搜档网
当前位置:搜档网 › 常见国产处理器指令集体系及来源

常见国产处理器指令集体系及来源

常见国产处理器指令集体系及来源

常见国产处理器指令集体系及来源

国产处理器取代Intel、AMD等国际公司的处理器一直是国家的战略和梦想,如今在太湖之光计算机上算是真正圆梦了,不过当初的新闻报道中笔者也看到了评论中很多人对国产处理器的批评,这个问题也是影响国产处理器发展的一个重要因素,因为生态体系的缺乏,中国发展自己的处理器也只能是摸着石头过河,这个石头就是国外已经发展的处理器指令集,但这种路线又很容易被不明真相的围观者嘲讽都用了别人的指令集了,怎么还敢叫自主产权?

多年前龙芯处理器的架构师胡伟武博士也解释过:我们CPU也是可以做世界第一的,而且有,关键就是没法用,用户不用你。软件生态的现实决定了国产处理器不可能从0开始研发,在这方面日本80-90年代通过TRON计划研制通用OS、CPU但最终失败的例子可以说是前车之鉴,反而C919大飞机这种国际化分工合作的模式容易获得成功。

今天我们就来简单了解下国内处理器的指令集体系及技术来源。根据公开来源,笔者能找到的有代表性的国产处理器方案主要有龙芯、申威、兆芯、飞腾、宏芯以及智能手机/平板领域发展最好的海思、展讯、全志等,他们所用的架构涉及X86、ARM、MIPS、Power 及SPARC、Alpha等,如下图所示:

龙芯:血统纯正的中国芯,商业化不尽如人意龙芯并非最早的国产处理器,也不是最成功的国产处理器,但提到国产处理器,大家第一个想到的恐怕就是龙芯了,它是曝光率最高的国产处理器,而且考虑到它是中科院计算机所研发的,其血统的纯正性更容易成为国产处理器的代表。

龙芯课题组于2001年成立,不过龙芯处理器的正式诞生之日是2002年8月10日,在计算所长李国杰院士的领导下,龙芯之父胡伟武博士及其团队拿出了龙芯1号处理器,当年他还写过《我们的龙芯1号》一文介绍龙芯的研发历程,小编当年也看过这篇文章,记忆犹新的是龙芯的中文代号是狗剩,源于中国人赖名好养活的习俗,不过也可以看出团队对龙芯处理器的未来虽然有期待,但当时应该是挺担心这个项目的未来发展的,只是龙芯的

Git使用说明

Git使用说明 一、Git 是什么 Git 是一个快速、可扩展的分布式版本控制系统,它具有极为丰富的命令集,对内部系统提供了高级操作和完全访问。所谓版本控制系统,从狭义上来说,它是软件项目开发过程中用于储存我们所写的代码所有修订版本的软件,但事实上我们可以将任何对项目有帮助的文档交付版本控制系统进行管理。 理论上,Git 可以保存任何文档,但是最善于保存文本文档,因为它本来就是为解决软件源代码(也是一种文本文档)版本管理问题而开发的,提供了许多有助于文本分析的工具。对于非文本文档,Git 只是简单地为其进行备份并实施版本管理。 二、git管理个人文档 比如文档在/home/gitwork/doc目录下,首先切换到该目录下. 2.1 建立仓库 命令:git init 则会显示Initialized empty Git repository in $PROJECT/.git/,这是在该目录下建立了一个.git的隐藏目录,这就是所谓的仓库,不过现在它里面没内容。该目录现在不在是普通的目录,称之为工作树。 2.2 自我介绍 命令如下:

Git config –-global https://www.sodocs.net/doc/871768666.html, “你的名字” Git config –-global user.email “你的电子邮件” 2.3 生成快照 命令:git add 文件名 文件名可以是多个,这一步只是生成了该要提交文档的快照,该快照被存放在一个临时的存储区域,git称之为索引。 2.4 内容提交 命令:git commit–m “自己输入的版本更新说明” 使用git commit命令可将索引提交至仓库,每次提交意味着版本的一次更新。 2.5 内容忽略 假如你修改了多个文档,又希望其中的一个不被提交,如你在工作树中存在A.txt、b、c.tex、d等文件和子目录,但子目录d不需要提交,则可用git的文档忽略机制,可以将工作树中你不希望接受Git 管理的文档信息写到同一目录下的 .gitignore 文件中。 命令:cd 工作树目录 Echo “d”> .gitignore Git add . Git commit 2.6 查看版本历史 在工作树中,使用 git-log 命令可以查看当前项目的日志,也就是你在使用git-commit 向仓库提交新版本时所属的版本更新信

