搜档网
当前位置:搜档网 › 几个著名的不等式

几个著名的不等式

几个著名的不等式
几个著名的不等式

6几个著名的不等式

在不等式的证明中,掌握一些常用的不等式是必要的,下面我们对几个常用的著名不等式作一介绍。 1 基本原理

先介绍排序不等式,设n a a a ,,,21 与n b b b ,,,21 是两组实数,且

n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,

我们将n n b a b a b a +++ 2211称为这两组实数的顺序积和,将1121b a b a b a n n n +++- 称为这两组实数的倒序积和,设n i i i ,,,21 是n ,,2,1 的一个排列,则称

n i n i i b a b a b a +++ 2121为这两组实数的乱序积和。

对于这3类积和我们有如下结论:

定理1(排序不等式)设n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,

n i i i ,,,21 是n ,,2,1 的一个全排列,则有

1121b a b a b a n n n +++- n i n i i b a b a b a +++≤ 2121 n n b a b a b a +++≤ 2211,

等号全成立的充要条件是n a a a === 21或n b b b === 21.

证 我们先用数学归纳法证明.

n i n i i b a b a b a +++ 2121n n b a b a b a +++≤ 2211 (1)

当2=n 时,因为

)(12212211b a b a b a b a +-+

0))((1212≥--=b b a a ,

所以 2=n 时,(1)式成立。

假设对于k n =时(1)式成立,即

k i k i i b a b a b a +++ 2121k k b a b a b a +++≤ 2211,

其中k i i i ,,,21 是1,2,k , 的一个排列,那么对于1+=k n ,设121,,,+k i i i 是1,2,

1,+k 的一个全排列,则当11+=+k i k 时,由归纳假设知,

121121++++++k k i k i k i i b a b a b a b a

=112121++++++k k i k i i b a b a b a b a k

112211++++++≤k k k k b a b a b a b a , 所以(1)式成立

当11+≠+k i k 时,必存在j i ,1j k ≤≤,使得1j i k =+,则 11111111++-++-++++++k j j j i k i j i j i j i b a b a b a b a b a

)()(11111111++-++-+++++++=k j k j j i k i j i k i j i j i b a b a b a b a b a b a 1

11111111()()j j k k i j i j i k i j k k i a b a b a b a b a b a b -++-+++=+++++++

)()(111111111+++-+++++++≤++-k k i j i k i j i j i b a b a b a b a b a b a k k j j

11111)(1111+++-+++++++=++-k k i k i j i j i j i b a b a b a b a b a b a k j k j 112211)(++++++≤k k k k b a b a b a b a 1111+++++=k k k k b a b a b a , 即1+=k n 时(1)式成立。

由归纳法原理知对于2≥n ,(1)式成立.

再证 1121b a b a b a n n n +++- n i n i i b a b a b a +++≤ 2121.

事实上,因为11b b b n n -≤≤-≤-- ,由(1)知,对于1,2,n , 的一个排列

n i i i ,,,21 ,有

)()()(2121n i n i i b a b a b a -++-+- )()()(1121b a b a b a n n n -++-+-≤- ,

∴ n i n i i b a b a b a +++ 21211121b a b a b a n n n +++≥- .

再证等号成立的条件,充分性是显然的.我们用反证法证明必要性.若结论不成立,即在

n n b a b a b a +++ 2211 =1121b a b a b a n n n +++- (2)

的条件下,n a a a ,,,21 不全相等,n b b b ,,,21 也不全相等,则存在i ,}1,,2,1{-∈n k ,使得

1+

11++≤+ , 所以 n n k k i i b a b a b a b a ++++++++ 1111 >n n i k k i b a b a b a b a ++++++++ 1111 1121b a b a b a n n n +++≥- (3)

(3)与(2)矛盾.

排序不等式表明对于两组实数,其顺序积和最大,倒序积和最小,乱序积和居中,顺序积和与倒序积和相等的充要条件是这两组实数中有一组全相等。

推论1 若对于n i ,,2,1 = ,有0>i x ,则n x x x x x x n ≥+++1

32

21 , 等号成立的条件是n x x x === 21 .

证 由对称性,不妨设n x x x ≤≤≤ 21 ,则

n

x x x 11121≥≥≥ .有排序不等式,有

1

32

21x x x x x x n +++ 11

112211=?++?+?

≥n

n x x x x x x . 等号成立的条件是n x x x === 21或

n

x x x 1

1121=== ,即n x x x === 21 . 推论2 若对于n i ,,2,1 = ,0>i a ,且121=n a a a ,则n a a a n ≥+++ 21 .等号成立的充要条件是121====n a a a . 证 令,,,,11322211n n n x x a x x

a x x a --=== 则1

x x a n n =,这里n x x x ,,,21 均为正实数,由推论1知,

n a a a ++21 =

n x x x x x x n ≥+++1

3221 . 等号成立的充要条件是n x x x === 21,即121====n a a a .

