搜档网
当前位置:搜档网 › 左手性材料研究进展

左手性材料研究进展

左手性材料研究进展
左手性材料研究进展

隐身材料的研究进展及存在问题

隐身斗篷的研究进展及存在问题 摘要:隐身斗篷,由硅纳米材料制造而成,利用该特殊材料折射或吸收大部分光线,从而达到隐形的目的。本文主要总结归纳现如今应用于隐身斗篷的各种主要材料,详细论述了基于超材料特殊电磁特性的隐身技术,简单介绍部分材料应用原理。 关键词:影身斗篷,超材料,限元分析软件,均匀介质 1. 隐身斗篷的应用前景 隐形斗篷我其实是在电影Harry Potter 中第一次知道,它常被哈利拿来干一些从霍格华兹魔法学校里偷跑出来如此的事情。现实中科学家们也一直在研究它。在不远的将来,隐身斗篷将会真的存在于现实世界中了。而且隐身斗篷的应用前景非常广。隐身技术在外科手术,军事航空等多个领域中获得广泛的应用。例如, “地震斗篷”——能够让冲击波、暴风浪或者海啸在所遮蔽的物体面前变成“瞎子”,进而达到保护建筑物的目的。同时为提高战场生存能力, 隐身技术越来越多地应用于军用装备上。随着军用探测技术的不断进步, 对军用装备隐身性能的要求不断提高, 传统的隐身技术已经不能满足要求。 2. 隐身材料及其隐身原理 2.1 超材料 众所周知,介电常数和磁导率是用于描述物质电磁特性的基本物理量,决定着电磁波在物质中的传播特性。迄今为止,自然界中天然物质的介电常数和磁导率均大于或等于1。2000年,Smith 等人利用金属铜的开环共振器和导线组成2 维周期性结构,首次在实验室制造出微波频段具有负介电常数和负磁导率的介质材料,引起科学界的轰动。随后,双负材料、单负材料、手性材料、理想磁导体和理想电导体等材料成为科学研究的热点,并将这些材料统称为超材料(metamaterials)。由于超材料具有一系列特殊的电磁特性,因而具有广阔的应用前景。 2.1.1超材料椭圆柱电磁斗篷 文献[1] 利用有限元分析软件Comsol Multip hysics 分析了超材料介电常数偏差、磁导率偏差 和损耗对电磁斗篷场分布的影响,并讨论了在电 磁斗篷内放置不同电磁特性的物体后斗篷外电 场分布的变化。 图1 为TE 波辐射下超材料椭圆柱电磁斗篷 的计算模型。超材料椭圆柱是沿z 轴放置的无限 长空心柱,其横截面为xOy 平面,椭圆中心为坐标 原点,内外径短轴分别为a 和b ,长轴分别为ka 和 kb ,其中, k 为长轴与短轴之比,仿真时取k = 6 , a =0. 1 m ,b = 0. 2 m 。在图1 所示的左边完全匹配 层( PML) 的内表面施加沿z 轴方向电流,激励起 沿x 轴方向(水平) 传播的频率为2 GHz 的TE 波。计算区域四周是PML 吸收层,斗篷内外均为空气。 通过文献[1]计算可知,超材料介电常数和磁导率空间分布如图2所示。图2 (a) 为介电常数分量在xOy 平面上的空间分布,由图可以看出,在x = 0 或y = 0 的平面上 xx 最小,同时在两图1 TE 波辐射下超材料椭圆柱电磁斗篷的计

