搜档网
当前位置:搜档网 › 中考数学选择、填空压轴题

中考数学选择、填空压轴题

中考数学选择、填空压轴题
中考数学选择、填空压轴题

中考数学:选择、填空压轴题

百题冲刺

编辑:XXXX (不告诉你) 花了很长时间整理的

肯定要卖贵点

哩哩哩

数与式

方程、不等式与函数 图形的性质与变换

点的运动路径 儿何最偵问題

探究型儿何问題 目录:

专题- 专题 1

专蛙 专题四 专题貝 专题六 专题七

专题一数与式

【毂磋算】

现定义运算“ ”,对于任意实数a、b,都有a*b = / -跚+加如:3*5 = 32 - 3x3 + 5, 2 = 6,则

实数x的值是.

对于实数a, b,我们定义符号maz(a,fr)的意义为:当a>b B4, rnax{a,b}= a ;当a v b Bj, uuix{a,^ = b;

如:max{4y-2} = 4, ”《u{3.3} = 3,若关于x的函数为g = + 3,+ 1},则该函数的最小值是

()

A.0

B.2

C.3

D.4

【定义新运算:与高中知识有关】阅读理解:如图1,在平面内选一定点引一条有方向的射线。,,再选定一个单位长度,那么平面上任一点M的位置可由?的度数"与的长度,”确定.有序数对伊,称为M点的“极坐标”?这样建立的坐标系称为“极坐标系"。应用,在图2的极坐标系下,如果正六边形的边长为2,有一边CU在射线6?上,则正六边形的顶点。的极坐标应记为()?

A: (60。. 4)

B: (45°.4)

C: (60°.2v^)

D: (50°.2乃)

我们知道,一元二次方程尸=T没有实数根.即不存在一个实数的平方等于To若我们规定一个新数“ i",使其满足

r a--l (即方程x a--l有一个根为,)°并且进一步规定,一切实故可以与新教进行四则运算,且原有运算律和运算法则仍然成立,于是有卩卩?T, i…

「■伊从而对于任意正整数”,我们可以得到卩* .『—.(/)'■「,同理可得

i4w-l.那么,+ 卩+ /./ / “ +/'2./”的值为()?

A: 0

B; I

C:-1

D: *

【定义

如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形” °下列各组数据中,能作为一个智慧三角形三边长的一组是()。

【流程图】如图,根据所示程序计算,若输入/ =去,则输岀结果为

[输出结果)

A. 20.5

B. 2().6

D. 20.8

【發数列】

为庆祝“六?一"儿童节,某幼儿园举行用火柴糅摆“金鱼"比赛,如图所示,按照上面的规律,摆第

(n)困,需用火柴株的根数为.

>> >? >?>

(1) (2) (3)

如图是三种化合物的结构式及分子式。清按其规律.写岀后面第2013种化合物的分子式_____________ ?

H H H

I I H H H

1 I

H——C——HH—I

-C——C——HH——C ——C --------- C——H

C1H41 A

C1H6

H

CiHi

【謚数列同】

【等比薮列]已知一列数2, 8, 26, 80按此规律,则第”个数是。(用含”的代数式表示)

—组正方形按如图所示的方式放置.其中顶点角在"轴上,顶点码、马、G、岛、&、C……在,轴上,已知正方形

Ai BtCtD t的边长为1, 圆。〃耳弓//8。……则正方形A刖必gGmQ利術的

边长是()?

K等比数列腳】

为了求1+2 + 22 + 23+ ... + 2Uin的值,1 + 2 + 22 + 23+ --+2,00? ^25 - 2 + 2J + 2s + ? ? ? + 2101.因此2S-S-2101 - 1* 所以S?