手机处理器和结构指令集

手机处理器/结构指令集目前,市场上有Xscale、arm、OMAP等手机微处理器,其中Xscale微处理器的系列有PXA210(代号Sabinal)/PXA25x(代号Cotulla), PXA26x 与PXA27x(代号Bulverde)等,arm的系列有ARM7、ARM9、ARM9E和ARM10等系列,OMAP有OMAP730、OMAP3630等。

OMAP系列 结构指令集: 1、定义: 指令集也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。 要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel 为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC 机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。 虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容

Git命令学习Git使用习惯git-cheatsheet-中文注释

presented by TOWER ? Version control with Git - made easy GIT CHEAT SHEET CREATE Clone an existing repository $ git clone ssh://user@https://www.sodocs.net/doc/871768666.html,/repo.git Create a new local repository $ git init LOCAL CHANGES Changed files in your working directory $ git status Changes to tracked files $ git diff Add all current changes to the next commit $ git add . Add some changes in to the next commit $ git add -p Commit all local changes in tracked files $ git commit -a Commit previously staged changes $ git commit Change the last commit Don‘t amend published commits! $ git commit --amend COMMIT HISTORY Show all commits, starting with newest $ git log Show changes over time for a specific file $ git log -p Who changed what and when in $ git blame BRANCHES & TAGS List all existing branches $ git branch -av Switch HEAD branch $ git checkout Create a new branch based on your current HEAD $ git branch Create a new tracking branch based on a remote branch $ git checkout --track Delete a local branch $ git branch -d Mark the current commit with a tag $ git tag UPDATE & PUBLISH List all currently configured remotes $ git remote -v Show information about a remote $ git remote show Add new remote repository, named $ git remote add Download all changes from , b ut don‘t integrate into HEAD $ git fetch Download changes and directly merge/integrate i nto HEAD $ git pull Publish local changes on a remote $ git push Delete a branch on the remote $ git branch -dr Publish your tag s $ git push --tags MERGE & REBASE Merge into your current HEAD $ git merge Rebase your current HEAD onto Don‘t rebase published commits! $ git rebase Abort a rebase $ git rebase --abort Continue a rebase after resolving conflicts $ git rebase --continue Use your configured merge tool to solve conflicts $ git mergetool Use your editor to manually solve conflicts and (after resolving) mark file as resolved $ git add $ git rm UNDO Discard all local changes in your working directory $ git reset --hard HEAD Discard local changes in a specific file $ git checkout HEAD Revert a commit (by producing a new commit with contrary changes) $ git revert Reset your HEAD pointer to a previous commit …and discard all changes since then $ git reset --hard …and preserve all changes as unstaged changes $ git reset …and preserve uncommitted local changes $ git reset --keep 对于某个文件的修改:时间、地点、人物 某个文件的最近一次修改stage所有修改,注意点号 其实可用reflog找到 并恢复该版本。 把和上个commit之间的修改放回工作区。 跳过git add,不建议 修补,而不是revert 常用 git commit --amend --no-edit

cpu指令集

CPU_多媒体指令集解释 CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。 精简指令集的运用 在最初发明计算机的数十年里,随着计算机功能日趋增大,性能日趋变强,内部元器件也越来越多,指令集日趋复杂,过于冗杂的指令严重的影响了计算机的工作效率。后来经过研究发现,在计算机中,80%程序只用到了20%的指令集,基于这一发现,RISC精简指令集被提了出来,这是计算机系统架构的一次深刻革命。RISC体系结构的基本思路是:抓住CISC 指令系统指令种类太多、指令格式不规范、寻址方式太多的缺点,通过减少指令种类、规范指令格式和简化寻址方式,方便处理器内部的并行处理,提高VLSI器件的使用效率,从而大幅度地提高处理器的性能。 RISC指令集有许多特征,其中最重要的有: 1. 指令种类少,指令格式规范:RISC指令集通常只使用一种或少数几种格式。指令长度单一(一般4个字节),并且在字边界上对齐。字段位置、特别是操作码的位置是固定的。 2. 寻址方式简化:几乎所有指令都使用寄存器寻址方式,寻址方式总数一般不超过5个。其他更为复杂的寻址方式,如间接寻址等则由软件利用简单的寻址方式来合成。 3. 大量利用寄存器间操作:RISC指令集中大多数操作都是寄存器到寄存器操作,只以简单的Load和Store操作访问内存。因此,每条指令中访问的内存地址不会超过1个,访问内存的操作不会与算术操作混在一起。 4. 简化处理器结构:使用RISC指令集,可以大大简化处理器的控制器和其他功能单元的设计,不必使用大量专用寄存器,特别是允许以硬件线路来实现指令操作,而不必像CISC 处理器那样使用微程序来实现指令操作。因此RISC处理器不必像CISC处理器那样设置微程序控制存储器,就能够快速地直接执行指令。 5. 便于使用VLSI技术:随着LSI和VLSI技术的发展,整个处理器(甚至多个处理器)都可以放在一个芯片上。RISC体系结构可以给设计单芯片处理器带来很多好处,有利于提高性能,简化VLSI芯片的设计和实现。基于VLSI技术,制造RISC处理器要比CISC处理器工作量小得多,成本也低得多。 6. 加强了处理器并行能力:RISC指令集能够非常有效地适合于采用流水线、超流水线和超标量技术,从而实现指令级并行操作,提高处理器的性能。目前常用的处理器内部并行操作技术基本上是基于RISC体系结构发展和走向成熟的。 正由于RISC体系所具有的优势,它在高端系统得到了广泛的应用,而CISC体系则在桌面系统中占据统治地位。而在如今,在桌面领域,RISC也不断渗透,预计未来,RISC将要一

