搜档网
当前位置:搜档网 › 电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法
电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法

轴承在机械中主要是起支撑及减少摩擦的作用,因此轴承的精度、噪声等都直接关系到机械的使用及寿命。转动轴承在设备中的应用非常广泛,转动轴承状态好坏直接影响旋转设备的运行状态,尤其在连续性大型生产企业,大量应用于大型旋转设备重要部位。因此实际生产中作好转动轴承状态监测与故障诊断是搞好设备维修与治理的重要环节。我们经过长期实践与摸索,积累了一些转动轴承实际故障诊断的实用技巧。本文将主要对转动轴承常见的故障诊断并做出分析。

一、转动轴承故障诊断的方式及要点

转动轴承的早期故障是滚子和滚道剥落、凹坑、破裂、腐蚀和杂物嵌进。产生的原因包括搬运粗心,安装不当、不对中、轴承倾斜、轴承选型不正确、润滑不足或密封失效、负载分歧适以及制造缺陷。根据经验,对转动轴承进行状态监测和故障诊断的实用方法是振动分析。振动分析对于转动轴承的诊断是将由加速度传感器获得的加速度信号,经过1kHz的高通滤波器往除低频信号后,对其进行包络处理,将调制信号移至低频,最后进行频谱分析,以便找出信号的特征频率。

根据转动轴承的结构特点、使用条件不同,它所引起的振动是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。因此检测转动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。考虑到转动轴承多用于中小型机械,其结构通常比较轻薄,因此传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。

转动轴承的振动属于高频振动,对于高频振动的丈量,传感器的固定采用手持式方法显然分歧适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次丈量的偏差,使数据具有可比性。

实用中需留意选择测点的位置和采集方法。要想真实正确反映转动轴承振动状态,必须留意采集的信号要正确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝处有较好监测效果。另外必须留意对振动信号进行多次采集和分析、综合进行比较,才能得到正确结论。

1转动轴承故障的频谱和波形特征

(1)径向振动在轴承故障特征频率及其低倍频处有波峰,若有多个同类型故障(内滚道、外滚道等),则在故障特征频率的低倍频处有较大的峰值;

(2)内滚道故障特征频率有边带,边带间隔为l倍频的倍数;

(3)转动体特征频率处的边带,边带间隔为保持架故障特征频率;

(4)在加速度频谱的中高区域若有峰群忽然生出,表明有疲惫故障;

(5)径向诊断时域波形有垂直复冲击迹象(有轴向负载时,轴向振动波形与径向相同,或者其波峰系数大于5,表明故障产生了高频冲击现象)。

2转动轴承的故障诊断方法

转动轴承的振动信号分析故障诊断方法分为简易诊断和精密诊断两种。简易诊断的目的是初步判定被列为诊断对象的转动轴承是否出现了故障;精密诊断的目的是要判定在简易诊断中被以为是出现故障轴承的故障种别及原因。由于转动轴承自身的特点,一旦损坏普通维修很难修复,大多采用更换的维修方式进行处理;而精密诊断的主要作用是理论研究和在特

殊场合(例如无配件的情况下)判定设备能够坚持运行的时间,进步设备的使用效率。所以一般情况我们采用轴承简易诊断方法就可以满足日常设备维护的需要。下面对轴承的常见故障以及轴承的简易诊断法作重点先容。

二、转动轴承常见故障分析

1.滚道声

滚道声是由于轴承旋转时转动体在滚道中转动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们留意。实在滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25dB~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:

(1)噪声、振动具有随机性;

(2)振动频率在1kHz以上;

(3)不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而进步;

(4)当径向游隙增大时,声压级急剧增加;

(5)轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;

(6)润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的外形大小均能影响噪声值。

滚道声产生源于受到载荷后的套圈固有振动所致。由于套圈和转动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与转动体间产生微小波动激发振动系统固有振动。尽管它是不可避

免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体转动声

该噪声一般情况下,都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内分为载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的转动体与内滚道不接触,但因离心力的作用则与外圈接触。因此,在低转速下,当离心力小于转动体自重时,转动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:

(1)脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生;

(2)冬季经常发生;

(3)对于只作用径向载荷且径向游隙较大时也易产生;

(4)在某特定范围内也会产生,且不同尺寸的轴承其速度范围也不同;

(5)是断续声;

(6)该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型转动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。

3.尖叫声

尖叫声是金属间滑动摩擦产生相当剧烈的尖啼声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不动听声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:

(1)轴承径向游隙大时易产生;

(2)通常出现在脂润滑中,油润滑则较罕见;

(3)随着轴承尺寸增大而减小,且常在某转速范围内出现;

(4)冬季时常出现;

(5)它的出现是无规则的和不可预知的,且与填脂量及性能、安装运转条件有关。这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。

4.保持架声

在轴承旋转过程中保持架的自由振动以及它与转动体或套圈相撞击就会发出此噪声。它在各类轴承中都出现,但其声压级不太高且是低频率的。其特点是:

(1)冲压保持架及塑料保持架均可产生;

(2)不论是稀油还是脂润滑均会出现;

(3)当外圈承受弯矩时最易发生;

(4)径向游隙大时轻易出现。

保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选公道的间隙和保持架窜动量来改善。

另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂叫声”。

当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于转动体在离开载荷区后,转动体忽然加速而与保持架相撞发出的噪声,这种撞击声不可避免,但随着运转一段时间后会消失。

防止保持架噪声措施如下:

(1)为使保持架公转运动稳定,应尽量采用套圈引导方式并留意给予引导面的充分润滑。对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架;

(2)轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,因此兜孔间隙取值尤为重要;

(3)要留意尽量减小径向游隙;

(4)尽量进步保持架制造精度,改善保持架表面质量,有利于减小转动体与保持架发生碰撞或摩擦产生的噪声;

(5)积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,进步轴承的洁净度。

5.转动体通过振动

当轴承在径向载荷作用下运转,其内部只有若干个转动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使转动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为转动体通过振动,尤其是在低速运转时表现更为明显。而其振幅则与轴承类型、径向载荷、径向游隙及转动体数目有关。通常该振幅较小,若振幅大时才形成危害,因此常采用减小径向游隙或施加适当的预载荷来降低。

三、转动轴承正常运行的特点与实用诊断技巧

在长期生产状态监测中发现,转动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,是由于制造过程中的一些缺陷,如表面毛刺等所致。

运动―段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进进稳定工作期。继续运行后进进使用后期,轴承振动和噪声开始增大,有时出现异响,但振动增大的变化较缓慢,轴承峭度值开始忽然达到一定数值。我们以为,此时轴承即表现为初期故障。这时就要求对该轴承进行严密监测,密切留意其变化。此后,轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始明显增大,其增大幅度开始加快,当振动超过振动标准时(如ISO2372标准),其轴承峭度值也