2'。, 一1,艮Pl+2 + 2a+ 2a + --?+ 2,00-2,<>,-1?仿照以上推理计算

1+3 + 3,+ 33 + ... + 330"的值是 ....... 。

在求+ V + F + + G + + ?:T的值时,张红发现,从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=14-3 + 3a + 3:,4-34 + 3s + 3? + 374-38(I).然后在④式的两边都乘以3,得:

3S = 3 + 3a+ 33 + 34 + 3s + 3c+ 3T + 3e+ 3?l2),②-①得:3S- S = 39- I.所以S=#2,得出答案后,爱动脑筋的张红想,如果把“3"换成字号m (”》。且”,码1),能否求岀l + m十廿十仃+妃+ ....十的值?如能求岀,其正确答案是?

匸阶列】

下面是按一定规律排列的一列散,1. t A,如,.,那么第“个薮是

4 i 12 19

下图是在正方形网格中按规律填成的阴影,根据此规律,则第”个图中阴影部分小正方形的个数是

第1个图第2个国第3个图

【循律】

如图,将若干个正三角形、正方形和圆技一定规律从左向右排列,那么第20U个图形是。

观察下列等式:

第1个等式’5 = %如22 = 嘉,

第2个等式'死=江土※=嘉-為'

第3个等式'。3= 搭颓=如掾-土'

第4个等式'S=M X23=嘉-土。

按上述规律,回答以、下间题,

⑴用含■”的代数式表示第“个等式,%=.............

(2 )式i子'di + 的 +。';1 + - - - + 4湖=封

专题二方程、不等式与函数

已知方程m…七且关于,的不等式组當;只有,个整数*那么,的取值范围是()?

A: -1 < 6 < 3

B: 2 V 8 W 3

C: 8W 6< 9

D: 3<6< 4

如果关于,的不等式组{二的整數解仅有1, 2,那么适合这个不等式组的整数“,姬成的有序数对(a, 6供有个?若关于r的方程./+ 2rnr + + 3m - 2 =()有两个实数根小巧,则—(巧+打)+ r:的最小值为

如图,射线財、ZM分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中,、f分别表示行驶距离和时间,则这两人驶自行车的速度相差

如图,在平面直角坐标系中,四边形OBCD^边长为4的正方形,平行于对角线8〃的直线,从。岀发,治/轴正方向以每秒I个单位长度的速度运动,运动到直线/与正方形没有交点为止。设直线 /扫过正方形08(?。的面积为S,直线/运动的时间为f (秒),下列能反映S与f之间函数关系的图象是()。

甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米.先到终点的人原地休息。已知甲先岀发2秒。在跑步过程中,甲、乙两人的距离y (米)与乙岀发的时间f (秒)之间的关系如图所示,给岀以下结论,(Do -81②—92;③其中正确的是()。

A:①②③

B:仅有①②

C:仅有①③

D:仅有②③

如图①,在正方形.4"。。中.点〃沿边W从点。开始向点.4以Irm/s的速度移动;同时,点Q沿边.4"、8。从点」开始向点(似2rm/s的速度移动。当点P移动到点」时.P、Q同时停止移动。设点P 岀发/ (-)时,MW的面积为0 (「麻),。与r的函数图象如图②,则线段时所在的直线对应的函数关系式为。

10

一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示。小充袂定做个试验:把塑料桶和玻璃杯看作一个容器.对准杯口匀速注水,注水过程中杯子始终竖直放買.则下列能反映容器最高水位力与注水时间f之间关系的大致困象是()?

11

如图,点E, F在函数(,><))的图象上.直线EF分别与,轴、“轴交于点丄B.且

X

过点£作时丄。轴于P,已知的面积为1,则/?值是 ______________ , 的面积是(用含”,的式子表示)。

如图,A、B两点在双曲线"=!上,分别经过』、B两点向轴作垂线段,已知S“ = l,则S] + & . ( ) ?