STM 常用汇编指令

在嵌入式开发中,汇编程序常常用于非常关键的地方,比如系统启动时初始化,进出中断时的环境保护,恢复等对性能有要求的地方。 ARM指令集可以分为六大类,分别为数据处理指令、Load/Store指令、跳转指令、程序状态寄存器处理指令、协处理器指令和异常产生指令。 ARM指令使用的基本格式如下: 〈opcode〉{〈cond〉}{S}〈Rd〉,〈Rn〉{,〈operand2〉} opcode操作码;指令助记符,如LDR、STR等。 cond可选的条件码;执行条件,如EQ、NE等。 S可选后缀;若指定“S”,则根据指令执行结果更新CPSR中的条件码。 Rd目标寄存器。 Rn存放第1操作数的寄存器。 operand2第2个操作数 arm的寻址方式如下: 立即寻址 寄存器寻址 寄存器间接寻址 基址加偏址寻址 堆栈寻址 块拷贝寻址 相对寻址 这里不作详细描述,可以查阅相关文档。 数据处理指令 Load/Store指令 程序状态寄存器与通用寄存器之间的传送指令 转移指令 异常中断指令 协处理器指令 在S3C2410、S3C2440的数据手册中对各种汇编指令有详细的描述;这里只对较常见的作写介绍。 1、相对跳转指令:b、bl 这两条指令的不同之处在于bl指令除了跳转之外,还将返回地址(bl的下一条指令的地址)保存在lr寄存器中。 这两条指令的可跳转范围是当前指令前后32M。 b funa .... funa: b funb ....

funb: .... 2、数据传送指令mov,地址读取伪指令ldr mov指令可以把一个寄存器的值赋给另外一个寄存器,或者把一个常数赋给寄存器。 mov r1,r2 mov r1,#1024 mov传送的常数必须能用立即数来表示。当不能用立即数表示时,可以用ldr命令来赋值。ldr是伪命令,不是真实存在的指令,编译器会把它扩展成真正的指令;如果该常数能用“立即数”来表示,则使用mov指令,否则编译时将该常数保存在某个位置,使用内存读取指令把它读出来。 ldr r1,=1024 3、内存访问指令ldr、str、ldm、stm ldr既可以指低至读取伪指令,也可以是内存访问指令。当他的第二个参数前面有'='时标伪指令,否则表内存访问指令。 ldr指令从内存中读取数据到寄存器,str指令把寄存器的指存储到内存中,他们的操作数都是32位的。 ldr r1,[r2,#4] ldr r1,[r2] ldr r1,[r2],#4 str r1,[r2,#4] str r1,[r2] str r1,[r2],#4 寄存器传送指令可以用一条指令将16个可见寄存器(R0~R15)的任意子集合(或全部)存储到存储器或从存储器中读取数据到该寄存器集合中。与单寄存器存取指令相比,多寄存器数据存取可用的寻址模式更加有限。多寄存器存取指令的汇编格式如下: LDM/STM{}Rn{!}, 4、加减指令add、sub add r1,r2,#1 sub r1,r2,#1 5、程序状态寄存器的访问指令msr,mrs ARM指令中有两条指令,用于在状态寄存器和通用寄存器之间传送数据。修改状态寄存器一般是通过“读取-修改-写回”三个步骤的操作来实现的。这两条指令分别是: 状态寄存器到通用寄存器的传送指令(MRS) 通用寄存器到状态寄存器的传送指令(MSR) 其汇编格式如下: MRS{}Rd,CPSR|SPSR 其汇编格式如下:

8086指令系统精析解析

8086指令系统精析 3.1基本数据类型 1.IA-32结构的基本数据类型是字节(8位)、字(16位)、双字(32位)、四字 (64位,486中引入的)和双四字(128位,Pentium3中引入的)。 2.低字节占用内存中的最低地址,该地址也是此操作数的地址。图:P44 图3-1 3.字、双字、四字的自然边界是偶数编号的地址,字的自然边界是偶数编号的 地址,双字和四字的自然边界地址要分别能被4和8除尽。 4.数据结构要尽可能在自然边界上对齐 5.对于不对齐的存储访问,处理器要求做两次存储访问操作;而对于对齐的访 问,只要进行一次存储访问操作。 6.数字数据类型(学生自学)PPT 3.28086的指令格式 一、指令格式 Label(标号):mnemonic(助记符)argument1(参数1),argument2(参数2),argument3(参数3)其中: 1.标号是一个标识符,后面跟有冒号 2.助记符是一类具有相同功能的指令操作码的保留名 3.操作数的三个参数是任选的,可以有零到三个操作数,操作数参数的数量取 决于操作码 4.操作数参数可能是文字或数据项的标识符,也可能是寄存器的保留名或在程 序的另一部分声明的赋予数据项的标识符。 5.在算术和逻辑指令中存在两个操作数时,右边的操作数是源,左边的操作数 是目的。例如:LOADREG: MOV AX, SUBTOTAL 功能是把由SUBTOTAL表示的源操作数传送至AX寄存器。 3.38086/8088指令的操作数寻址方式

寻找操作数,操作数能定位在指令中、寄存器中、存储单元中以及I/O端口中。 1.立即数 用包含在指令中的操作数作为源操作数,这些操作数即为立即操作数。 立即数可以是8位或16 例1 MOV AX , 2056H 结果( AH ) = 20H ( AL ) = 56H 例2 MOV AL , 78 H 结果( AL ) = 78H 2.寄存器操作数 操作数在寄存器中,指令中指定寄存器名 8 位操作数,用8 位寄存器: AH、AL、BH、BL、CH、CL、DH、DL 16 位操作数,用16 位寄存器: AX、BX、CX、DX、SP、BP、SI、DI CS、DS、SS、ES 例1 MOV AX , 2056H 执行后:(AX)=2056H 例2 MOV BL , AH 执行前:(BL) = 12H, (AH) = 78H 执行后:(BL) = 78H (AH) = 78H ▲立即数寻址、寄存器寻址的操作数,不用在取完指令后再到内存中取数。 ▲以下的 5 中寻址方式,操作数存放在内存中,取完指令后,还需到内存取数。指令中给出的是该操作数的地址,包括段地址和偏移地址。 3. 内存操作数 ▲指令MOV DS: [ DI ] , CL 完成将CL寄存器中的内容传送到以DS为段值,DI为偏移值的内存单元中。例编程将CL寄存器的内容传送到21000H单元中。PPT 地址21000H=2000:1000H ,编程时,DS 存放段地址2000H,DI 存放偏移地址1000H MOV AX, 2000H MOV DS, AX ; (DS) = 2000H

Git使用教程

Git使用教程 原文出处:涂根华的博客 一:Git是什么? Git是目前世界上最先进的分布式版本控制系统。 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活,干完后,需要把自己做完的活推送到中央服务器。集中式版本控制系统是必须联网才能工作,如果在局域网还可以,带宽够大,速度够快,如果在互联网下,如果网速慢的话,就纳闷了。 Git是分布式版本控制系统,那么它就没有中央服务器的,每个人的电脑就是 一个完整的版本库,这样,工作的时候就不需要联网了,因为版本都是在自己的电脑上。既然每个人的电脑都有一个完整的版本库,那多个人如何协作呢?比如说自己在电脑上改了文件A,其他人也在电脑上改了文件A,这时,你们两之间只需把各自的修改推送给对方,就可以互相看到对方的修改了。 三:在windows上如何安装Git? msysgit是 windows版的Git,如下: 需要从网上下载一个,然后进行默认安装即可。安装完成后,在开始菜单里面找 到“Git –> Git Bash”,如下: 会弹出一个类似的命令窗口的东西,就说明Git安装成功。如下:

安装完成后,还需要最后一步设置,在命令行输入如下: 因为Git是分布式版本控制系统,所以需要填写用户名和邮箱作为一个标识。 注意:git config –global 参数,有了这个参数,表示你这台机器上所有的Git 仓库都会使用这个配置,当然你也可以对某个仓库指定的不同的用户名和邮箱。四:如何操作? 一:创建版本库。

CPU 指令大全

Intel SSE: SSE是指令集的简称,它包括70条指令,其中包含单指令多数据浮点计算、以及额外的SIMD整数和高速缓存控制指令。其优势包括:更高分辨率的图像浏览和处理、高质量音频、MPEG2视频、同时MPEG2加解密;语音识别占用更少CPU资源;更高精度和更快响应速度。 SSE(Streaming SIMD Extensions)是英特尔在AMD的3D Now!发布一年之后,在其 计算机芯片Pentium III中引入的指令集,是MMX的超集。AMD后来在Athlon XP中加入了对这个指令集的支持。这个指令集增加了对8个128位寄存器XMM0-XMM7的支持,每个寄存器可以存储4个单精度浮点数。使用这些寄存器的程序必须使用FXSAVE和FXRSTR指令来保持和恢复状态。但是在Pentium III对SSE的实现中,浮点数寄存器又一次被新的指令集占用了,但是这一次切换运算模式不是必要的了,只是SSE和浮点数指令不能同时进入CPU的处理线而已。 SSE2是Intel在P4的最初版本中引入的,但是AMD后来在Opteron 和Athlon 64中也加入了对它的支持。这个指令集添加了对64位双精度浮点数的支持,以及对整型数据的支持,也就是说这个指令集中所有的MMX指令都是多余的了,同时也避免了占用浮点数寄存器。这个指令集还增加了对CPU的缓存的控制指令。AMD对它的扩展增加了8个XMM寄存器,但是需要切换到64位模式(AMD64)才可以使用这些寄存器。Intel后来在其EM64T架构中也增加了对AMD64的支持。 SSE3是Intel在P4的Prescott版中引入的指令集,AMD在Athlon 64的第五个版本中也添加了对它的支持。这个指令集扩展的指令包含寄存器的局部位之间的运算,例如高位和低位之间的加减运算;浮点数到整数的转换,以及对超线程技术的支持。 SSE4指令集将给英特尔下一代平台带来“相当大的视频性能提升”。,其它视频增强技术还包括CVT(明晰视频技术)--英特尔对ATI Avivo的回应--和对UDI的支持。上述两项技术基于英特尔965芯片组。其它英特尔官方文件把CVT技术定义为:支持高级解码、拥有预处理和增强型3D 处理能力。 SSE4指令集是Conroe架构所引入的新指令集。这项原本计划应用于NetBurst微架构Tejas核心处理器之上的全新技术也随着它的夭折最终没能实现,这不能不说是个遗憾,但是SSE4指令集出现在了Conroe上又让我们看到了希望。 SSE4指令集共包括16条指令,不过虽然扣肉处理器推出已经有一些时日,但目前英特尔仍没有公布SSE4指令集的具体资料。这相当令人感到纳闷。也许英特尔是基于特殊的考虑,仅让少数合作软件厂商取得数据,只是这种作法实在很没有说服力就是了,天底下没有哪家处理器厂商,希望自己新增的指令越少人用越好。 不过,从Intel Core微架构针对SSE指令所作出的修改被称之为“Intel Advanced Digital Media Boost”技术来看,未来SSE4将更注重针对视频方面的优化,我们认为SSE4主要改进之处可能将针对英特尔的Clear Video高清视频技术及UDI接口规范提供强有力的支持。这两项技术基于965芯片组,Intel的官方把Clear Video技术定义为:支持高级解码、拥有预处理和增强型3D处理能力。值得一提的是,在SSE4中另一个重要的改进就是提供完整128位宽的SSE执行单元,一个频率周期内可执行一个128位SSE指令。Conroe中SSE的ADDPS(4D 32bit共128bit,单精度加法)、MULPS(4D 32bit共128bit,单精度乘法)和SSE2的ADDPD(2D 64bit共128bit,双精度加法)、MULPD(2D 64bit共128bit,双精度乘法),这四条重要SSE算术指令的吞吐周期都降低到1个周期,真正做到了英特尔宣称的每个周期执行一条128位向量加法指令和一条128位向量乘法指令的能力。 可以说Conroe的向量单元已经全面引入了流水线化的设计。而支持SSE3的NetBurst微处理器架构虽然提供128位宽执行单元,但仅有一组,性能孰高孰低一目了然。更为重要的是,目前已经有相当多的软件针对SSE指令集进行了优化,其中包括2D制图、3D制图、视频播放、音频播放、文件压缩等方面,可见其应用范围相当广泛。 配合完整的128位SSE执行单元,以及庞大的执行单元数目,Conroe处理器可在一个频率周期内,同时执行128位乘法、128位加法、128位数据加载与128位数据回存,或着是4个32位单倍浮点精确度乘法与4个32位单倍浮点精确度加法运算,这将使其更利于多媒体应用。因此,SSE4指令集能够有效带来系统性能上的提升,这一代在众多测试中早已被证实。虽然其不会像当