开始快速增大,立即超过振动标准,又超过峭度正常值(可参照峭度相对标准)时,我们以为轴承已进进晚期故障阶段,需及时检验设备,更换转动轴承。

轴承表现出晚期故障特征到出现严重故障(一般为轴承损坏如抱轴、烧伤、沙架散裂、滚道、珠粒磨损等)时间大都不超过一周,设备容量越大,转速越快,其间隔时间越短。因此,在实际转动轴承故障诊断中,一旦发现晚期故障特征,应果断判定轴承存在故障,尽快安排检验。

转动轴承简易诊断法:

(1)振幅值诊断法

这里所说的振幅值指峰值XP、均匀值X(对于转动轴承来讲,应是加1K高通后测得的值)。峰值反映的是某时刻振幅的最大值,因而它使用像表面点蚀损伤之类的具有瞬时冲击的故障。另外,对于转速较低的情况(如300rpm以下),也常采用峰值进行诊断。从参数的选取上来讲,一般的检测仪器的峰值丈量都采用加速度峰值。

均值是对时间均匀的,它的诊断效果与峰值基本一样,其优点是丈量值比较稳定;因而它适用于像缺油、磨损之类的振幅随时间缓慢变化的故障诊断。一般用于转速较高的情况,参数一般都选择加速度均值。

(2)波形指标诊断法

波形指标定义为峰值与均值之比(XP/X)。该值用于转动轴承简易诊断的有效指标之一。当XP/X过大时,表明转动轴承发生了磨损。

(3)峰值指标诊断法

峰值指标定义为峰值与均方根值之比(XP/Xrms)。该值用于转动轴承简易诊断的优点在于它不受轴承尺寸、转速及载荷的影响,也不受传感器、放大器变化的影响。该值用于点蚀类故障的诊断,通过对峰值指标随时间变化趋势的检测,可以有效地对转动轴承进行早期预告,并能反应故障的发展变化趋势。当转动轴承无故障时,峰值指标为一个较小的稳定值,一旦轴承出现了损伤,则会产生冲击信号,振动峰值明显增大,但此时均方根值尚明显的增大,故XP/Xrms增大;故当故障不断扩展,峰值逐渐达到极限值后,均方根值则开始增大,XP/Xrms 逐步减小,直至恢复到无故障的大小。

(4)概率密度诊断法

无故障诊断转动轴承的振动概率密度曲线是典型的正态分布曲线,而且一旦出现故障,则概率密度曲线出现偏斜或分散的现象。

(5)峭度系数诊断法

振幅满足正态分布规律的无故障轴承,其峭度值约为3。随着故障的出现和发展,峭度值具有与波峰因数类似的变化趋势。此方法的优点在于与轴承的转速、尺寸和载荷无关,主要适用于点蚀类故障的诊断。

通过上述分析,轴承的寿命是与制造、装配、使用都紧密相关的,我们必须在每个环节都做好,才能使轴承处于最佳的运转状态,从而延长轴承的使用寿命。

洛阳世必爱特种轴承有限公司长期致力于各行业的轴承服务,由于先进的技术支持,产品几乎涵盖了各种轴承类型。公司拥有专业的技术与服务团队,技术人员比例达40%,能高效的在最短时间内处理好客户的任何问题。

轴承在机械中主要是起支撑及减少摩擦的作用,因此轴承的精度、噪声等都直接关系到机械的使用及寿命。转动轴承在设备中的应用非常广泛,转动轴承状态好坏直接影响旋转设备的运行状态,尤其在连续性大型生产企业,大量应用于大型旋转设备重要部位。因此实际生产中作好转动轴承状态监测与故障诊断是搞好设备维修与治理的重要环节。我们经过长期实践与摸索,积累了一些转动轴承实际故障诊断的实用技巧。本文将主要对转动轴承常见的故障

诊断并做出分析。

一、转动轴承故障诊断的方式及要点

转动轴承的早期故障是滚子和滚道剥落、凹坑、破裂、腐蚀和杂物嵌进。产生的原因包括搬运粗心,安装不当、不对中、轴承倾斜、轴承选型不正确、润滑不足或密封失效、负载分歧适以及制造缺陷。根据经验,对转动轴承进行状态监测和故障诊断的实用方法是振动分析。振动分析对于转动轴承的诊断是将由加速度传感器获得的加速度信号,经过1kHz的高通滤波器往除低频信号后,对其进行包络处理,将调制信号移至低频,最后进行频谱分析,以便找出信号的特征频率。

根据转动轴承的结构特点、使用条件不同,它所引起的振动是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。因此检测转动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。考虑到转动轴承多用于中小型机械,其结构通常比较轻薄,因此传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。

转动轴承的振动属于高频振动,对于高频振动的丈量,传感器的固定采用手持式方法显然分歧适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次丈量的偏差,使数据具有可比性。

实用中需留意选择测点的位置和采集方法。要想真实正确反映转动轴承振动状态,必须留意采集的信号要正确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝处有较好监测效果。另外必须留意对振动信号进行多次采集和分析、综合进行比较,才能得到正确结论。

1转动轴承故障的频谱和波形特征

(1)径向振动在轴承故障特征频率及其低倍频处有波峰,若有多个同类型故障(内滚道、外滚道等),则在故障特征频率的低倍频处有较大的峰值;

(2)内滚道故障特征频率有边带,边带间隔为l倍频的倍数;

(3)转动体特征频率处的边带,边带间隔为保持架故障特征频率;

(4)在加速度频谱的中高区域若有峰群忽然生出,表明有疲惫故障;

(5)径向诊断时域波形有垂直复冲击迹象(有轴向负载时,轴向振动波形与径向相同,或者其波峰系数大于5,表明故障产生了高频冲击现象)。

2转动轴承的故障诊断方法

转动轴承的振动信号分析故障诊断方法分为简易诊断和精密诊断两种。简易诊断的目的是初步判定被列为诊断对象的转动轴承是否出现了故障;精密诊断的目的是要判定在简易诊断中被以为是出现故障轴承的故障种别及原因。由于转动轴承自身的特点,一旦损坏普通维修很难修复,大多采用更换的维修方式进行处理;而精密诊断的主要作用是理论研究和在特殊场合(例如无配件的情况下)判定设备能够坚持运行的时间,进步设备的使用效率。所以一般情况我们采用轴承简易诊断方法就可以满足日常设备维护的需要。下面对轴承的常见故障以及轴承的简易诊断法作重点先容。

二、转动轴承常见故障分析

1.滚道声

滚道声是由于轴承旋转时转动体在滚道中转动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们留意。实在滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25dB~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:

(1)噪声、振动具有随机性;