多铁性磁电材料应用于存储技术的研究现状

硅酸盐学报 硅 酸 盐 学 报 · 1792 · 2011年 多铁性磁电材料应用于存储技术的研究现状 施 科,何泓材,王 宁 (电子科技大学微电子与固体电子学院,电子薄膜与集成器件国家重点实验室,成都 610054) 摘 要:多铁性磁电材料同时具有铁电性、铁磁性和磁电效应等多种性能,它为新功能存储器件的设计提供了可能性。主要综述了多铁性磁电单相和复合材料在存储技术领域的应用研究,包括基于多铁性磁电材料设计的“电写磁读”多铁性磁电存储器、多态存储器以及基于多铁性磁电材料设计双稳态储存器件的新原理和新思路;介绍了多铁性磁电材料在存储读头技术方面的应用;并将基于多铁性磁电材料的存储器与其他几种存储器作了简单比较;最后就多铁性磁电材料的存储技术发展面临的挑战进行了总结和归纳。 关键词:多铁性磁电材料;存储器;读头;铁电性;铁磁性 中图分类号:TB34;TP333 文献标志码:A 文章编号:0454–5648(2011)11–1792–08 网络出版时间:2011–10–25 10:49:06 DOI :CNKI:11-2310/TQ.20111025.1049.014 网络出版地址:https://www.sodocs.net/doc/8017784326.html,/kcms/detail/11.2310.TQ.20111025.1049.014.html Recent Progress in Application of Multiferroic Magnetoelectric Materials on Storage Technology SHI Ke ,HE Hongcai ,WANG Ning (State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China ) Abstract: Since multiferroic magnetoelectric (ME) material has ferroelectric, ferromagnetic and magnetoelectric properties, it is pos-sible to use this material for the design of storage device. Recent development on the application of single-phase or composite ME material on storage technology was reviewed. The areas were magnetoelectric random access memories (MERAM) with electric writing and magnetic read, magnetoelectric multiple-state storages, other new storages with novel working principles and ME read heads. In addition, the storage devices based on ME materials were compared with other different storage devices, and the challenges with the storage technology were summarized. Key words: multiferroic magnetoelectric material; storage device; read head; ferroelectricity; ferromagnetism 在器件微型化、功能需求多样化的现代生活和生产中,多功能智能材料成为人们关注的焦点,多 铁性磁电材料[1–4]是其中的典型代表。 这种材料不仅兼具铁电性和铁磁性,而且还具有铁电性/铁磁性之间的耦合性能,如通过外加电场能够改变材料的磁极化[5]或磁阻[6],施加磁场产生电极化的磁电效应[7],磁场下介电常数发生变化的磁介电效应[8]等,可大大开拓材料应用范围。不仅在传统的传感器[9]、存储器[10–11]、微波器件[12–13]等器件领域可以得到应用,还可以利用其同时具备铁电、铁磁、磁电等多 种性质于一体,进一步增加微电子器件设计的自由度,设计出对电、磁、力都响应的集成器件。如今,多铁性磁电材料已成为智能材料与器件方向的研究热点,正受到越来越多研究者的关注[14–17]。 随着信息技术的高速发展,要求存储技术提供速度更快,容量更大,功耗更低,体积更小,寿命更长,可靠性更高的存储器[18]。传统的半导体工艺技术已经逐渐逼近物理极限,难以大幅度提高存储器的性能。要想有突破性的进展,就必须另辟蹊径,寻找新材料或新的原理和方法。多铁性磁电材料同 收稿日期:2011–05–10。 修改稿收到日期:2011–06–28。 基金项目:国家自然科学基金(51002020);中央高校基本科研业务费专 项资金(ZYGX2009J033)资助项目。 第一作者:施 科(1987—),男,硕士研究生。 通信作者:何泓材(1980—),男,博士,副教授。 Received date: 2011–05–10. Approved date: 2011–06–28. First author: SHI Ke (1987–), male, graduate student for master degree. E-mail: she.ki@https://www.sodocs.net/doc/8017784326.html, Correspondent author: HE Hongcai (1980–), male, Ph.D., associate pro-fessor. E-mail: hehc@https://www.sodocs.net/doc/8017784326.html, 第39卷第11期 2011年11月 硅 酸 盐 学 报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 11 November ,2011

【开题报告】电磁波在左手材料中的传输特性

开题报告 应用物理 电磁波在左手材料中的传输特性 一、选题的背景与意义 近几十年来,物理学在先进材料领域的研究发展取得了巨大的不可思议的令人欢庆鼓舞的成就,如果在几十年前你很难想象哈利波特里才有的隐形衣材料在理论上已经发展成熟并且实验室里已经能初步有了实物雏形。这就是在近十年间横空出世掀起研究狂潮的一种具有不可思议性能的人工复合材料,俗称左手材料。 左手材料的研究要追溯到上世纪60年代前苏联科学家的假想。 物理学中,介电常数ε和磁导率μ是描述均匀媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场和波矢三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHM)。这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。1967年,前苏联物理学家Veselago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。他称这种假想的物质为左手材料(left-handed materials,LHM),同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。 然而左手材料的研究发展并不一帆风顺。在这一具有颠覆性的概念被提出后的三十年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中并未发现实际的左手材料,所以,这一怪诞的假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到时光将近本世纪时才开始出现转机。直至 1998~1999年英国科学家Pendry等人提出了一种巧妙的设计结构可以实现负的介电系数与负的磁导率,从此以后,人们开始对这种材料投入了越来越多的兴趣。2001年的突破,使左手材料的研究在世界上渐渐呈现旋风之势。 2001年,美国加州大学San Diego分校的David Smith等物理学家根据Pendry等人的建议,利用以铜为主的复合材料首次制造出在微波波段具有负介电常数、负磁导率的物质,他们使一束微波射入铜环和铜线构成的人工介质,微波

