搜档网
当前位置:搜档网 › 正弦定理解三角形时解的个数

正弦定理解三角形时解的个数

正弦定理解三角形时解的个数
正弦定理解三角形时解的个数

必修5-系列微课选题设计表

数形结合思想解析

b B >∴∠解析2:数形结合,右图所

24sin 4424sin 4512CD ??=<=24sin 4424

a b ?<<=若其他条件不变:

(1)0sin ,sin ,1sin ,2, 1A a b A a b A b A a b a b π

≥当<<时,若<三角形无解

若=三角形解

若<<三角形解 若三角形解

,2,45,A. (2,+) B. (,). (2,)ABC a x b B ABC ?===?∞中,若有两解 02 C22 D

解三角形(1)---正弦定理

解三角形(1)---正弦定理 【定理推导】 如图1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? (2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来? 如图1-2,在Rt ?ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数 中正弦函数的定义,有a sinA c =,sin b B c =,又sin 1c C c ==, 则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中, sin sin sin a b c A B C ==。 思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况) 如图1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin a b A B = , 同理可得 sin sin c b C B = ,从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。 证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()0 0cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即 sin sin = a c A C 证明三:(外接圆法)如图所示,∠A =∠D ,∴ 2sin sin a a CD R A D ===, 同理:sin b B =2R ,sin c C =2R 同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC == 类推:当?ABC 是钝角三角形时,以上关系式仍然成立。 从上面的探究过程,可得以下定理: c b a C B A (图1-2) c b a C B A (图1-3) c b a C B A j C B A (图1-1) a b c O B C A D

解三角形中的取值范围问题.docx

解三角形中的取值范围问题 1、已知a, b, c分别为ABC 的三个内角A, B,C 的对边,且2b cosC 2a c 。( 1)求角B的大小; ( 2)若ABC的面积为 3 ,求b的长度的取值范围。 解析:( 1)由正弦定理得2sin BcosC 2sin A sin C ,在ABC 中, sin A sin( B C )sin B cosC cos B sin C ,所以 sin C (2cos B1) 0 。 又因为 0 C, sin C0 1 ,而 0B,所以B ,所以 cos B 123 (2)因为 S ABC3, 所以ac4 ac sin B 2 由余弦定理得 b2a2c22acscos B a2c2 ac ac,即 b2 4 ,所以 b 2 2、在△ABC中 , 角A, B, C所对的边分别为a, b,c,已知cosC(cos A 3 sin A) cos B 0 . (1)求角 B的大小;(2)若 a+c=1,求 b 的取值范围 【答案】解:(1) 由已知得cos(A B)cos Acos B 3 sin A cos B0即有sin Asin B 3 sin Acos B 0因为 sin A0 ,所以 sin B 3 cosB0 ,又 cos B0 ,所以 tan B 3 ,又 0B, 所以B. 1113 (2) 由余弦定理 , 有b2a2c22ac cos B .因为 a c 1,cosB, 有b23(a)2. 1,于是有1 1 224 又 0 a b21,即有b1. 42 3、已知,满足. (I )将表示为的函数,并求的最小正周期; (II )已知分别为的三个内角对应的边长,若,且,求的取值范围. 4、已知向量ur x r x 2 x ur r ( 3 sin,,f (x)m n m,1)n(cos ,cos) 44g 4 (1)若 f ( x) 1 ,求 cos(x) 的值; 3 (2)在 ABC 中,角 A、B、C 的对边分别是 a、b、c ,且满足 a cosC 1 c b ,求函数 f ( B) 的取值范围. 2 【解析】 解:( 1) Q f x m n3sin x cos x cos2 x 3sin x 1cos x 1sin x 6 1, 4442222222