git命令详解

一、Git 常用命令速查 git branch 查看本地所有分支 git status 查看当前状态 git commit 提交 git branch -a 查看所有的分支 git branch -r 查看远程所有分支 git commit -am "init" 提交并且加注释 git remote add origin git@192.168.1.119:ndshow git push origin master将文件给推到服务器上 git remote show origin 显示远程库origin里的资源 git push origin master:develop git push origin master:hb-dev 将本地库与服务器上的库进行关联 git checkout --track origin/dev 切换到远程dev分支 git branch -D master develop 删除本地库develop git checkout -b dev 建立一个新的本地分支dev git merge origin/dev 将分支dev与当前分支进行合并 git checkout dev 切换到本地dev分支 git remote show 查看远程库 git add . git rm 文件名(包括路径) 从git中删除指定文件 git clone git://https://www.sodocs.net/doc/871768666.html,/schacon/grit.git 从服务器上将代码给拉下来 git config --list 看所有用户 git ls-files 看已经被提交的 git rm [file name] 删除一个文件 git commit -a 提交当前repos的所有的改变 git add [file name] 添加一个文件到git index git commit -v 当你用-v参数的时候可以看commit的差异 git commit -m "This is the message describing the commit" 添加commit信息git commit -a -a是代表add,把所有的change加到git index里然后再commit git commit -a -v 一般提交命令 git log 看你commit的日志 git diff 查看尚未暂存的更新 git rm a.a 移除文件(从暂存区和工作区中删除) git rm --cached a.a 移除文件(只从暂存区中删除) git commit -m "remove" 移除文件(从Git中删除)

强大的80X86常用汇编指令集

80X86常用汇编指令集ZZ 作者 : 赵振东ZZD 80X86汇编过程中经常用到的一些汇编指令如下所示。 从功能分类: 1、数据传送指令:MOV、XCHG、LEA、LDS、LES、PUSH、POP、PUSHF、POPF、CBW、CWD、CWDE。 2、算术指令:ADD、ADC、INC、SUB、SBB、DEC、CMP、MUL、DIV、DAA、DAS、AAA、AAS。 3、逻辑指令:AND、OR、XOR、NOT、TEST、SHL、SAL、SHR、SAR、RCL、RCR、ROL、ROR。 4、控制转移指令:JMP、Jcc、JCXZ、LOOP、LOOPZ、LOOPNZ、LOOPNE、CALL、RET、INT。 5、串操作指令:MOVS、LODS、STOS、CMPS、SCAS。 6、标志处理指令:CLC、STC、CLD、STD。 7、32位CPU新增指令(后续补充并完善) -----------------数据传送指令开始------------------------------- 1、MOV(传送) 指令写法:MOV target,source 功能:将源操作数source的值复制到target中去,source值不变 注意事项:1)target不能是CS(代码段寄存器),我的理解是代码段不可写,只可读,所以相应这地方也不能对CS执行复制操作。2)target 和source不能同时为内存数、段寄存器(CS\DS\ES\SS\FS\GS)3)不能将立即数传送给段寄存器4)target和source必须类型匹配,比如,要么都是字节,要么都是字或者都是双字等。4)由于立即数没有明确的类型,所以将立即数传送到target时,系统会自动将立即数零扩展到与target 数的位数相同,再进行传送。有时,需要用BYTE PTR、WORD PTR、 DWORD PTR明确指出立即数的位数 写法示例:MOV dl,01H;MOV eax,[bp]; eax =ss:[bp] 双字传送。 2、 XCHG(交换) 指令写法:XCHG object1,object2 功能:交换object1与object2的值 注意事项:1)不能直接交换两个内存数的值 2)类型必须匹配3)两个操作数任何一个都不能是段寄存器【看来段寄存器的写入的限制非常的严格,MOV指令也不能对段寄存器进行写入】,4)必须是通用寄存器(ax、bx、cx、dx、si、di)或内存数 写法示例:XCHG ax,[bx][si]; XCHG ax,bx; 3、 LEA(装入有效地址) 指令写法:LEZ reg16,mem 功能:将有效地址MEM的值装入到16位的通用寄存器中。 写法示例:假定bx=5678H,EAX=1,EDX=2 Lea si,2[bx] ;si=567AH Lea di,2[eax][edx] ;di=5 注意,这里装入的是有效地址,并不是实际的内存中的数值,如果要想取内存中该地址对应的数值,还需要加上段地址才行,而段地址有可能保存在DS中,也有可能保存在SS或者CS中哦:>不知道我的理解可正确。。。。 4、 LDS\LES\LGS\LSS(注意,与LEA不同的是,这里是装入的值,而不是有效地址) 这几个指令,名称不同,作用差不多。 写法:LDS reg16,mem32 功能描述:reg16等于mem32的低字,而DS对应于mem32的高字(当为LES时,这里就是ES对应于mem32的高字) 用来给一个段寄存器和一个16位通用寄存器同时复制。 注意事项:第一个操作数必须是16位通用寄存器 先熟悉下堆栈的概念。堆栈,位于内存的堆栈段中,是内存的一部分,具有“先进后出”的特点,堆栈只有一个入口,即当前栈顶,当堆栈为空时,栈顶和栈底指向同一内存地址,在WINDOWS中,可以把堆栈理解成一个倒着的啤酒瓶,上面的地址大,下面的地址小,当从瓶口往啤酒瓶塞啤酒时(进栈),栈顶就会往瓶口下移动,也就是往低地址方向移动,同理,出栈时,正好相反,把啤酒给倒出来,栈顶向高地址方向移动。这就是所谓的堆栈,哼哼,很Easy吧。