12

如图,点在双曲线上,过点P的宜线h与坐标轴分别交于A、B两点,且tan^BAO= 1?点M是该双曲线在第四象限上的一点,过点M的直线S与双曲线只有一个公共点,并与坐

标轴分别交于点C、点D.则四边形ABCD的面积最小值为()

A. 10

B. 8

D.不确定

二次函数+ + c(W。)的大致图象如图,关于该二次函凱下列说法错误的是

A:函数有最小值

B:对称轴是直线

C:当* W,y随/的増大而减小

D:当-1 <了<2时,。>0

当-2<x<l时,二次函数y = -(x -m)2 + m2 + 1有最大值4,则实数m的值为()

A.4

4

B.髙或一

C.Z 或—

D.忘或商或一;

4

13

一次函数0 = “ + 6和反比例函数〃=£在同一平面直角坐标系中的图象如图所示,则二次函数

x

g =/ + * + <■的图象大敦为()?

二次函^.y = ar2 -f-ftr + r (a^0)的图象如图,给岀下列四个结论t ?4nr - b2< Ol (^)4a 4- c < 26l (D 364-2c<0l @m(am 4-6) 4-6 < a (m -1) ?其中正确结论的个数是()?

14

如图,一根长咪的竹杆斜立于埼.七的右侧,底講"与墙角C?的距离为3米,当竹杆顶端.4下滑r米时,底端〃便随看向右滑行,米,反映,与'变化关系的大致图象是()?

15

如图,边长为2的等边三角形仙(?和边长为1的等边三角形SBC 它们的边既位于同一条宜线,上.开始时,点。与8重合,心此固定不动,然后把△.40。自左向右沿直线/平移,移岀dMC?外(点 &与(?重合)停止,设平移的距离为宀两个三角形重合部分的面积为队则"关于r的函数图象是

二次函数" = F + M的图象如图,对称轴为直线/ 若关于r的一元二次方程/ + kr-f.O(f为实数)

在-l

16

如图,在平面宜角坐标系中,拋物线经过平移得到拋物线其对称轴与两段拋物线所围成的阴影部分的面积为().

A: 2

B: 4

D: 16

如图,过点C(L2)分别作,轴、“轴的平行线,交直线" = -, + 6于.?!、0两点,若反比例函麴,=£ (z>0)

X

的图象与△48。有公共点,则A?的取值范围是()。

17

已知二次函数。*宀版十1, 一次函数0 = *.]).§,若它们的图象对于任意的非零实数A?都只有一个公共点,则s ,,的值分别为()?

若直线"E (m为常故)与函数〃={] 艺;的图象恒有三个不同的交点,则常故,“的取值范围是

+ 8的图象如图所示,则m的值是(

点8(了如陌,都是反比例函数1/=-;的图象上,若ri < rj < 0 < r.t?则叩纣川的大小关系是().

A:lh < Vi < W

B:m < Mi < 93

C:< vs < yi

D: th < yi < 9^

18

设已知关于X的方程ar2 4- (a 4- 2)x 4- 9o = 0有两个不相等的实数根^1 , 了2 ,且x, < 1 < r2,那么a的

取值范围是

A.x = l

B.x=2

C.x=3

D.x=4

如图是二次函珈=狎+卄3 (a#0)图象的一部分,/ = -1是对称轴,有下列判断:Ofe-2 g,其中正确的是()。

A:①②③

B:①③④

C:①②④

D:②③国

19

(2012贵阳)已知二次函数y=ax 2+bx+c (a<0)的图象如图所示,当-5

A.有最小值-5、最大值0

B.有最小值-3、最大值6

6

C.有最小值0、最大值

D.有最小值2、最大值6 Array 20

二次函数0 = / +队的图象如图.对称轴为直线「=1.若关于'的一元二次方程rfbrT = O(f为实数)在T<‘<4的范围内有解,则f的取值范围是()°

如图,正比例函数和反比例函数仰=乎的图象交于-4(-1,2). 0(1.-2)两点,若”<驼,则‘的取值范围是()?