三招破解三角形解的个数问题

三角形解的个数问题 学了正、余弦定理后,不少同学为判断三角形的解的个数而烦恼.知道 3边,2 角1边,2边及其夹角时不会出现两解;在已知三角形的两边及其中一边的对角(即 “边边角”)的条件下解三角形时,解的个数有几个呢? 一解,二解还是无解?《必 修5》在第8页到第9页的“探究与发现”《解三角形的进一步讨论》有详细说明.即 在已知ABC 中的边长a , b 和角A ,且已知a , b 的大小关系,常利用正弦定理 求出sinB 的值, ① 若该值大于1,与sinB 1矛盾,则无解; ② 若该值小于或等于 1,则要考虑a , b 的大小关系及 A 为锐角还是钝角: 若A 是钝角,且该值小于 1,则有1解,若该值等于1,则无解; 若A 是锐角,且b a ,则有1解; 若b a ,且该值小于1,则有2解;b a ,且该值等于1,则有1解. 但分类层次多,分类种数多,注重形,又指定边角,不易被学生所接受.即本 节能理解, 操作应用起来也很不方便.下面提供“几招”供同学们选择,希望能帮 助同学们顺利破解. 第一招:大角对大边 在已知ABC 中的边长a , b 和角A ,且已知a , b 的大小关系,常利用正弦定理 结合“大 边对大角” 来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角 B 与角A A B sinA sinB 这是个隐含条件,在使用时我们要注意 第二招:二次方程的正根个数 一般地,在ABC 中的边长a , b 和角A ,常常可对角A 应用余弦定理,并将其整 理为关于 c 的一元 二次方程c 2 2bccosA b 2 a 2 0 ,若该方程无解或只有负数解,则该三角形无解;若 方程 有一个正数 解,则该三角形有一解;若方程有两个不等的正数解, 【例2】如图,在四边形ABCD 中,已知AD CD , BDA 60 , BCD 135,求 BC 的长. 解:在ABD 中,设BD x ,由余弦定理得142 x 2 由正弦定理,得 BC BDsin CDB 16sin3° &2 ? 的大小关系,然后求 出B 的值,根据三角函数的有界性求解._ 【例1】在ABC 中,已知a -.3 , b ,2 , B 45,求A 、C 及c . 解:由正弦定理,得sinA 3si n 45 3 ,... R 45 90 , b a ,二 A 60 或 120 . b V2 2 、、2 sin 75 、、6 2 _______ _______ . sin 45 2 , 、、2si n15 ■ 6 & sin 45 2 当A 60时,C 当A 120时,C 75 , 15 , bsin C sin B bsinC sin B 点评:在三角形中,a b 挖 掘. B

解三角形中相关的取值范围问题

解决与三角形相关的取值范围问题 例1:在锐角ABC V 中,2A B =,则c b 的取值范围是 例2:若ABC V 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则sin cos B B +的取值范围是 例3:在ABC V 中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列。(1)求B 的大小。 (2)若5b =,求ABC V 周长的取值范围。 例4:在ABC V 中,2222 3 a b c ab +=+,若ABC V ,则ABC V 的面积的最大值为

例5:(2008,江苏)满足 2,AB AC ==的ABC V 的面积的最大值是 例6:已知角,,A B C 是ABC V 三个内角,,,a b c 是各角的对边,向量 (1cos(),cos )2A B m A B -=-+u r ,5(,cos )82A B n -=r ,且98 m n ?=u r r (1)求tan tan A B ?的值。 (2)求 222 sin ab C a b c +-的最大值。 通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以及技巧和方法可以提高我们解题的能力。希望本文能对同学们复习备考有所帮助。 巩固练习 1.在ABC V 中,2,1a c ==,则C ∠的取值范围为 2.若钝角三角形的三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

三角函数与解三角形中的范围问题含答案

文档 1.在锐角△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,且B=2A ,求的a b 取值范围 2.在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,设22222 ()()4f x a x a b x c =---,(1)若(1)0f =,且B -C= 3 π ,求角C. (2)若(2)0f =,求角C 的取值范围.