Git 常用命令速查

一、Git 常用命令速查 git push origin :分支名删除远程库分支 git branch 查看本地所有分支 git status 查看当前状态 git commit 提交 git branch -a 查看所有的分支 git branch -r 查看远程所有分支 git commit -am "init" 提交并且加注释 git remote add origin git@192.168.1.119:ndshow git push origin master 将文件给推到服务器上 git remote show origin 显示远程库origin里的资源 git push origin master:develop git push origin master:hb-dev 将本地库与服务器上的库进行关联 git checkout --track origin/dev 切换到远程dev分支 git branch -D master develop 删除本地库develop git checkout -b dev 建立一个新的本地分支dev git merge origin/dev 将分支dev与当前分支进行合并 git checkout dev 切换到本地dev分支 git remote show 查看远程库 git add . 目录下所有的文件 git rm 文件名(包括路径) 从git中删除指定文件 git clone git://https://www.sodocs.net/doc/871768666.html,/schacon/grit.git 从服务器上将代码给拉下来 git config --list 看所有用户 git ls-files 看已经被提交的 git rm [file name] 删除一个文件 git commit -a 提交当前repos的所有的改变 git add [file name] 添加一个文件到git index git commit -v 当你用-v参数的时候可以看commit的差异 git commit -m "This is the message describing the commit" 添加commit信息git commit -a -a是代表add,把所有的change加到git index里然后再commit git commit -a -v 一般提交命令 git log 看你commit的日志 git diff 查看尚未暂存的更新 git rm a.a 移除文件(从暂存区和工作区中删除) git rm --cached a.a 移除文件(只从暂存区中删除) git commit -m "remove" 移除文件(从Git中删除) git rm -f a.a 强行移除修改后文件(从暂存区和工作区中删除) git diff --cached 或$ git diff --staged 查看尚未提交的更新 git stash push 将文件给push到一个临时空间中 git stash pop 将文件从临时空间pop下来 --------------------------------------------------------- git remote add origin git@https://www.sodocs.net/doc/871768666.html,:username/Hello-World.git

CPU

一、CPU的内部结构与工作原理 CPU是Central Processing Unit—中央处理器的缩写,它由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。 CPU的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。 二、CPU的相关技术参数 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。 当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。 外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震