C: -1 < r < 09J40 < Z < 1

D: -1 < r < OftJiT > 1

21

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学填空压轴题大全

中考数学填空压轴题大 全 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-

2017全国各地中考数学压轴题汇编之填空题4 1.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555, 【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+?+== ,222(21)(221) 1256 +?++==, 2223(31)(231)123146+?+++== ,……,2222(1)(21) 123146 n n n n ++++++==…. ∴222229(291)(2291) 123296 +?+++++= (8555) 2.(2017贵州毕节)观察下列运算过程: 计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,① ①×2得 2S =2+22+23+…+211,② ②-①,得 S =211-1. 所以,1+2+22+…+210=211-1. 运用上面的计算方法计算:1+3+32+…+32017=______________. 【答案】201831 2 -, 【解析】设S =1+3+32+…+32017,① ①×3得 3S =3+32+33+…+32018,② ②-①,得 2S =32018-1. 所以,1+3+32 +…+3 2017 =2018312 -.

3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点 P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为. 【答案】(2,0), 【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0), P 5(2,0)的终结点为P 4(1,4),…… 观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=?; (2)常数项3131(3)-=-?=?-,验算:“交叉相乘之和”; (3)发现第③个“交叉相乘之和”的结果1(3)211?-+?=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 【答案】(x +3)(3x -4). 【解析】如图. 5.(2017湖北黄石)观察下列各式: …… 按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】 1 n n +,

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

中考数学选择填空压轴题训练整理

1. 如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=4°5, D F⊥AB 于点F,EG⊥AB 于点G,当点C在AB上运动时,设AF=x ,DE=y ,下列中图象中, 能表示y 与x的函数关系式的图象大致是 2. 如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,BG=4 2 ,则ΔCEF的周长为() (A)8 (B)9.5 (C)10 (D)11.5 3、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与 对角线BD重合,折痕为 D G,则 A G的长为() 4 A 1 B.. 3 3 C.D.2 2 4.下面是按一定规律排列的一列数:D C A′ 第1 个数:1 1 1 2 2 ; A G 图 B 第2 个数: 2 3 1 1 ( 1) ( 1) 1 1 1 3 2 3 4 ; 第3 个数: 2 3 4 5 1 1 ( 1) ( 1) ( 1) ( 1) 1 1 1 1 1 4 2 3 4 5 6 ; 第n 个数: 2 3 2n 1 1 1 ( 1) ( 1) ( 1) 1 1 1 L 1 .n 1 2 3 4 2n 那么,在第10 个数、第11 个数、第12 个数、第13 个数中,最大的数是() A.第10 个数B.第11 个数C.第12 个数D.第13 个数 5.如图,点A的坐标为( -1,0) ,点B在直线y=x 上运动,当线段AB最短时, 点B的坐标为 y 2 2 2 2 ()(,)()( A 0 0 B , ) B (C)(-1 2 , - 1 2 ) (D) (- 2 2 , - 2 2 )A O x (第 5 题图)

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

最新广东中考数学填空题压轴题突破

填空题难题突破 备考提示:近几年广东中考填空题中难度较大、考查最多的均为求面积的题目,2016年出现了考圆的综合题,这类几何综合题也值得重视起来,几何图形规律题(常以三角形、四边形为背景)也是需要适当练习. 1.(2017广东,16,4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为. 2.(2016广东,16,4分)如图,点P是四边形ABCD外接圆上任意一点,且不与 四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A 到PB和PC的距离之和AE+AF=. 3.(2015广东,16,4分)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分面积是___. 4.(2014广东,16,4分)如图,△ABC绕点A按顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于____.

5.(2013广东,16,4分)如图,三个小正方形的 边长都为1,则图中阴影部分面积的和是____.(结果保留π) 6.(2012广东,10,4分)如图,在平行四边形ABCD中,AD=2,AB=4,∠A=30°.以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则 阴影部分的面积是______ (结果保留π) 7.(2011广东,10,4分)如图1,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图2中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图3中阴影部分,如此下去,……,则正六角星形A4F4B4D4C4E4的面积为 ____ 强化训练: 1.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是.