3.在锐角ABC ?中,,,a b c 分别是角,,A B C 2sin ,c A = (1)确定角C 的大小; (2)若c =ABC ?面积的最大值.

文档 4.已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab. (1)求cos C; (2)若c=2,求△ABC面积的最大值.

5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且ab b a c -+=222. (Ⅰ)若tan tan tan tan )A B A B -= +?,求角B ; (Ⅱ)设(sin ,1)m A =u r ,(3,cos 2)n A =r ,试求?的最大值.

文档 6.ABC ?的三个内角A B C ,,依次成等差数列. (1)若C A B sin sin sin 2 =,试判断ABC ?的形状; (2)若ABC ?为钝角三角形,且c a >,试求代数式2 12222 C A A sin cos -的取值范围. 7.在△ABC 中,内角A ,B ,C 所对边长分别为,,a b c ,8=?,BAC θ∠=,

(1)求b c ?的最大值及θ的取值范围; (2)求函数22()()2cos 4 f π θθθ=++-. 8.在ABC △中,1tan 4A =,3tan 5 B =. (1)求角 C 的大小; (2)若ABC △

正弦定理余弦定理解三角形

第一篇 正弦定理和余弦定理 【知识清单】 一、三角形有关性质 (1)在△ABC 中,A +B +C =π;a +b >c ,a -b b ?sin A >sin B ?A >B ; (2)三角形面积公式:S △ABC =12ah =12ab sin C =1 2ac sin B =1sin 2 bc A ; (3)在三角形中有:sin 2A =sin 2B ?A =B 或2 A B π += ?三角形为等腰或直角三角形; sin(A +B )=sin C ,()cos cos A B C +=-,sin A + B 2=cos C 2 . 定理 正弦定理 余弦定理 内容 2sin sin sin a b c R A B C === 2222sin a b c bc A =+- 2222sin b a c ac B =+- 222 2sin c a b ab C =+- 变形 形式 ①2sin a R A =,2sin b R B =,2sin c R C =; ②sin 2a A R =,sin 2b B R =,sin 2c C R =; ③::c sin :sin :sin a b A B C =; ④sin sin +sin sin a b c a A B C A ++=+. 222cos 2b c a A bc +-=; 222cos 2a c b B ac +-= ; 222cos 2a b c C ab +-= 解决 的问题 ①已知两角和任一边,求另一角和其他两条边. ②已知两边和其中一边的对角,求另一边和其他两角. ①已知三边,求各角; ②已知两边和它们的夹角,求第三 边和其他两个角. 三、解斜三角形的类型 (1)已知两角一边,用正弦定理,有解时,只有一解; (2)已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ?中, A 为锐角 A 为钝角或直角 图 形 关系式 sin a b A < sin a b A = sin b A a b << a b ≥ a b > 解个数 无解 一解 两解 一解 一解 上表中,为锐角,时,无解;为钝角或直角时,或均无解.

解三角形之正弦定理

1.1.1 解三角形之正弦定理2 2015.03.17 命题人——王峰 班级 姓名 学号 一、选择题 1.在△ABC 中,若∠B =135°,AC =2,则BC sin A = ( ) A .2 B .1 C . 2 D .2 2 2.在△ABC 中,∠B =45°,c =22,b =433 ,则∠A 的大小为 ( ) A .15° B .75° C .105° D .75°或15° 3.已知△ABC 的面积为3 2,且b =2,c =3,则sin A = ( ) A .32 B .12 C .34 D . 3 4.在△ABC 中,a =1,A =30°,C =45°,则△ABC 的面积为 ( ) A .22 B .24 C .32 D .3+14 5.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为 ( ) A .45° B .60° C .75° D .90° 6.在△ABC 中,(b +c )∶(a +c )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C = ( ) A .4∶5∶6 B .6∶5∶4 C .7∶5∶3 D .7∶5∶6 7.在△ABC 中,a =2b cos C ,则这个三角形一定是 ( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 *8.[2013·辽宁理,6]在△ABC 中,若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则B = ( ) A .π6 B .π3 C .2π3 D .5π 6 二、填空题 9.在△ABC 中,若b =5,∠B =π 4,cos A =5 5,则sin A =________;a =________. 10.(1)在△ABC 中,若a =32,cos C =1 3,S △ABC =43,则b =________; (2)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________. 11.(1)在△ABC 中,若b =a cos C ,则△ABC 是___________三角形; (2)在△ABC 中,若a cos A =b cos B ,则△ABC 是______________三角形;

