 、4V C 、5V D 、9V 4. 图示单口网络的等效电阻等于()。 A 、2Ω B 、4Ω C 、6Ω D 、-2Ω 6 V 3 V 6 V ?

5. 理想电压源和理想电流源间()。 A 、有等效变换关系 B 、没有等效变换关系 C 、有条件下的等效关系 6. 图示电路中a 、b 端的等效电阻R ab 在开关K 打开与闭合时分别为()。 A 、10?,10? B 、10?,8? C 、10??,?16? D 、8??,10? 7. 图示电路中A 、B 两点间的等效电阻与电路中的R L 相等,则R L 为()。 A 、40? B 、30 ? C 、20? 二、填空题 1. 具有两个引出端钮的电路称为网络,其内部含有电源称为网络,内部不包含电源的 称为网络。 2. “等效”是指对以外的电路作用效果相同。戴维南等效电路是指一个电阻和一个电 压源的串联组合,其中电阻等于原有源二端网络后的电阻,电压源等于原有源二端网络的电压。 3. 在进行戴维南定理化简电路的过程中,如果出现受控源,应注意除源后的二端网络 等效化简的过程中,受控电压源应处理;受控电流源应处理。在对有源二端网络求解开路电压的过程中,受控源处理应与分析方法相同。 4. 直流电桥的平衡条件是相等;负载获得最大功率的条件是等于,获得的最大功率 max P =。 4? 4? 16? ??? ? a b ? 4 — + i 2 a b i

第四章-电路定理

第四章电路定理 电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。需要指出,在很多问题中定理和方程法往往又是结合使用的。 4-1应用叠加定理求图示电路中电压ab u。 解:首先画出两个电源单独作用式的分电路入题解4-1图(a)和(b)所示。 对(a)图应用结点电压法可得 1 sin 5 ) 1 2 1 3 1 1( 1 t u n = + + + 解得 1 5sin 3sin 5 3 n t u t V == (1)1 1 11 13sin sin 2133 n ab n u u u t t V =?==?= + 对(b)图,应用电阻的分流公式有 11 321 11 135 t t e i e A - - + =?= ++ 所以 (2) 1 10.2 5 t t ab u i e e V -- =?== 故由叠加定理得(1)(2)sin0.2t ab ab ab u u u t e V - =+=+

4-2 应用叠加定理求图示电路中电压u 。 解:画出电源分别作用的分电路如题解(a )和(b )所示。 对(a )图应用结点电压法有 105028136)101401281( 1++=+++n u 解得 (1)113.650.10.0250.1n u u +==++ 18.624882.6670.2253V === 对(b )图,应用电阻串并联化简方法,可求得 10402(8)32161040331040183(8)21040si u V ??++=?=?=?+++ (2)16182323si u u V -==-?=- 所以,由叠加定理得原电路的u 为 (1)(2)24888033u u u V =+=-= 4-3(4-4)应用叠加定理求图示电路中电压2u 。(注意:不用叠加更简单)

电路分析基础答案周围版第四章

电路分析基础答案周围版 4-2.5μF 电容的端电压如图示。 (1)绘出电流波形图。 (2)确定2μs t =和10μs t =时电容的储能。 解:(1)由电压波形图写出电容端电压的表达式: 10 0μs 1μs 10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t ≤≤??≤≤?=?-+≤≤??≤? 式中时间t 的单位为微秒;电压的单位为毫伏。电容伏安关系的微 分形式: 50 0μs 1μs 0 1μs 3μs ()()50 3μs 4μs 0 4μs t t du t i t C t dt t <

第四章_电路定律

4-1 如题4-1图所示电路,N R 为线性纯电阻电路,其内部结构不详。已知:当u s = 1V ,i s =1A 时,u 2 =1V ,当u s = 10V ,i s =2A 时,u 2 =6V 。求当u s = 4V ,i s =10A 时的电压u 2。 + _ s i 题4-1图 解 由线性电路的齐次性和叠加定理,设 212s s u k u k i =+ 代入已知条件,得方程组 12121 1026 k k k k +=?? +=? 解得 10.5k =, 20.5k = 所以,待求量 240.5100.57V u =?+?= 4-2 试用叠加定理求题4-2图所示电路中的电压U 1,并求电流源的功率。 25V 题4-2图 解 用叠加定理求1U ,就是分别求出各电源单独作用时所产生的分量,最后再叠加得到1U 。 25V 电压源单独作用,见图4-2-1(a),此时1.5A 电流源应开路。 25 V () a () b 图4-2-1 电源分别作用对应电路 由电阻分压公式可得