(2)振动频率在1kHz以上;

(3)不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而进步;

(4)当径向游隙增大时,声压级急剧增加;

(5)轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;

(6)润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的外形大小均能影响噪声值。

滚道声产生源于受到载荷后的套圈固有振动所致。由于套圈和转动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与转动体间产生微小波动激发振动系统固有振动。尽管它是不可避

免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体转动声

该噪声一般情况下,都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内分为载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的转动体与内滚道不接触,但因离心力的作用则与外圈接触。因此,在低转速下,当离心力小于转动体自重时,转动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:

(1)脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生;

(2)冬季经常发生;

(3)对于只作用径向载荷且径向游隙较大时也易产生;

(4)在某特定范围内也会产生,且不同尺寸的轴承其速度范围也不同;

(5)是断续声;

(6)该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型转动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。

3.尖叫声

尖叫声是金属间滑动摩擦产生相当剧烈的尖啼声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不动听声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:

(1)轴承径向游隙大时易产生;

(2)通常出现在脂润滑中,油润滑则较罕见;

(3)随着轴承尺寸增大而减小,且常在某转速范围内出现;

(4)冬季时常出现;

(5)它的出现是无规则的和不可预知的,且与填脂量及性能、安装运转条件有关。这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。

4.保持架声

在轴承旋转过程中保持架的自由振动以及它与转动体或套圈相撞击就会发出此噪声。它在各类轴承中都出现,但其声压级不太高且是低频率的。其特点是:

(1)冲压保持架及塑料保持架均可产生;

(2)不论是稀油还是脂润滑均会出现;

(3)当外圈承受弯矩时最易发生;

(4)径向游隙大时轻易出现。

保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的存在,因此彻底消除保持

架声十分困难,但可通过减少装配误差,优选公道的间隙和保持架窜动量来改善。

另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂叫声”。

当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于转动体在离开载荷区后,转动体忽然加速而与保持架相撞发出的噪声,这种撞击声不可避免,但随着运转一段时间后会消失。

防止保持架噪声措施如下:

(1)为使保持架公转运动稳定,应尽量采用套圈引导方式并留意给予引导面的充分润滑。对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架;

(2)轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,因此兜孔间隙取值尤为重要;

(3)要留意尽量减小径向游隙;

(4)尽量进步保持架制造精度,改善保持架表面质量,有利于减小转动体与保持架发生碰撞或摩擦产生的噪声;

(5)积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,进步轴承的洁净度。

5.转动体通过振动

当轴承在径向载荷作用下运转,其内部只有若干个转动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使转动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为转动体通过振动,尤其是在低速运转时表现更为明显。而其振幅则与轴承类型、径向载荷、径向游隙及转动体数目有关。通常该振幅较小,若振幅大时才形成危害,因此常采用减小径向游隙或施加适当的预载荷来降低。

三、转动轴承正常运行的特点与实用诊断技巧

在长期生产状态监测中发现,转动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,是由于制造过程中的一些缺陷,如表面毛刺等所致。

运动―段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进进稳定工作期。继续运行后进进使用后期,轴承振动和噪声开始增大,有时出现异响,但振动增大的变化较缓慢,轴承峭度值开始忽然达到一定数值。我们以为,此时轴承即表现为初期故障。这时就要求对该轴承进行严密监测,密切留意其变化。此后,轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始明显增大,其增大幅度开始加快,当振动超过振动标准时(如ISO2372标准),其轴承峭度值也开始快速增大,立即超过振动标准,又超过峭度正常值(可参照峭度相对标准)时,我们以为轴承已进进晚期故障阶段,需及时检验设备,更换转动轴承。

轴承表现出晚期故障特征到出现严重故障(一般为轴承损坏如抱轴、烧伤、沙架散裂、滚道、珠粒磨损等)时间大都不超过一周,设备容量越大,转速越快,其间隔时间越短。因此,在实际转动轴承故障诊断中,一旦发现晚期故障特征,应果断判定轴承存在故障,尽快安排检验。

转动轴承简易诊断法:

(1)振幅值诊断法

这里所说的振幅值指峰值XP、均匀值X(对于转动轴承来讲,应是加1K高通后测得的值)。峰值反映的是某时刻振幅的最大值,因而它使用像表面点蚀损伤之类的具有瞬时冲击的故障。

另外,对于转速较低的情况(如300rpm以下),也常采用峰值进行诊断。从参数的选取上来讲,一般的检测仪器的峰值丈量都采用加速度峰值。

均值是对时间均匀的,它的诊断效果与峰值基本一样,其优点是丈量值比较稳定;因而它适用于像缺油、磨损之类的振幅随时间缓慢变化的故障诊断。一般用于转速较高的情况,参数一般都选择加速度均值。

(2)波形指标诊断法

波形指标定义为峰值与均值之比(XP/X)。该值用于转动轴承简易诊断的有效指标之一。当XP/X过大时,表明转动轴承发生了磨损。

(3)峰值指标诊断法

峰值指标定义为峰值与均方根值之比(XP/Xrms)。该值用于转动轴承简易诊断的优点在于它不受轴承尺寸、转速及载荷的影响,也不受传感器、放大器变化的影响。该值用于点蚀类故障的诊断,通过对峰值指标随时间变化趋势的检测,可以有效地对转动轴承进行早期预告,并能反应故障的发展变化趋势。当转动轴承无故障时,峰值指标为一个较小的稳定值,一旦轴承出现了损伤,则会产生冲击信号,振动峰值明显增大,但此时均方根值尚明显的增大,故XP/Xrms增大;故当故障不断扩展,峰值逐渐达到极限值后,均方根值则开始增大,XP/Xrms 逐步减小,直至恢复到无故障的大小。

(4)概率密度诊断法

无故障诊断转动轴承的振动概率密度曲线是典型的正态分布曲线,而且一旦出现故障,则概率密度曲线出现偏斜或分散的现象。

(5)峭度系数诊断法

振幅满足正态分布规律的无故障轴承,其峭度值约为3。随着故障的出现和发展,峭度值具有与波峰因数类似的变化趋势。此方法的优点在于与轴承的转速、尺寸和载荷无关,主要适用于点蚀类故障的诊断。

通过上述分析,轴承的寿命是与制造、装配、使用都紧密相关的,我们必须在每个环节都做好,才能使轴承处于最佳的运转状态,从而延长轴承的使用寿命。

洛阳世必爱特种轴承有限公司长期致力于各行业的轴承服务,由于先进的技术支持,产品几乎涵盖了各种轴承类型。公司拥有专业的技术与服务团队,技术人员比例达40%,能高效的在最短时间内处理好客户的任何问题。