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a,b,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1 cos 2 B =,而0B π<<,所以3B π= (2)因为1 sin 2 ABC S ac B ?= = 所以4ac = 由余弦定理得2 2 2 2 2 2scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【 答 案 】 解 :(1) 由 已 知 得 cos()cos cos cos 0 A B A B A B -++= 即有 s i n n 3s i n c o s A A B = 因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3 B π =. (2)由余弦定理,有2 2 2 2cos b a c ac B =+-. 因为11,cos 2a c B +==,有2 2113()24 b a =-+. 又01a <<,于是有 21 14 b ≤<,即有112b ≤<. 3、已知(2cos 23sin ,1),(cos ,)m x x n x y =+=-,满足0m n ?=. (I )将y 表示为x 的函数()f x ,并求()f x 的最小正周期; (II )已知,,a b c 分别为ABC ?的三个内角,,A B C 对应的边长,若3)2 A ( =f ,且2a =,求b c +的取值范围.

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a ,b ,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1cos 2B = ,而0B π<<,所以3B π= (2)因为1sin 2ABC S ac B ?= = 所以4ac = 由余弦定理得222222scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +-=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++= 即有sin sin cos 0A B A B = 因为sin 0A ≠,所以sin 0B B -=,又cos 0B ≠,所以tan B =, 又0B π<<,所以3B π= . (2)由余弦定理,有2222cos b a c ac B =+-. 因为11,cos 2a c B +== ,有22113()24b a =-+. 又01a <<,于是有 2114b ≤<,即有112 b ≤<. 3、已知,满足. (I )将表示为的函数,并求的最小正周期; (II )已知分别为的三个内角对应的边长,若,且,求的取值范围. 4、已知向量,1)4x m =u r ,2(cos ,cos )44 x x n =r ,()f x m n =u r r g (1)若()1f x =,求cos()3x π +的值; (2)在ABC ?中,角A B C 、、的对边分别是a b c 、、,且满足1cos 2a C c b + =,求函数()f B 的取值范围. 【解析】 解:(1)()2111cos cos cos sin ,4442222262 x x x x x x f x m n π??=?=+=++=++ ???Q

正弦定理解三角形

利用正弦定理解三角形 利用正弦定理可以解决以下两类有关三角形问题: 1、已知三角形的两角和任意一边,求三角形其他两边与角。 2、已知三角形的两边和其中一边的对角,求三角形其他边与角。 例题设计一: 已知△ABC,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1)。 (1)∠A=60°∠B=45° a=10 (2)∠A=45°∠B=105° c=10 (1)属于已知三角形的两角和其中一角的对边,先由三角形内角和定理知∠C=180°-∠A-∠B=75°,然后由正弦定理直接得:b===≈8.2,c==≈11.2 (2)为已知两角和另一角的对边,这时先利用∠A+∠B+∠C=π,求出另一角∠C=30°,然后由正弦定理得:a=== b=== 这两道例题均选自教材,使学生明确在三角形中已知两角和任意一边时,这样的三角形是唯一确定的。学会用方程思想分析正弦定理解决问题。 习题设计一: 设计意图:巩固当堂内容 已知在△ABC中,c=10, ∠A=45°,∠C=30°,求a、b和∠B.