手性超材料研究进展

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

多铁性材料的自旋起源

多铁性材料的自旋起源 多铁材料由磁有序和铁电有序共同组成的,据信是在固体材料系统通过一个微小的能量消耗来完成磁与电的交叉控制的关键。例如巨磁电效应在凝聚态物理中在很长一段时间内引起了大家强烈的兴趣,希望得到一个新兴自旋相关连电子的方程。 在这里我们以磁性材料中实现多铁性和自旋驱动铁的电性开始,以上已经通过精确地试验和理论被证实。根据假设的机制,很多多铁性材料被开发与探索,最新的研究实现了巨磁电效应的控制,我们纵观多铁材料的各种基本机制的观点和基本的磁电特性。 多铁材料科学的一个最新的方向是动力学磁电效应,换句话说就是固体中动力学和电和磁偶极子快速交叉控制。我们着重讨论多铁性畴壁的动力学有助于增大磁电响应,其可通过介电谱来显示。另外的相关问题是活跃的电偶极子的磁共振,叫做电磁振子。最后我们总结多铁材料从在固体中宽泛的新型电磁学何处可能对将来能量不耗散的电子的应用。 第一章多铁性材料 1.1什么是多铁性材料

在固体中,电场(E )诱导出电极化强度(P )并且磁场(H )诱导出磁化强度(M )。E 与H 的运动关系可以由麦克斯韦方程描述,这使得P 和M 之间有了非常重要的联系,那就是P 与M 的耦合是通过晶格间的电子来传递的;换句话来说,电子的自旋、轨道和电荷的自由度在固体中是相关连的。P-M 耦合,若存在于材料中的话可促使磁电效应,其可定义为同时控制磁与电;转变M 通过用E 与之相反P 的改变通过用H 。一个世纪以前通过对Cr 2O 3的研究,固体中的磁电效应在理论[1]推测上和实验[2]上被证实。这个现象被通过用一个线性交差响应磁电系数α来描述。例如从对称分析的观点有u uv v P E α=和u vu u M E α=。与最 近新观测的多铁性材料相比以前观测磁电效应非常小,虽然如此,关于多铁性样品的自旋微观起源的基本的组成已经被涉及在首次发现的磁电材料中。例如一个存在相互作用的自旋与一个极化的化学晶格或存在相互作用的非共线的自旋在轨道耦合相互作用下耦合。自此,巨磁电效应开始被广泛研究。特别是在用E 高效的控制方面是一个需求函数在最小的能量耗散的二代电子自旋领域,因为能量损失产生H 或者用高电流来控制磁畴可以克服用电场的缺点[3-5]。 图1 多铁性材料中通过电磁场使P-M 交叉控制 多铁性材料这个术语被杜撰出代表材料是因为其有两个或更多铁性有序,如目前的铁电性与铁磁性。在一般的条件下,我们叫那些同时拥有铁电有序和磁有序的材料为多铁性材料。用更直接了当的方式来增强磁电耦合已经超出上述的线性响应所以要把目标集中在多铁性材料上。在多铁性材料中同时存在的P 与M 有非常弱的与之相关的H 与E 响应,如图1所示,经由场的诱导畴壁的运动引 起了滞后。当M 与P 共同耦合就会更强叫巨磁电效应。也就是H 控制P 同时E 控制M 成为可能。M-P 共同耦合不仅仅在准静态磁电耦合中非常重要,在动态磁电耦合中也是如此,它的时间尺度的范围能从千兆赫兹到紫外光的频率。所以

光催化材料的项目报告书

项目报告书

光催化材料的研究概况 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文主要综述了光催化反应基本原理、新型光催化材料开发策略及研究进展。分析了提高光催化材料量子效率的关键所在及开展新型光催化材料研究工作的重要性,展望了该领域的未来发展方向。 关键词:光催化原理、光催化材料、研究与开发 正文:光催化的由来 早在1839年,Becquerel 就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fujishima和Honda研究发现,利用TiO2单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去40年里,人们在光催化材料开发与应用方面的研究取得了丰硕的成果 光催化材料 光催化材料是指在光作用下可以诱发光氧化一还原反应的一类半导体材料。世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。 例如光催化净化空气: 图表1 光催化涂料 光催化材料对净化空气具有以下功效: 具有光催化降解甲醛、苯、氨等有害气体的功效。 具有抗污、屏蔽紫外线功效。