电机烧坏原因及判断方法 防范措施

电机烧坏原因及判断方法、防范措施 1 缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2 长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。1.3 电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4 电机绕组接线错误 绕组接线错误常见的原因有三个:①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5 定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行; ④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6 运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2 技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1 加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定:应装设两相保护,条件

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

怎样判断一台电机是否烧坏

怎样判断一台电机是否烧坏? 1.电机对地短路,测试方法用摇表一端接地,一端接马达端子,摇测下来绝缘为零。 2.电机匝间开路.测试方法将摇表两端接马达两个端子,摇测下来绝缘大于零。 3.电机匝间短路,用电桥测试。 万用表测量: 1.相间电阻均匀,不要去管电阻多大,均匀就行.对大于15KW的电机你可能怎么量都是0欧姆,那是因为万用表的量程太大了.换个微欧姆表才行. 2.相线对电机外壳绝缘大于1M欧姆, 怎么样判断三相异步电机的好坏? 量单相电动机时应断开电容 1、万用表测电流,三相不平衡率不大于10%; 2、摇表测绝缘,每相对地、相间均不小于0.5兆; 3、电桥测直流电阻,三相不平衡率不大于2%; 除了以上说的方法,检查其绕组是否正常的方法是在其中任意两根引线上接上万用表的小电流档(比如50微安),这时用用转动电机,万用表的表针应该是可以明显摆动(与转动快慢有关)。 这是利用电机的剩磁来检查绕组的“土”办法。如果绕组烧了,表针肯定不会动了。 用万用表可以判断电机的相间短路,接地和断路,但不好判断匝间短路. 只用万用表测量不太准确,最好用兆欧表测各相的绝缘电阻,然后又直流电桥测一下三相绕组之间的直流电阻,是否平衡,值是否偏大或偏小,绝对准确。 三相绕组电阻应相等,相与相及相与外壳绝缘电阻应大于1兆欧。过载绕组都烧毁、缺相则二组烧毁另一组不烧。 怎样用万用表判别单相电动机? 单相电机一般启动绕组的直流电阻大于运行绕组,最简单的判别方法是;1.先用万用表分别测出公用端至运行绕组端和启动绕组端的直流电阻 2.然后再用万用表测出运行绕组端至启动绕组端的直流电阻。 3.如果“1”中两次测量的算术和与“2”中的测量值不相等,那么电机肯定是烧掉了! 如果相等,最好与同型号电机进行比较,或者找到电机的出厂参数进行比较。以判断电机的好坏。 量单相电动机时应断开电容。单相电机短路是你得有个正常情况下的阻值作为参照。如何用万能表判断电风扇的电机以烧坏? 方法如下: 电风扇的电机有5条线.分别是: 1挡.2挡.3挡.2条电容线. 一般来说,除个别电机外,3个档位的线颜色是红.蓝.绿.接电容的是黑色和黄色. 那就开始了,把电机的5条线都脱离出来.首先,你把万用表的档位调到欧母档,红表笔接在任意的一条电容线上,黑表笔接1档.你先记下阻值,然后再测量2档和3档,正常来说,测的档位越大,它与电容线之间的阻值就越大,比如1档是70欧母.2档110欧母.3档150欧母这样.你可以记下来然后比较.

无刷电机判断好坏的方法

无刷电机判断好坏的方法 无刷电机是目前市场上较流行的电动车电机 无刷电机有斜槽与直槽区分,但判断电机的方法却是一样的,如下: 用万用表的红(+)表接霍尔线的负极,黑(-)表依次量黄,绿,兰三根霍尔线,电阻为1400到1980之间,但所量的三个数据是一样的,相差不大。然后用万用表的红(+)接霍尔线的正极,黑(-)表依次量黄,绿,兰三根霍尔线,电阻为550到800之间,三个数据要相等,或相差不大。可以判断电机的霍尔好坏。 粗线依次两两相接,盘动电机要有一顿一顿的感觉,三根线并接在一起,前后转动电机要有相当大的阻力,且均匀。可以判断电机相线是否断路。 双动力电机与变频继电器 (1)双动力电机只的是电机里边两个线圈 倒入11跟线其中8跟无刷是普通低速线而电机高速线圈是在电机右边的3跟大线上 (2)记电器是在与控制器相配的当转把拧到一定程度时控制器会有承受不住的压力他就输出过高的电流通过记电器发出信号产生,记电器在低速挡,变换到告诉挡而产生不停的传唤到电机的高速线上 电动车更改控制器。有刷与无刷 (1)有刷控制器用普通行控制器相改很简单但是电量显示版12V改36V就用36直接12V 电量显示版〈不过改了跟没改一样是不准的〉 (2)无刷控制器用体陪的控制器相改如过反转有两种办法去排斥 1翻倒电机 2用电机的8跟线+正-负A黄B蓝C绿 小线是SA黄SB蓝SC绿 正负不动 大线A与B相换小线SA与SC相换 就可以了 电动车电机怎样维修〈有刷与无刷〉 (1)有刷电机用万能表量通的话证明电机是好的不通为坏 (2)无刷电机八跟线 分别是黑 红 黄 绿 蓝 大黄 大绿 大蓝 用完能表的红笔量电机的黑线用黑笔量三跟小线分别阻止是650-750之间证明电机没问题

用摇表测电动机好坏

用摇表测电动机好坏文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

用摇表测电动机好坏 用万用表为什么不能测量电机,必须用摇表? 答:因为万用表里供测量电阻所使用的电源最高是9V,而电机是工作在220V或 380V的交流电压下,其脉冲峰波达500多伏特.而兆欧表(摇表)的供电电压是500V,只要在500V的电压下线圈的相与相间、相与地间的漏电微弱(包括容性电流),那么电机就是合格的了.普通万用表只能测几十千欧的电阻(指针在刻度盘1/3-2/3的范围内最准确),用它去测上兆欧的电阻,表笔动没动你都不大察觉得出(万用表测电阻时,它的刻度是不均匀的,上百上千欧的只占刻度盘右边一小点位置). 绝缘电阻表(兆欧表)使用方法: 现代生活日新月异,人们一刻也离不开电。在用电过程中就存在着用电安全问题, 在电器设备中,例如电机、电缆、家用电器等。它们的正常运行之一就是其绝缘材料的绝缘程度即绝缘电阻的数值。当受热和受潮时,绝缘材料便老化。其绝缘电阻便降低。从而造成电器设备漏电或短路事故的发生。为了避免事故发生,就要求经常测量各种电器设备的绝缘电阻。判断其绝缘程度是否满足设备需要。普通电阻的测量通常有低电压下测量和高电压下测量两种方式。而绝缘电阻由于一般数值较高(一般为兆欧级)。在低电压下的测量值不能反映在高电压条件下工作的真正绝缘电阻值。兆欧表也叫绝缘电阻表。它是测量绝缘电阻最常用的仪表。它在测量绝缘电阻时本身就有高电压电源,这就是它与测电阻仪表的不同之处。兆欧表用于测量绝缘电阻即方便又可靠。但是如果使用不当,它将给测量带来不必要的误差,我们必须正确使用兆欧表绝缘电阻进行测量。 兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用, 否则就会造成人身或设备事故。使用前,首先要做好以下各种准备: (1)测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备的安全。