解:∵,∴a=,∠B=180°- (∠A+∠C)=180°-(45°+30°)=105°,∵,∴ b ==20sin75°=20×=5+5. 例题设计二: 已知△ABC中,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1) (1) a=3 b=4 ∠A=30° (2) a=b=6 ∠A=120° (3) a=2 b=3 ∠A=45° (1)由正弦定理得sinB===,再由三角形内角和定理 知∠B的范围为:0°<B<150°,∴∠B≈41.8°或∠B≈138.2°,再根据“三角形中大边对大角”知 b=4>a=3,∴∠B>∠A, ∴∠B≈41.8°或∠B≈138.2°; 当∠B≈41.8°时,∠C≈180°-30°-41.8°=108.2°, c==≈5.7; 当∠B≈138.2°时,∠C≈180°-30°-138.2°≈11.8°,

解三角形——求取值范围问题

解三角形求取值范围问题 类型1:正弦定理+外接圆半径+三角函数 1.在ABC ?中,若3 sin 4 B =,10b =,则边长c 的取值范围是( ) A. 15 (,)2 +∞ B. (10,)+∞ C. 40(0,]3 D. (0,10) 2.在△ABC 中,C=,AB=3,则△ABC 的周长为( ) A . B . C . D . 3.在△ABC 中,,则△ABC 的周长为( ) A . B . C . D . 4.在ABC ?中,c b a ,,分别为内角C B A ,,所对的边,若3=a ,3 π = A ,则c b +的最大值为 ( ) A .4 B . 33 C. 32 D .2 5.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a =,tan 21tan A c B b +=,则b c +的最大值为___6____. 6.在锐角△ABC 中, a ,b ,c 分别为角A ,B ,C 所对的边,且 3a =2c sin A . (1)确定角C 的大小;(2)若c =3,求△ABC 周长的取值范围. 解:(1)已知a ,b ,c 分别为角A ,B ,C 所对的边, 由 3a =2c sin A ,得 3sin A =2sin C sin A ,又sin A ≠0,则sin C =32 , ∴C = π3或C =2π3,∵△ABC 为锐角三角形,∴C =2π3舍去,∴C =π3 . (2)∵c =3,sin C = 32,∴由正弦定理得:a sin A =b sin B =c sin C =3 3 2 =2,

即a =2sin A ,b =2sin B ,又A +B =π-C =2π3,即B =2π 3-A , ∴a +b +c =2(sin A +sin B )+ 3 =2???? ??sin A +sin ? ????2π3-A + 3 =2? ????sin A +sin 2π3cos A -cos 2π3sin A + 3 =3sin A +3cos A + 3 =23? ????sin A cos π6+cos A sin π6+3=23·si n ? ?? ??A +π6 +3, ∵△ABC 是锐角三角形,∴ π6<A <π2,∴32<sin ? ????A +π6≤1, 则△ABC 周长的取值范围是(3+3,3 3 ]. 7. 在锐角△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,且c=2,∠C=60°,求a +b 的取值范围. 解:由正弦定理知 ,则a= ,b= ,而C=60°, 所以a+b= =4sin (A+30°) 因为锐角△ABC ,C=60°,则30°<A <90°,所以a+b ∈(2,4] ∴a+b 的取值范围为(2 ,4]. 8.已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若a 2=b 2+c 2+bc ,且a =23. (Ⅰ)若△ABC 的面积S =3,求b +c 的值; (Ⅱ)求b +c 的取值范围. 【解析】 (1)∵a 2 =b 2 +c 2 +bc ,∴2221 cos 22 b c a A bc +-= =-,即cosA =-12, 又∵A ∈(0,π),∴A =2π3. 又由S △ABC =1 2bcsinA =3,所以bc =4, 由余弦定理得:12=a 2=b 2+c 2-2bc·cos 2π 3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (2)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π 3), ∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π 3)≤1,即b +c 的取值范围是(23,4].