2018年功能性涂层复合材料行业分析报告

2018年功能性涂层复合材料行业分析报告 2018年11月

目录 一、行业管理体制与法规政策 (5) 1、行业主管部门及监督管理体制 (5) 2、行业主要法律法规及政策 (5) 二、行业发展概况 (7) 1、功能性薄膜复合材料行业概况 (7) 2、从终端应用角度看行业发展前景 (9) (1)消费电子市场应用分析 (10) ①智能手机 (11) ②平板电脑 (12) ③可穿戴设备 (13) (2)汽车电子市场应用分析 (14) (3)新能源汽车锂电池市场应用分析 (16) (4)薄膜包装材料市场应用分析 (18) 3、功能性涂层复合材料市场发展趋势 (19) (1)应用领域扩大,产品精密化发展 (19) (2)环保需求日益增长,产品向绿色化方向发展 (19) (3)功能性涂层复合材料是未来行业重点发展方向 (20) (4)市场需求快速变化,企业研发创新投入不断增长 (20) (5)企业由提供单一或少数种类产品向提供综合解决方案发展 (21) (6)我国市场前景广阔,迎来发展机遇 (21) 三、行业竞争格局和市场化程度 (21) 四、行业主要企业简况 (23) 1、国际企业 (23) (1)3M公司 (23)

(3)日本日东 (24) (4)艾利丹尼森 (24) (5)罗曼(Lohmann) (24) (6)思卡帕集团(Scapa Group PLC) (25) 2、国内企业 (25) (1)康得新 (25) (2)激智科技 (26) (3)新纶科技 (26) (4)晶华新材 (26) (5)苏州泰仑电子材料有限公司 (27) (6)碳元科技 (27) (7)深圳市美信电子有限公司 (28) 五、行业主要壁垒 (28) 1、技术壁垒 (28) 2、大客户采购认证壁垒 (29) 3、人才壁垒 (30) 4、全方位产品线的规模效益壁垒 (30) 5、资金及配套设施壁垒 (30) 6、管理能力壁垒 (31) 六、行业市场供求状况及变动原因 (32) 七、行业利润水平的变动趋势及变动原因 (32) 八、行业技术特征和经营特征 (34) 1、行业技术水平及技术特点 (34) 2、行业周期性、区域性或季节性特点 (35)

左手材料研究现状综述

左手材料研究现状综述 背景 左手材料(Left-Handed Metamaterials)是一种人工合成的电磁材料,介电常数ε和磁导率μ在一定的电磁波频段内同时为负,由于它能够产生自然界并不存在的奇特电磁响应,对其结构设计以及应用等方面的研究引起了国内外学者的广泛兴趣。这种本构参数双负的材料表现出左手定则(电场、磁场和波矢构成左手螺旋关系),后向波特性,逆Doppler 效应,逆Cerenkov 效应,逆Goos-Hanchen 位移效应以及负折射等多种“异向”现象。随着研究的逐步深入,左手材料被运用在很多方面,如可以实现“超级透镜”(superlens)、电磁隐身、高增益高定向性天线、小型化滤波器、功率分配器、同向双工器等,它是材料科学、材料工艺、电磁理论、微波、天线和光学工程以及先进测量等一系列学科的交叉和融合,具有广阔的应用前景。 从1968 年,Veselago预言了左手材料中反常电磁特性的存在,直到2000 年,Smith 等人将金属细线和开口谐振环(SRR)合理布局制造出人工左手材料并于2001 年实验证实了该媒质中的负折射现象,2003 年,美国《Science》杂志将左手材料评为十大技术突破之一。人们对微波、太赫兹、红外甚至可见光波段左手材料的理论、设计、实验和应用研究迅速开展起来并在多个方面取得了很大的成果。 国内外对左手材料的研究和探索主要有结构设计与制备、物理效应的研究、物理机理的研究以及实际应用的研究。但左手材料结构设计与制备一直是科学家关注的焦点问题,研究的频率范围由微波频段、太赫兹频段扩展到红外可见光频段。 微波频段研究现状 自Smith 等首次制作出左手材料以来,研究者设计出了各种不同金属结构的左手材料,如金属短线线对结构,S 型结构,型结构Ω,H 型结构,树枝状结构,渔网结构等。这类基于金属结构的左手材料利用金属结构的电谐振和磁谐振来实现负介电常数和负磁导率,在谐振时金属本身的损耗比较大,再加上介质衬底的损耗,这类左手材料损耗往往比较高。对金属结构的结构参数变化比较敏感,必须对结构参数进行精细的调节才能使电谐振和磁谐振重合,直接导致了这类左手材料的谐振频率可调性差,带宽窄,难以扩展为三维各向同性左手材料。 另一类基于电介质结构的左手材料,如立方电介质结构、蝶形电介质结构、长方形电介质结构、球形电介质结构、圆柱形电介质结构等。这类左手材料减少了金属的使用量,降低了金属损耗,具有很好的各向同性,但是左手频带比较窄,色散严重,电介质的介电常数要求很高,损耗依然比较严重,温度稳定性差,有待进一步研究发展。Eleftheriades和Caloz 几乎同时提出了基于传输线理论构造左手材料的思想,Eleftheriades[34]等人利用传输线模型研究并解释了基于金属线和谐振环阵列的左手材料的传播特性。这类左手材料通过传输线周期性加载分立元件(串联电容和并联电感)设计出具有负折射率的左手材料,更容易应用于射频/微波电路。 基于金属结构的左手材料的带宽是负电谐振区域和负磁谐振区域的重合部分,而这两种负谐振区域本身带宽比较窄,导致左手频带的带宽很窄。而基于电介质结构的左手材料带宽依然比较窄,而且色散严重。窄频带制约了左手材料的发展和应用,实现左手材料的宽带、多频一直是研究的重点和难点。一般左手材料结构具有不对称性,尤其是金属结构对几何参数变化很敏感,理论上定量分析影响左手材料带宽的因素,缺少成熟的理论,仍处在半经验状态。本文在理论上解释了影响金属结构左手材料带宽的因素,提出了设计宽带、多频左手