电机振动在线监测系统解决方案上课讲义

钛能科技根据多年来的状态监测实践,针对电机故障研发出了一套电机振动在线监测系统解决方案,对全面推动我司电机状态监测工作深入开展发挥了重要作用。 1.引言 电机是现代工业生产中的重要电气设备,是现代工业生产的重要物质和技术基础,广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保等各个行业。各种电机设备的技术水平和运行状况是影响一个工业企业各项经济技术指标的重要因素,电机故障会对企业生产运营造成严重影响。一般说来,电机故障约有60%-70%是通过振动和由振动辐射出的噪声反映出来的,因此现场应用中,振动监测技术是应用比较普遍的故障诊断方法。 电机振动主要由电枢不平衡、电磁力、轴承磨损、转轴弯曲和安装不良使电机与负载机械的轴心线不对中或倾斜等原因引起的。电机振动三个基本参数,分别是振幅、频率和相位。其中振幅可用位移、速度和加速度来表示。在测量过程中我们一般对高频故障(如滚动轴承、齿轮箱故障等)或高速设备进行测量时,应选加速度为参考量;在对低频故障(如不平衡、不对中等)或低速设备测量时,应选位移为参考量;而在进行振动的总体状态测量时,选速度为参考量。电机振动大小必须要满足国家的电机振动标准,否则会造成很严重的后果。 要做好电机振动的监测诊断,首先要对诊断对象做全面的了解以及必要的机理分析,比如:机器的结构和动态特性(齿轮与轴承规格、特征频率等),机器的相关机件连接情况(如动力源、基座等),机器的运行条件(如温度、压力、转速)及维修技术(如故障、维修、润滑、改造),异常振 动的形态和特性。 2.解决方案 2.1方案概述 钛能科技根据已有的技术规范,在对钢铁、石化、水泥客户广泛深入调研的基础之上,结合自身多年来的技术积累,精心开发了电机振动在线监测系统,受到了客户的肯定和好评。 钛能科技电机振动在线监测系统依托先进的物联网传感技术,通过测定电机设备特征参数(如振动加速度、速度、位移等),计算并存储设备的运行参数,自动生成日数据库、历史数据库及报警库。将特征参数值与设定值进行比较,来确定设备当前是处于正常、异常还是故障状态,设备一旦出现异常或者故障,及时报警通知运行管理人员。尽可能多的采集故障信息,从而获得设备的状态变化规律,预测设备的运行发展趋势,帮助用户查找产生故障的原因,识别、判断故障的严重程度,

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

高压电机振动故障分析与处理

高压电机振动故障分析与处理 高压电动机在煤矿生产中的应用极其广泛,根据安装运行维护管理的规定必须进行定期的检查,以便及时了解、掌握电动机的运行情况,及时采取有效的措施,从而保障电动机的安全运行。因此,本文将分析总结高压电动机在安装、运行中所出现振动故障的查找与处理方法。 1、电机振动的测量 对电机振动量的测量从过去用螺丝刀测听,到现在使用较精密的振动测试仪,已经能进行准确的判定。V—63型便携式测振仪,为目前各工厂企业使用较多的用于测量振动的主要仪器,在及时预报电机的振动故障,根据电机的具体运行状况,制定出不同的维护检修措施,发挥着重要作用。 1.1 测量方法 振动的测量可进行振动位移、速度、加速度的测量,在测量时,应注意(1)在测量前,应检查确认仪器的电池电压,正确的设置频率范围。(2)根据不同的测量参数,正确的设置频率范围。(3)在测量时,应保持探头和被测面垂直。(4)在测量过程中,施加在仪器上的压力应适中。 1.2 选取测量位置 根据电机的结构特点,选取合适的能表征电机振动特性的测量点,对判定电机的振动是否超标是非常重要的,对于大中型电机,一般选取电机轴承座的正上方以及轴承中心线左右的对称点,或者电机大端盖的垂直向下与轴承水平方向垂直位置作为测量点。 1.3 电机振动的判定标准 电机振动量所测试的三个参数振动位移、速度、加速度,根据振动的频率越低则振动的位移量的测定灵敏度就越高,振动的频率越高则振动加速度所测定的灵敏度就越高的机理,对于大多数的设备,其振动的速度能够表征设备的振动状态。所以,在对电机进行监测时,以电机振动的速度为主,兼顾振动的位移量。 2、电机在自由状态下振动小,栓紧底脚时振动大,或相反 目前对置于刚性基础上所做空载试验的高压电机,是取自由状态的振动测试值还是在栓紧底脚时的振动测试值没有进行明确的规定。实践证明,取自由状态的振动测试值是可行的,由于在大多数的情况下,把紧底脚时测得的电机的振动值要较自由状态小。其原因可认为通过电机底座面和刚性基础面的良好吻合等于变相增加了电机的刚性。现今,对于结构刚性较差的电机,增加其剐性可以减小振动已经成为不争的事实,可以认为是抑制了电机某种频率的附加振动或者削弱了电