Eviews常用命令集

武汉大学实践教改项目 Eviews命令集 武汉大学经济学系数量经济学教研室《教改项目组》编译本命令集几乎涵盖了Eviews中所有命令,视图和过程的完整列表,我们分为基本命令,矩阵和字符串函数以及编程语言三个面加以介绍,在每一个面的列表按照字母顺序排列。每条记录包括该命令关键词,关键词的各种用法,其功能描述和语法,在大多数记录中,我们还提供了附加参数的列表和示例。 一、基本命令 add add group过程| pool过程 向组添加一个序列或者向pool中添加截面元。 语法 group过程:group_name.add ser1 ser2 ser3 group过程:group_name.add grp1 grp2 pool过程:pool_name.add id1 id2 id3 列出要添加到组中的序列名称或者序列组,或者列出要添加到pool中的截面标识符。 示例 dummy.add d11 d12 向组DUMMY中添加两个序列D11和D12。 countries.add us gr 向pool对象COUNTRIES中添加US和GR两个截面元素。 addtext addtext图过程 在图中放置文本。 语法 图过程:graph_name.addtext(options) text 在addtext命令后跟随要放置到图中的文本。 选项 t 顶部(在图的上部并居中)。 l 左旋转。 r 右旋转。 b 下方并居中。

x 把文本包含在框中。 要在图中放置文本,可以明确的使用座标来指定文本左上角的位置。座标由一个数对h,v设定,单位是虚英寸。单独的图通常是43虚英寸(散点图是33虚英寸),不管它们当前的显示大小。座标的原点位于图的左上角。第一个数值h指定从原点向右偏离的虚英寸距离。第二个数值v指定从原点向下偏离的虚英寸距离。文本的左上角将被放置在指定的座标上。 ●座标可以于其他选项一起使用,但是它们必须位于选项列表的前两个位置。座标 受指定位置的其他选项控制。 ●当addtext对多重图使用时,文本应用于整个图,而不是每个单独的图。 示例 freeze(g1) gdp.line g1.addtext(t) Fig 1: Monthly GDP (78:1-95:12) 把文本“Fig1: Monthly GDP (78:1-95:12)”放置于图G1的顶部中央位置。 g1.addtext(.2,.2,x) seasonally adjusted 把文本“seasonally adjusted”放置在图中的一个框中,稍稍从左上角缩进。 align align Graph视图 对齐多个图形的位置。 语法 Graph视图:graph_name.align(n,h,v) 选项 n 指定图形放置的列数。 h 图形之间的水平间隔。 v 是图形之间的垂直间隔。 必须在括号中按顺序指定以上3个参数(用逗号隔开)。间隔大小的单位为虚英寸。 示例 mygraph.align(3,1.5,1) 把MYGRAPH与第三列中的图形对齐,水平间隔为1.5英寸,垂直距离为1英寸。 append append Logl 过程| Model过程| System过程| Sspace过程 向Logl对象,Model对象,System对象,或者Sspace空间对象添加一行。 语法

8086指令总结

8086指令系统总结 学习微处理器及其程序设计,必须掌握微处理器的指令系统。本章以8086 微处理器为例介绍微型计算机的指令系统,包括指令格式、寻址方式和各类指令功能。要明确各种寻址方式的区别和特点,掌握有效地址和物理地址的计算方法,要正确使用指令,掌握各类指令的功能、对标志位的影响和使用上的一些特殊限制。能够编写小汇编程序,初步掌握汇编程序的编写和调试方法。 本章的重点难点内容是:8086 的指令格式及寻址方式,8086 的常用指令和8086 指令前缀的使用。 下面我们分别进行总结: 一.8086寻址方式 (1)操作数是数字,指令中立即写出数字------------立即数寻址 MOV AX,1234H 解释此句意义 (2)操作数是寄存器内容,指令中写出寄存器的符号---------寄存器寻址 MOV AX,BX (3)操作数是存储单元内容,用括号括出存储单元有效地址-----直接寻址 MOV AX,[1234H] MOV AX,ES:[1234H] (4)操作数是存储单元内容,用括号括出寄存器或其表达式,寄存器或其表达式的值为存储单元有效地址-------------间接寻址MOV AH,[BX] MOV AX,ES:[SI] MOV AL,[BX+SI+5]===5[BX+SI]===5[BX][SI] 二.8086指令系统 1.数据传送指令 (一)通用传送指令 (1)MOV指令 指令格式:MOV 目,源 功能:将源操作数传送给目标操作数。 (2)堆栈操作指令 进栈指令:PUSH 格式:PUSH 源 功能:将源操作数压入堆栈。 例:用堆栈指令完成上例的功能。 MOV AX,3000H MOV DS,AX ;段寄存器填充 MOV SI,0100H ;基本指令执 MOV DI,2000H ;行前的初值 MOV CX,50 NT: PUSH [SI] ;程序从这 POP [DI] ;开始设计 INC SI INC SI INC DI INC DI LOOP NT MOV AH,4CH INT 21H

相关主题