120//10 2510V 20//1010 U '= ?=+ 1.5A 电流源单独作用,见图4-2-1(b),此时25V 电压源应短接。 由欧姆定律得 120//10//10 1.56V U ''=?= 根据叠加定理,将两响应分量叠加得 11110616V U U U '''=+=+= 下面求电流源的功率。由题4-2图知 ()125 1.5P U =-+? ()1625 1.513.5W =-+?= 4-3 应用叠加定理求解题4-3图所示电路。若欲使3A 电流源产生30W 功率,与其串联的电阻R 应取何值。 +_ 18V 3 Ω2 Ω 6 Ω1Ω R (b) +_ +u' 题4-3图 解 电压源单独作用时,电路如图4-3(b )所示。电流源端电压为6Ω与1Ω电阻上电压之代数和 '(12-6)V 6V u == 当3A 电流源单独作用时,电路如图4-3 (c)所示,电流源端电压" u 依题意有 '"()s P u u i =+? "30(6)3u -=+? "16V u =- 由KVL 应有 "212330R u ?+?++= 解得 83 R =Ω 4-4 试用叠加原理计算题4-4图所示电路中电流源两端的电压U 值。

第四章电路定理

) 3(2 )2(2)1(23322113 21 23233222322 2212 )1( )(i i i u b u b i b G G i G G G u G G u G G G G G u u i S S S S S S S n ++=++=++++-+=-=第四章 电路定理 本章重点: 1、叠加定理 2、替代定理 3、戴维宁定理和诺顿定理 4、最大功率传输定理 4-1 叠加定理 1.叠加定理定义: 在线性电路中,任一支路的电流(或电压)可以看成是电路中每一个独立电源单独作用于电路时,在该支路产生的电流(或电压)的代数和。 2.定理的证明: 用结点电压法: (G 2+G 3)u n1=G 2u s 2+G 3u s 3+i S 1 或表示为: 支路电流为: 3 21323332221G G i G G u G G G u G u S S S n ++ +++=) 3(1 )2(1)1(13322111 n n n S s S n u u u u a u a i a u ++=++=)3(3 )2(3)1(33 21 333323232323313 )1()( )(i i i G G i G u G G G G u G G G G G u u i S S S S n ++=++-+++=-=

结论: 结点电压和支路电流均为各电源的一次函数,均可看成各独立电源单独作用时,产生的响应之叠加。 3、使用叠加定理时应该注意以下几点: (1)、叠加定理适用于线性电路,不适用于非线性电路。 (2)、在叠加的各分电路中,不作用的电压源置零,在电压源处用短路代替;不作用的电流源用开路代替。电路中所有电阻都不予更动,受控源则保留在各分电路中。 (3)、叠加时各分电路中的电压和电流的参考方向可以取为与原电路中的相同。取代数和时,应注意各分量前的“+”、“-”号。 (4)、原电路的功率不等于按各分电路计算所得功率的叠加,这是因为功率是电压和电流的乘积,与激励不成线性关系。 4.叠加定理的应用 例1 试用叠加定理计算图(a )所示电路中的U 1与I 2。 (a) 20Ω 20Ω 30Ω + U 1 - 20V +﹣20Ω 0.5A I 2 (b) 20Ω 20V +﹣20Ω 30Ω 20Ω I 2 ′ +- U 1′ 解 :画出电压源分别作用时的分电路如上图所示。对图(b )有 A A I V V U 5.020 202022030203020202020' 2'1=+=-=??? ???+-?+= 对图(c )有

电路原理第四章作业解答

第四章作业解答4-1 应用叠加定理求图示电路中电压u ab A sin 2 5.1 1 sin 5 3 // 3 1 sin 5 1 t t t i= + = + = t i i s i n 3 3 3 1 2 = + = t i u ab sin 1 ' 1 = ? = V 2.0 1 4 3 3 4 3 1 3 '' t t ab e e i u - - = ? + = ? = 叠加:V 2.0 sin '' 't ab ab ab e t u u u- + = + = 2Ω 2Ω 1Ω ab 2Ω

4-2 应用叠加定理求图示电路中电压U 解法一: (1)电压源作用:方法一 :电压源共同作用分电路3-6-1如图所示,节点电压方程 10 502136)101401281( 1+=+++n U 解方程得 3 248 1=n U 所以: V 53.8211==n U U 方法二:如用回路电流法则分电路3-6-2如图所示,设回路电流I l 1、I l 2。 列各回路的KVL 方程 ?? ?-=++-=-++50 )1040(40136 40)4082(2121l l l l I I I I 解方程得 ,,A 27.3A 33.521==l l I I 所以: V 53.8240)(211=?-=l l I I U (2)电流源单独作用:分电路3-6-3如图所示, 列各回路的KVL 方程 ??? ??==-++-=--++3010)1040(400840)4082(3 321321l l l l l l l I I I I I I I 解方程得 A 3A 6A 321=== l l l I I I ,, 所以 V 53.240)(212-=?-=l l I I U (3) 叠加:V 8021=+=U U U 分电路3-6-2 分电路3-6-3 2Ω 分电路3-6-1

相关主题