确定电机好坏的判断方法

确定电机好坏的判断方法 如果仅仅是判别好坏的话根本就不需要太注意阻值,只要用万用表分别测量电机引出来的每一根线;任意的两个引线都必须有阻值,否则电机已经损坏。如果任意两引线的电阻(万用表的最小欧姆档测量)值为0欧或阻值很小,则也证明此电机已损坏。(短路或局部短路)三根线的,通常都是白红蓝。一般白色是启动线,红色是运行,蓝色是公共地。 下面是量的方法 首先找出哪两根线电阻最大,空掉那根线的就是公共地。<零线>用公共地量其他两根线哪个大哪个就是启动相,哪根小就是运行相。量接地就是电机外壳和三根线,电阻应该是很大,看是单相还是三相了。三相用R×10档只要阻值一样就行了,用R×10K测任意一相与外壳阻值。单相呢?看是正转还是正反转。正转一般阻值相差30%--50%,阻值高的是主绕组,正反转的阻值是一样的,再测与外壳阻值。 电机三根线任意测,得到三组电阻值,好的电机最大的阻值正好等于另外两组阻值之和电机时转时停,有时转起来时速度又很慢,这是怎么回事? 电机工作过程中,有时出现电机突然停转,过一会儿,又重新启动但启动后仅仅转几分钟,就又停下来停一会儿后,又能启动,如此周而复使。有时还出现启动时,电机转速很慢,工作一会之后就停止不转了。这种故障如不及时发现处理,时间一长,很容易烧坏电机和控制系统的器件。 故障原理分析:如果我们了解热继电器的特点的话,就能理解这种故障发生的原因。热继电器是利用电流的热效应来保护电动机免受长期过载危害的一种继电器。而热继电器上有一个可以选择手动复位和自动复位按钮,在孵化设备中我们将热继电器设置成可自动复位方式,当接触器所带负载长时间在过载条件下工作时,热继电器能在有效时间内断开接触器线包电源,保护电机。 但是当热继电器内的自锁机构冷却之后,热继电器内的控制开关又将电源送到接触器上驱动电机工作,这时系统又恢复正常,但过不了几分钟,热继电器又重新发热断开接触器电源,电机又停转,如此周而复始。 故障分析及处理:从上述分析中我们知道故障的起因在热继电器,那么引起热继电器保护动作的原因是什么呢?我们知道,负载缺相或偏相(某一相电压很低)是引起热继电器动作的主要原因。判断方法采用直接检测法,关闭机器,依据从后到前的原则,对每一个器件进行测量判断,从电机一直查到用户电源闸刀保险丝,将可能引起缺相或接触不良的控制器件更换或拧紧。 实际维修中经常出现的几种情况:

无刷电机振动和噪声

改善无刷电机电磁力矩产生的振动和噪声 1、斜槽:使铁心槽斜置、使磁钢或充磁呈倾斜状; 2、减小磁极间隙变化:对铁心磁极的端部进行直线或者圆弧状切割,使间隙尽量变宽; 3、使磁感应正弦波化:采用中间厚两边薄鱼糕状磁钢,使充磁波形正弦波化。磁钢极向异性化。 4、磁极的宽度和间隔变化:改变铁心极或者磁钢极幅度和间隔,使端部的影响平均化; 5、高频化:增加沟数,提高变化频率,使影响程度减小; 插入辅助沟、抵消槽的影响:绕线槽会造成磁场能量的变化,用插入辅助沟的方法来抵消这种影响; 6、槽和磁极相互配合:选择磁场能量变化少的槽数和磁极数; 7、铁心平滑化:如果采用无槽的空心绕线,从原理上讲可以彻底清除磁反应力矩。 控制器造成(控制器为正弦波驱动) 1、位置检测器的局限性:这主要归于数字轴编码器所提供 的位置信息有限分辨率。因为编码器是一个比较昂贵的部件,这就需要使用可能的最低方案来减少成本。一些运行要求可能需要使用特定种类的编码器,比如霍尔效应类型,它仅能提供比较低的分辨率。这样,这种局限性可能很容易变成永磁驱动系统的量化错误的主要来源,相对于诸如和有限CPU字长及A/D转换器的分辨率等量化错误,它会产生一个更大的转矩波动; 2、计算的错误:这主要归于有限的CPU字长。CPU字长在 变量和参数控制中会引起离散化的错误。另外,逻辑控制中的计算使得上面的错误得以传输和积累。最后结果会使控制电压或电流偏离理想的正弦值,从而导致转矩波动。 3、非完美的电流检测:理想的电流检测器一般是不存在 的,所有电流检测器都有固有的偏差并会产生偏离错误。因为磁场定位控建立在电流反馈,所以任何的电流检测错误都会直接影响转矩的性能。定量分析这种影响五一会对启动器的设计带来很大的益处。 PWM开关:这 主要是因为使用一个PWM逆变器来产生正弦波形的局限性。由PWM开 关产生的电流会有一个和开关频率相应的高频纹波。高频纹波电流和

如何判断电机的好坏

如何判断电机的好坏 小电机生产厂家力辉教你如何判断电机的好坏 一、如何检测交流三相电机的好坏 1、摇表摇,500V的摇表即可,摇三个接线柱上的线对电机外壳的绝缘阻值,应该在0.5M欧以上就说明没有对地短路(烟台电机维修)。 2、万用表测:测A/B/C三相间的阻值,是否相等,应该是差不多,差的太多也能转,但是用不长了,记住电机越大,阻值越小!但是不能三相都为0欧,除非你是特别大,如50KW以上的电机!记住如果是调速电机的6个端子阻值可不一样哟! 3、检查轴承、风扇,一般缠电机就让全换了!因为有时候轴承抱死也会烧电机的哟! 4、电机的空载电流一般为额定电流的10%~50%,有时电机空转电流还为零哟! 5、电机额定电流运行时,是满负荷运行,输出功率基本为100%。运行电流小,说明电机输出功率变小,是轻负载运行。 二、如何检测交流单相电机的好坏 用500V兆欧表测量电动机绕组与外壳的绝缘电阻,不应小于0.5兆欧;用万用表测量绕组各引线,没有断线;上述都符合要求,电动机就是好的。

检测电容器的好坏用指针万用表方便些(也有带电容档的数字表,可直接测量)。 将万用表拨到1K或10K电阻档,测电容器的2个引线,表针快速向右偏转后慢慢回到左侧电容器是好的;始终偏向右侧说明电容器被击穿了;指针不动则电容器内部断线或没有容量了。用这种方法只能判断电容器的好坏. 三.直流电机的好坏 先看看有无断线,测测电阻是否正常。 如果是有刷直流马达的话,可以让转子旋转,用万用表测输出的直流电是否正常。 如果是无刷直流马达、并且三相引出,可以让转子旋转,用万用表测输出的交变电压是否正常。 输出电压大小和转速成正比。