手性表面活性剂研究进展

手性表面活性剂的研究进展 摘要:简介手性表面活性剂的分类、结构,重点综述胆汁盐类、皂苷类手性表面活性剂的研究与应用,以及氨基酸型、季铵盐型、烷基糖苷型和松香型手性表面活性剂的合成与研究现状。 关键词:手性表面活性剂;进展;手性分离;立体合成 手性表面活性剂(chiral surfactant)是指一类性质上具有一般表面活性剂特性——具有油水两亲性,结构上含有手性中心的手性分子。由于分子结构中有手性中心的存在,该类表面活性剂具有良好的区域选择性、不对称催化能力和手性识别能力。尤其是在特定的手性拆分中的手性识别能力,使得手性两亲分子在立体选择性合成和手性药物分离领域逐渐成为一大热点。此外,近年来,在无机材料科学方面,利用手性表面活性剂合成无机介孔材料的研究也有迅速的进展。 随着医药科学和材料科学等领域的发展,手性表面活性剂由于其独特的分子结构特性而具有的不可替代性使得它的需求日益增加,因而引起了化学、材料等学科对手性表面活性剂的普遍关注。 目前获得手性两亲分子的途径还比较少,而且只局限于应用已有的手性源来合成,因此手性表面活性剂的类型并不多。主要可从来源分为天然手性表面活性剂和合成手性表面活性剂两大类。 1.天然手性表面活性剂 天然手性表面活性剂可细分为胆汁盐类和皂苷类两类。 1.1胆汁盐(Bile salts)类 胆汁(酸)盐类手性表面活性剂属于阴离子表面活性剂,具有光学活性,可用于手性对映体的拆分,最早由Terabe等[1]在1989年应用在几种氨基酸和药物的胶束电动色谱(MEKC 法)手性分离中。其基本结构式如图1,主体结构由四个饱和稠环构成。表1列举了几种常见的胆汁盐类手性表面活性剂。 图1 胆汁盐类结构式 表1 几种常见的胆汁盐类手性表面活性剂

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

左手材料经典结构双负特性及后向波性质探究

左手材料经典结构双负特性及后向波性质探究摘要:通过对左手材料经典杆环结构的理论推导,证明了其介电常数与磁导率双负的特性。提出其后向波性质为左手材料所有奇异性质的基点,并从熵条件的角度探讨了产生后向波的机制,证明了左手材料波前与能量传播的关系,间接说明其不违背能量守恒,证明了左手材料存在性。展望了左手材料的未来三大应用。 关键词:左手材料;杆环结构;双负特性;后向波 Abstract: through the theoretical derivation of left-handed materials´ classical pole-ring structure,the dielectric constant and magnetic permeability of the double negative features are proved.The idea that backward?wave properties are??basis points?for the singular nature of left-handed materials is offered,and from the perspective of the entropy condition,the after wave mechanism is?discussed. The relationship between the spread of?energy and?the wavefront of left-handed materials is proved, ? indirectly?illustrating it?does not breach of conservation of energy, and its existence is proved. Three major applications of the left hand in the future are foreseed. Key words: left-handed materials;rod-ring structure;double negative features;backward wave 众所周知,介电常数ε和磁导率μ是描述电磁波在介质中传播性