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

2018年全国各地中考数学选择、填空压轴题汇编(四)

2018年全国各地中考数学选择、填空压轴题汇编(四) 参考答案与试题解析 一?选择题(共18小题) 1. (2018?杭州)如图,已知点P是矩形ABCD内一点(不含边界),设/ PAD=0i, / PBA=0 2,Z PCB=0 3,Z PDC=0 4,若/ APB=8C°,/ CPD=50,贝9() A .( 0i+M) — (伦+依)=30°B.(他+M) — ( 0i+釘=40 C. ( 0i+ E2)-( (3+ (4) =70° D. ( 0i+ E2) + ( (3+(4) =180 解:??? AD // BC,Z APB=80, ???/ CBP=Z APB -Z DAP=80 -(, ABC( 2+80 —(, 又???△ CDP 中,Z DCP=180 —Z CPD—Z CDP=130 —(, ???Z BCD( 3+130°—(, 又???矩形ABCD 中,Z ABC + Z BCD=180, ?- (+800— (+(+130°- (=180° 即((+() — ( (+() =30°, 故选:A.

2.(2018?宁波)如图,在△ ABC 中,Z ACB=90,Z A=30°,AB=4,以点B 为

圆心,BC 长为半径画弧,交边AB 于点D ,贝A 匚的长为( ) ???/ B=60° , BC=2 故选:C . (2018?嘉兴)如图,点C 在反比例函数y± (x >0)的图象上,过点C 的直 A ,B ,且AB=BC ,△ AOB 的面积为1,贝U k 的值为 B. 2 C . 3 D . 4 解:设点A 的坐标为(a ,0), ???过点C 的直线与x 轴,y 轴分别交于点A, B , 且AB=BC ,△ AOB 的面积为1, k ???点 C (-a , —), ???点B 的坐标为(0, “二) 解得,k=4, 故选:D . X2 27T 180 = _ 5 ???「的长为 B . y 解:???/ ACB=90 , AB=4,/ A=30° , D 'J n 3. 线与x 轴,y 轴分别交于点 A .吉n A . 1

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

初三中考数学选择填空压轴题

中考数学选择填空压轴题 一、动点问题 1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示 y 与x 的函数关系式的图象大致是( ) 2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运 动,设运动时间为x (s ).∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为 . 3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时, 始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、8 4.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( ) A. 563 B. 25 C. 112 3 D. 56 5.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍. 6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ) A .2 B .4π- C .π D .π1- 7.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2 cm . A .8 B .9 C .8 3 D .9 3 8.△ABC 是⊙O 的内接三角形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的面积为 . 在 梯 形 ABCD 中, 9.如图, 90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是 BC 上一定点,且MC =8.动点P 从C 点出发沿线段 A B C Q R M D A D C E F G B D P

中考数学填空题压轴题精选

A C B H E F P G 2017年中考压轴填空题精编 2301.如图,在△ABC 中,∠ACB =90°,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作AC 、BC 的垂线相交于点P ,垂足分别为G 、H ,则PG ·PH 的值为___________. 2302.已知抛物线C 1:y =ax 2 +bx +c 的顶点为P ,与x 轴交于A 、B 两点(点A 在点B 左侧),点P 关于 x 轴的对称点为Q ,抛物线C 2的顶点为A ,且过点Q ,对称轴与y 轴平行,若抛物线C 2的解析式为y =x 2 +2x +1,直线y =2x +m 经过A 、Q 两点,则抛物线C 1的解析式为______________. 2303.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同,现将它们 背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程 1-ax x -2 +2= 1 2-x 有正整数解的概率为____________. 2304.如图,点A 在抛物线y =x 2 -3x 的对称轴上,点B 在抛物线上,若AB 的最小值为2,则点A 的坐 标为____________. 2305.如图,在四边形ABCD 中,∠ABC =120°,∠ADC =90°,AB =2,BC =4,BD 平分∠ABC ,则AD =____________. D A C