如何用摇表测电机的电阻判断电机的好坏

如何用摇表测电机的电阻判断电机的好坏 我告诉你如何判断电机的好与坏,拆开连片以后,一,先用万用表测三相绕组的直流电阻,【其实绕组的阻值很小,咱普通的表基本上看不出大小,除非很小的电机,就是看看通不通即可】二,如果三相绕组都通,再用摇表的一根线接电机的外壳,另一根线分别测量三相绕组对地阻值是否正常,【阻值最低不得低于0.5兆欧】三,如果三相绕组对地阻值都正常,最后就是测相间绝缘阻值了,你把摇表的一根线随便接在一相绕组的接线柱上,另一根分别接其他两根接线柱,【注意不要同时接两根,要分开接】测完之后,在把摇表线分别对调测量其它两相的绕组【测相间的过程只测上边或者下边3根接线柱即可,阻值不得低 于0.5兆欧】。 将摇表的两个表笔一个夹在接线盒的接线柱上,一个夹在外壳上,均匀地摇动摇表的手柄,得到的读数就是电机的对地绝缘电阻,一般在200K~2M左右为合格。将摇表的两个表笔分别夹在接线盒不同相的接线柱上,均匀地摇动摇表的手柄,得到的读数就是电机相间的绝缘电阻。一般在100K以上为合格。 四、用摇表测电机的电阻,判断电机的好坏 要判断电机的好与坏,拆开连片以后:1.先用万用表测三相绕组的直流电阻。2.如果三相 绕组都通,再用摇表的一根线接电机的外壳,另一根线分别测量三相绕组对地阻值是否正常 (阻值最低不得低于0.5兆欧)。3.如果三相绕组对地阻值都正常,最后就是测相间绝缘阻值 了,把摇表的一根线随便接在一相绕组的接线柱上,另一根分别接其他两根接线柱(注意不要 同时接两根,要分开接),测完之后,在把摇表线分别对调测量其他两相的绕组(测相间的过程 只测上边或者下边3根接线柱即可,阻值不得低于0.5兆欧)。 将摇表的两个表笔一个夹在接线盒的接线柱上,一个夹在外壳上,均匀地摇动摇表的手 柄,得到的读数就是电机的对地绝缘电阻,一般在200K~2M左右为合格。 将摇表的两个表笔分别夹在接线盒不同相的接线柱上,均匀地摇动摇表的手柄,得到的 读数就是电机相间的绝缘电阻。一般在100K以上为合格。 五、使用注意事项 1.测量设备的绝缘电阻时,必须先切断设备的电源。对含有较大电容的设备(如电容器、 变压器、电机及电缆线路),必须先进行放电。并且要查明线路或电气设备上无人工作后方可 进行。 2.摇表应水平放置,经开路、短路试验,证实摇表完好,方可进行测量。 3.摇表的引线应用多股软线,且两根引线切忌绞在一起,以免造成测量数据不准确。 4.摇表测量完毕,应立即使被测物放电,在摇表未停止转动和被测物未放电之前,不可用 手去触及被测物的测量部位或进行拆线,以防止触电。 5.被测物表面应擦拭干净,不得有污物(如漆等)以免造成测量数据不准确。 6.用摇表测试高压设备的绝缘时,应由两人进行。 7.摇表使用的表线必须是绝缘线,且不宜采用双股绞合绝缘线,其表线的端部应有绝缘 护套;摇表的线路端“L”应接设备的被测相,接地端“E”应接设备外壳及设备的非被测相, 屏蔽端“G”应接到保护环或电缆绝缘护层上,以减小绝缘表面泄漏电流对测量造成的误差。

电动机运行中异常振动产生的原因及处理方法

电动机运行中异常振动产生的原因及处理方法 发表时间:2019-06-26T11:06:22.963Z 来源:《电力设备》2019年第4期作者:赛里曼•赵玉霞杨鹏马金鹏[导读] 摘要:电动机是把电能转换成机械能的一种设备。(独山子石化公司供水供电公司炼油电修车间 833699)摘要:电动机是把电能转换成机械能的一种设备。它是利用通电线圈产生旋转磁场并作用于转子形成磁电动力旋转扭矩。电动机在运行中会出现不同程度不同类型的振动,在规定数值允许范围内的振动一般不会造成电动机故障,明显的异常的振动可能会造成电动机故障进而造成生产中断停车,所以判断电动机振动产生的原因并及时排除异常振动就显得尤为必要。 关键词:引线;发热故障;处理引言我们知道电动机产生不正常的振动和异常音响主要有电磁和机械两方面的原因,电磁和机械振动异常又有集中不同情况,所以说先要正确区分振动产生的实际原因,才能够做到准确无误排除异常情况。 1、电动机异常振动产生的原因 1.1电磁原因电磁原因主要有以下两个方面,比较容易区分和处理。(1)若定、转子绕组发生短路故障、转子断条时电动机会发出时高时低的嗡嗡声响,并且电动机机身的振动较为明显。(2)正常运行的电动机突然出现转速明显下降,振动异常并有低沉的吼叫声,主要是三相电流不平衡、负载过重、电源缺相等原因。 1.2机械原因电动机在运行中产生机械振动的情况比较常见,且状况复杂多变,是电动机维护中需要重点关注,重点解决的,主要有以下几个方面。 机泵之间联轴器损坏或连接不良,联轴器找中心不准,负载机械不平衡,系统共振等。电动机定、转子相擦,电动机产生剧烈的振动并且伴有不均匀的碰擦声。地脚螺丝松动或基础不牢固,电动机运行时产生不正常的振动,冬夏季温差较大的地区在极冷和极热天气变换时较容易出现。轴承润滑不良使电动机轴承室内发出异常声音并产生振动。轴承安装不当产生的异常振动和声响。 2、电动机异常振动的处理方法 2.1电气原因的排除(1)先测定三相直流电阻是否平衡,如不平衡,则说明电机定子绕组有烧损或匝间短路现象,基本上需要重新下线处理,例如图1、2所示。 图1 图2以上两图是比较常见的匝间短路和相间短路的情况,定子线圈已经无法继续使用,需要重新下线,处理后进行试验合格使用。测定电动机是否过负荷运行,若因过负荷造成的振动异常,则降低负荷,以保证电动机良好的运转状态。 2.2 机械原因产生的振动处理方法利用状态监测手段,准确监测并对监测数值进行分析,观察电动机运行时的振动趋势和振动频谱,根据不同的频谱表现来判处理不同的电动机振动情况,如下图3、4、5所示,不同的原因产生的振动频谱有所区别。 图3