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.sodocs.net/doc/8017784326.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

【文献综述】电磁波在左手材料中的传输特性

文献综述 应用物理 电磁波在左手材料中的传输特性 过去二十年,一种被称为“左手材料”的人工复合材料在固体物理、材料科学、光学和应用电磁学领域内开始获得愈来愈广泛的青睐,对其的研究正呈现迅速发展之势,而它的出现却是源于上世纪60年代前苏联科学家的假想。 LHM概念的提出 1964年前苏联科学家V.G.Veslago教授从Maxwell方程出发,分析了电磁波在拥有负磁导率和负电介常数的材料中传播的情况,对其进行了阐述,如负的切连科夫效应、反斯涅耳定律、反多普勒效应等等。电磁波在传播时相速和群速方向相反,E、H、K三矢量之间呈现左手法则,与电磁波在传统材料(E、H、K三矢量之间呈现右手法则)中传播情况恰好相反,他定义该种材料为LHM材料。由于当时在自然界和实验室中未能找到这种材料,因此负折射率的问题并未引起大家的关注。在Veslago之后的几十年内,很少有关于负折射率问题的进一步报道。【1】 电磁波在左手材料传播特性 理论上麦克斯韦方程允许介电常数和磁导率都取负值,因此,麦克斯韦方程对于左手材料仍适用。对于单色平面波,麦克斯韦方程组可以写成如下: 对于右手材料,由前两式可知,电场E,磁场H,波矢k三者之间构成右手关系,而在左手介质中,波矢k三者之间构成左手关系。波矢k代表了相位传播方向,而能流传播方向S=E×H,代表了群速度。易判断波矢方向和能流方向相反。即相速度和群速度方向相反。 逆Doppler频移 声波在介质中传播时,波源和观察者如果发生相对运动,会出现Doppler效应。但是,在左手材料中,相速度和群速方向恰好相反,当波源和观察者相向而行时,观察者接收到的频率会降低,反之,则会提高。从而出现逆Doppler频移。 反常Cerenkov辐射【2】 反常Cerenkov辐射电动力学告诉我们,在真空中,匀速运动的带电粒子不会辐射电磁波,而

左手材料

航空航天学院 工程、社会与职业伦理道德 期末文献综述 题目:左手材料的研究设计与未来展望

左手材料的研究设计与未来展望 姓名:喜宏智班级:F1541301 学号:515413910019 前言: 二战时期,真正具有隐身性能的德·哈维兰的蚊式战机开始投入使用,它所采用的覆盖张性复合材料的胶合木质结构对于二战中的雷达系统的隐形作用是相当成功的。同时也开启了科学家利用飞行器表面材料设计来实现隐身设计的新思路。 进入20世纪60年代,随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,为消除或降低雷达所能侦查的电磁泄漏信号,科学家开始着力于研究基于超材料的吸波体设计,开始出现例如洛克希德公司的F -117A 隐形战斗机和诺斯罗普公司的 B- 2A 隐形轰炸机等隐形战斗机。 1999年,Pendry提出用连续金属线和开口谐振环组成的周期结构实现介电常 数和磁导率均为负值的左手材料[1] ,由左手材料衍生而来的超材料在透波和吸波 领域具有宽广的应用前景,引发了左手材料研究的热潮。 一、左手材料的研究进展及现状分析 左手材料是指在电磁波某些频段介电常数和磁导率同时为负的新材料。根据其实现原理,周期结构左手材料大致分为三类:第一类为基于金属线(或电谐振器)和磁谐振器的左手材料;第二类为垂直入射左手材料,这类材料一般在基板两侧具有相同的金属性质,通过基板两侧金属结构的耦合实现负磁导率,基板同侧相邻结构金属结构之间的耦合实现负介电常数;第三类为基于电介质材料的左手材料,将具有高介电常数的电介质结构单元嵌入具有低介电常数的基质中,实现负的介电常数和磁导率。 左手材料已经成为国际学术界的研究热点,近几年,国际上在左手材料制备,

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

相关主题