A B C P D 2306.已知直线y = 1 2 x -1与双曲线y = 2 x 的一个交点坐标为(a ,b )(a <0),则 1 a + 1 2b 的值为____________. 2307.已知直线y =kx +4与y 轴交于点A ,与双曲线y = 5 x 相交于B 、C 两点,若AB =5AC ,则k 的值为_____________. 2308.已知二次函数y =-( x -m )2+m 2 +1,当-2≤x ≤1时有最大值4,则m 的值为___________. 2309.如图,在△ABC 中,AB =AC =5,BC =6,点P 是BC 边上一动点,且∠APD =∠B ,射线PD 交AC 于D .若以A 为圆心,以AD 为半径的圆与BC 相切,则BP 的长是___________. 2310.将一副三角板按如图所示放置,∠BAC =∠BDC =90°,∠ABC =60°,∠DBC =45°,AB =2,连接AD ,则AD =____________. 2311.已知当0<x < 7 2 时,二次函数y =x 2 -4x +3-t 的图象与x 轴有公共点,则t 的取值范围是______________. A D B C

中考数学压轴题集锦

中考数学冲刺复习资料:二次函数压轴题 1、(本题满分10分) 如图,在平面直角坐标系中,抛物线y =- 3 2x 2 +b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2 -x 1=5. (1)求b 、c 的值;(4分) (2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3分) (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分) 2、如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB = ABOC 绕点O 按顺时针 方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2 y ax bx c =++过点 A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. y O 第26题图 D E C F A B (第25题图) A x y B C O

3、如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线2 23 (0)y ax x c a =- +≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. 4、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为 1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经 过A B ,两点. (1)求二次函数的解析式; (2)求切线OM 的函数解析式; (3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 5、ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s . (1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围); (2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由; (3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似? 图14 y x O A B M O 1 A O x y B F C

2018年中考数学选择填空压轴题专题(初中数学全套通用)

专题1 四边形的综合问题 例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________. 同类题型1.1 如图,△APB中,AP=4,BP=3,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是___________. 同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB 交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE. A.只有①② B.只有①②③ C.只有③④ D.①②③④ 同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号) 同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是() A.BO=OH B.DF=CE C.DH=CG D.AB=AE

例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不 重叠、无缝隙).图乙中AB BC = 67 ,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其 内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________. 同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________. 同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________. 同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.

中考数学填空压轴题大全

2017全国各地中考数学压轴题汇编之填空题4 1.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555, 【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+?+== ,222(21)(221) 1256 +?++==, 2223(31)(231)123146+?+++== ,……,2222(1)(21) 123146 n n n n ++++++==…. ∴222229(291)(2291) 123296 +?+++++= (8555) 2.(2017贵州毕节)观察下列运算过程: 计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,① ①×2得 2S =2+22+23+…+211,② ②-①,得 S =211-1. 所以,1+2+22+…+210=211-1. 运用上面的计算方法计算:1+3+32+…+32017=______________. 【答案】201831 2 -, 【解析】设S =1+3+32+…+32017,① ①×3得 3S =3+32+33+…+32018,?② ②-①,得 2S =32018-1. 所以,1+3+32 +…+3 2017 =2018312 -. 3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点

P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为. 【答案】(2,0), 【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为 P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0), P 5(2,0)的终结点为P 4(1,4),…… 观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=?; (2)常数项3131(3)-=-?=?-,验算:“交叉相乘之和”; (3)发现第③个“交叉相乘之和”的结果1(3)211?-+?=,等于一次项系数-1,即: 22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字 交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 【答案】(x +3)(3x -4). 【解析】如图. 5.(2017湖北黄石)观察下列各式: …… 按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】 1 n n +, 【解析】先看分子,左边是一个数,分子为1;左边两个数(相加),则为2;左边三个数(相加),则为3,…, 左边n 个数(相加),则分子为n .而分母,就是分子加1,故答案: 1 n n +. 6.(2017年湖南省郴州市)已知a 1=﹣ 32,a 2=55,a 3=﹣710,a 4=917,a 5=-1126 ,…… , 则a 8=.

相关主题