如何判断电机的好坏

如何判断电机的好坏 电动机运行或故障时,可通过看、听、闻、摸四种方法来及时预防和排除故障,保证电动机的安全运行。 一、看 观察电动机运行过程中有无异常,其主要表现为以下几种情况。 1.定子绕组短路时,可能会看到电动机冒烟。 2.电动机严重过载或缺相运行时,转速会变慢且有较沉重的"嗡嗡"声。 3.电动机维修网正常运行,但突然停止时,会看到接线松脱处冒火花;保险丝熔断或某部件被卡住等现象。 4.若电动机剧烈振动,则可能是传动装置被卡住或电动机固定不良、底脚螺栓松动等。 5.若电动机内接触点和连接处有变色、烧痕和烟迹等,则说明可能有局部过热、导体连接处接触不良或绕组烧毁等。 二、听 电动机正常运行时应发出均匀且较轻的"嗡嗡"声,无杂音和特别的声音。若发出噪声太大,包括电磁噪声、轴承杂音、通风噪声、机械摩擦声等,均可能是故障先兆或故障现象。 1. 对于电磁噪声,如果电动机发出忽高忽低且沉重的声音,则原因可能有以下几种。 (1)定子与转子间气隙不均匀,此时声音忽高忽低且高低音间隔时间不变,这是轴承磨损从而使定子与转子不同心所致。 (2)三相电流不平衡。这是三相绕组存在误接地、短路或接触不良等原因,若声音很沉闷则说明电动机严重过载或缺相运行。 (3)铁芯松动。电动机在运行中因振动而使铁芯固定螺栓松动造成铁芯硅钢片松动,发出噪声。 2.对于轴承杂音,应在电动机运行中经常监听。监听方法是:将螺丝刀一端顶住轴承安装部位,另一端贴近耳朵,便可听到轴承运转声。若轴承运转正常,其声音为连续而细小的"沙沙"声,不会有忽高忽低的变化及金属摩擦声。若出现以下几种声音则为不正常现象。 (1)轴承运转时有"吱吱"声,这是金属摩擦声,一般为轴承缺油所致,应拆开轴承加注适量润滑脂。 (2)若出现"唧哩"声,这是滚珠转动时发出的声音,一般为润滑脂干涸或缺油引起,可加注适量油脂。 (3)若出现"喀喀"声或"嘎吱"声,则为轴承内滚珠不规则运动而产生的声音,这是轴承内滚珠损坏或电动机长期不用,润滑脂干涸所致。 3.若传动机构和被传动机构发出连续而非忽高忽低的声音,可分以下几种情况处理。 (1)周期性"啪啪"声,为皮带接头不平滑引起。 (2)周期性"咚咚"声,为联轴器或皮带轮与轴间松动以及键或键槽磨损引起。 (3)不均匀的碰撞声,为风叶碰撞风扇罩引起。 三、闻 通过闻电动机的气味也能判断及预防故障。若发现有特殊的油漆味,说明电动机内部温度过高;若发现有很重的糊味或焦臭味,则可能是绝缘层维修网被击穿或绕组已烧毁。 四、摸 摸电动机一些部位的温度也可判断故障原因。为确保安全,用手摸时应用手背去碰触电动机外壳、轴承周围部分,若发现温度异常,其原因可能有以下几种。

电机振动的危害、原因及判断和排除故障的方法

电机振动的危害、原因及判断和排除故障的方法 内容简介:一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动 电动机在各行各业中有着广泛的应用,而在使用中会出现许多问题,其中电机振动是日常生产生活中较轻易碰到的。 一、电动机振动的危害 电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响四周设备的正常工作,发出很大的噪声。 二、电动机振动的原因 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检

Noise and vibration DC-motor(直流电机噪音及振动)

3482
IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004
Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC Motors
Hong-Seok Ko and Kwang-Joon Kim
Abstract—This paper characterizes electromagnetic excitation forces in interior permanent-magnet (IPM) brushless direct current (BLDC) motors and investigates their effects on noise and vibration. First, the electromagnetic excitations are classi?ed into three sources: 1) so-called cogging torque, for which we propose an ef?cient technique of computation that takes into account saturation effects as a function of rotor position; 2) ripples of mutual and reluctance torque, for which we develop an equation to characterize the combination of space harmonics of inductances and ?ux linkages related to permanent magnets and time harmonics of current; and 3) ?uctuation of attractive forces in the radial direction between the stator and rotor, for which we analyze contributions of electric currents as well as permanent magnets by the ?nite-element method. Then, the paper reports on an experimental investigation of in?uences of structural dynamic characteristics such as natural frequencies and mode shapes, as well as electromagnetic excitation forces, on noise and vibration in an IPM motor used in washing machines. Index Terms—Brushless machines, electromagnetic forces, noise, permanent magnet, vibrations.
Fig. 1.
Cross sections of BLDC motors.
I. INTRODUCTION
C
ONVENTIONAL direct current commutator motors with permanent magnets are easy to control and require few semiconductor devices. Yet, they have serious operational problems in association with brushes. For examples, the brushes require regular maintenance and induce noise by friction with the commutators. A solution for these problems is brushless direct current (BLDC) motors. BLDC motors can be classi?ed into two types, as shown in Fig. 1 according to the geometric shape and location of permanent magnets. Compared with surface mounted permanent-magnet (SPM) motors, interior permanent-magnet (IPM) motors have several advantages. One advantage comes from the position of magnets. Because permanent magnets are embedded in the rotor, the IPM motors can be used at higher speeds without debonding of the permanent magnets from the rotor due to the centrifugal forces. Another obvious advantage of the IPM motors is higher ef?ciency. That is, in addition to the mutual torque from the permanent magnets, the IPM motors utilize the reluctance torque generated by the rotor saliency [1].
Manuscript received June 28, 2002; revised June 7, 2004. H.-S. Ko was with the Mechanical Engineering Department, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea. He is now with Samsung Electronics Company Ltd., Suwon 443-742, Korea (e-mail: hskatom@yahoo.co.kr). K.-J. Kim is with the Mechanical Engineering Department, KAIST, Daejon 305-701, Korea (e-mail: kjkim@mail.kaist.ac.kr). Digital Object Identi?er 10.1109/TMAG.2004.832991
Regarding the noise and vibration, the IPM motors have more sources than the SPM motors. Furthermore, analysis of magnetic ?eld in the IPM motors is more dif?cult due to the magnetic saturations, especially in the rotors. In an IPM motor, the electromagnetic excitation sources can be classi?ed into three parts: cogging torque, ripples of mutual and reluctance torque, and ?uctuations of radial attractive force between the rotor and stator. In an SPM motor, only the mutual torque is generally considered and an analytical method can be used [2], [3]. For the IPM motors, however, the ?nite-element method (FEM) is used to account for the magnetic saturation at the rotor core and, besides the mutual torque, the reluctance torque needs to be considered. In addition, although only the permanent magnet may be considered to calculate the radial attractive forces between the rotor and stator in the IPM motors [4], the electromagnetic ?eld due to the currents may become signi?cant depending on the loading and generate serious excitation forces. In this paper, a technique that can ef?ciently calculate the cogging torque as a function of rotor position by including saturation effects is proposed. Then, a torque equation for characterizing the space and time harmonics with respect to the mutual and reluctance torque ripples is used to extract their ?uctuating components. The radial attractive forces due to the electric currents in the stator as well as the permanent magnets in the rotor are calculated by the FEM and its effects on noise and vibration are investigated. The noise and vibration in the motors are mostly generated by the electromagnetic sources and subsequently can be ampli?ed by the dynamic characteristics of the motor structure. Therefore, in?uences of natural frequencies and mode shapes of the structures are experimentally investigated for the noise and vibration of an IPM motor under study. II. ELECTROMAGNETIC EXCITATION SOURCES Electromagnetic excitations in electric motors are caused by variation of both circumferential and radial forces acting between the stator and the rotor with respect to the time and space.
0018-9464/04$20.00 ? 2004 IEEE

相关主题