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数与解三角形:正弦定理和余弦定理

正弦定理和余弦定理【考点梳理】 1.正弦定理和余弦定理 (1)S=1 2a·h a(h a表示边a上的高); (2)S=1 2ab sin C= 1 2ac sin B= 1 2bc sin A. (3)S=1 2r(a+b+c)(r为内切圆半径). 【考点突破】 考点一、利用正、余弦定理解三角形 【例1】在△ABC中,∠BAC=3π 4,AB=6,AC=32,点D在BC边上, AD=BD,求AD的长. [解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC

=(32)2+62-2×32×6×cos 3π4 =18+36-(-36)=90,所以a=310. 又由正弦定理得sin B=b sin∠BAC a= 3 310 = 10 10, 由题设知0<B<π 4, 所以cos B=1-sin 2B=1-1 10= 310 10. 在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得 AD=AB·sin B sin(π-2B)= 6sin B 2sin B cos B= 3 cos B=10. 【类题通法】 1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的. 2.(1)运用余弦定理时,要注意整体思想的运用. (2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用. 【对点训练】 1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为() A.30°B.45° C.60°D.120° [答案]A

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

正弦定理、解三角形

解三角形 [前言 ] 1.三角形的构成要素是三条边与三个角,所谓的解 ②该性质对所有三角形均适用,却只关注边且为不 三角形,即根据已知条件求边的长短与角的大小; 等关系,没有体现角;多数情况中,该性质作为判 求解的方法,不再是传统意义上的尺规测量,而是 段三角形构成的条件; 借助三角形本身所固有的性质来求角的大小、边的 ③该性质对所有的三角形均适用,尽管同时涉及角 长度,正是“解铃还须系铃人”; 与边,但体现的是不等关系; ④⑤⑥这几条性质不能推广,针对某一类具体的三 2.对于三角形的性质,常见的可概括为以下几条: 角形适用; ①内角和定理:三个内角相加之和为180°; ⑦⑧这些性质反映了三角形的外延问题,往往不在 ②两边之和大于第三边,两边之差小于第三边; 解三角形的范畴 ③大角对大边,小边对小角; 综括上述性质的特征: ④勾股定理:a 2+b 2=c 2; 解三角形所采用的性质必须满足四点要求:(1)对 ⑤在直角三角形中,30°所对的直角边为斜边的一半 所有的三角形均适用;(2)必须为等式;(3)必须有 ⑥等腰三角形两腰相等,两底角相等;等边三角形 角的参与;(4)必须有边的参与.满足四点要求的性 三条边相等,三个角相等; 质有正弦定理与余弦定理,即解三角形的主要方法. ⑦直角三角形外接圆的圆心为斜边的中点,斜边长 为外接圆的直径; 3.所谓角已知,不见得已知角的度数,凡是角的正 ⑧三角形的外角等于与它不相邻的两个内角相加之 弦值、余弦值、正切值已知,即为角已知;在解三 和等等; 角形中,求角的大小,也不见的求角的度数,可以 比较上述性质: 是角的某一个三角函数值,原因在于角已为任意角 ①内角和定理对所有三角形均适用,但只体现了角 不囿于锐角或者特殊角. 的关系,不能解决有关边的问题; [正弦定理] 1.正弦定理:在一个三角形中,各边和它所对角的 正弦的比相等,即 a sinA = b sinB = c sinC 其中,a ,b ,c 分别为内角A ,B ,C 的对边. 对于直角三角形、钝角三角形,同理可证. 2.几何意义:对任意一个?ABC 中,均有:

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且 222 3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n (1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围. 3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2 a C c b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围. 4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=- (1)求角C ; (2)求ABC ?面积的最大值. 5. 已知向量(2,1),(sin ,cos())2 A m n B C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小; (2)在(1)的条件下,当a =22b c +的取值范围. 6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b (1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期; (2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值. 7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

相关主题