定理2 设n a a a ,,,21 是n 个正数,令

n

a a a n

n H 111)(21+++=

(调和平均值),

n n a a a n G 21)(= (几何平均值)

, n

a a a n A n

+++=

21)( (算术平均值),

n

a a a n Q n

2

2

22

1

)(+++= (平方平均值), 则有

(I )(调和平均几何平均不等式) )()(n G n H ≤; (II )(几何平均算术平均不等式) )()(n A n G ≤; (III )(算术平均平方平均不等式) )()(n Q n A ≤.

这些不等式又统称为均值不等式.等号成立的充要条件是n a a a === 21. 证 (I ) )()(n G n H ≤ ?

n

a a a n

1

1121+++ ≤n n a a a 21

?

n a a a a a a a a a a a a n n

n

n

n

n

n

≥+

++

212

211

21 (1)

1212

211

21=?

n

n

n

n

n

n

n

a a a a a a a a a a a a

,

由定理1的推论2知(1)式成立,故(I )成立.等号成立的充要条件是

n

n

n

n

n

n

n

a a a a a a a a a a a a 212

211

21=

==

,即n a a a === 21.

(II ))()(n A n G ≤

? n n a a a 21≤

n

a a a n

+++ 21

?

n a a a a a a a a a a a a n

n n

n

n

n

n ≥+++

21212

211

(2)

121212

211

=?

n

n

n

n

n

n

n a a a a a a a a a a a a

,

所以由定理1的推论2知(2)成立,故(II )成立.显然等号成立的充要条件是

n a a a === 21.

(III ) 令n

a a a c n

+++=

21,再令i i a c α=+ ,n i ,,2,1 =,则

1212n n a a a nc ααα++

+=++++ 1212n n a a a ααα=++

+++++().

∴ 12n ααα++

+=0 ,

2

222

12

()()(

)n n a c c c ααα++++++++

=

c ==.

等号成立的充要条件是22

2120n ααα+++=,即n a a a === 21.

定理3 (切比雪夫不等式)设n a a a ,,,21 与n b b b ,,,21 是两组实数,且

n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,则

i n n

i i n i i n i i i n i i b a n b n a n b a n -+====∑∑∑∑≥≥11

1111)1)(1(1 (1) 等号成立的充要条件是n a a a === 21或n b b b === 21. 证 由排序不等式,有

n n n n b a b a b a b a b a b a +++=+++ 22112211, 132212211b a b a b a b a b a b a n n n +++≥+++ , 242312211b a b a b a b a b a b a n n n +++≥+++ , …

11212211-+++≥+++n n n n n b a b a b a b a b a b a , 将上述n 个式子相加,得 2

1

1

1

1

1

1

()()n n n

n n n

i i

i

i

i

n i i i i i i i i i n

a b a b a b a b a b ======≥++

+=∑∑∑∑∑∑ ,

∴ )1)(1(11

11∑∑∑===≥n

i i n i i n i i i b n a n b a n ,

即(1)式左边的不等式成立.由排序不等式等号成立的条件知当且仅当n a a a === 21或

n b b b === 21时等号成立.

因为11b b b n n -≤≤-≤-- ,由上面的证明可知,

)]()()([1

1121b a b a b a n

n n n -++-+-- )(1)(1(11∑∑==-≥n i i n i i b n a n ,

∴ ∑∑∑==-+=≤n

i i n i i i n n i i b n a n b a n 1

111)1)(1(1.

等号成立的充要条件是n a a a === 21或n b b b === 21.

由切比雪夫不等式可知,对于两组实数,其顺序积的算术平均值不小于这两组实数的

算术平均值的积,倒序积和的算术平均值不大于这两组数的算术平均值的积。

定理4(柯西不等式)对任意实数n a a a ,,

, 21和n b b b ,,, 21,有

2

2

21

1

1

)

()n

n n

i i i i i i i a b a b ===≤∑∑∑()( ,

等号成立的条件是存在不全为零的实数λ和μ,使得对于,,,2,1n i =有i i b a μλ=,即

n a a a ,,, 21与n b b b ,,, 21对应成比例.

证 若

01

i 2=∑=n

i

a

,则021====n a a a ,不等式成立.

012

≠∑=n

i i a 时,作关于x 的二次函数

∑∑∑===+-=n

i i i n

i i n

i i b x b a x a x f 1

2

1

1

2

)(2)()(.

∵)2()(2

12i i i n

i i

b x b a x a

x f +-=

∑= 0)(12

≥-=∑=n

i i i b x a ,且01

i 2

>∑=n

i a ,所以

0)(4)

2

(11

2

2

12

≤-∑∑∑===n i n

i i i n

i i i b a b a ,

∴2

2

21

1

1

(

)

()()n

n

n

i i i i i i i a b a b ===≤∑∑∑.

从上面证明不难看出等号成立的条件. 3 方法解读

运用上述几个不等式解答竞赛试题,首先应对各个不等式的特点与功能有透彻的了解,然后根据试题的特点,合理的选择不等式和变形方法.在应用这些不等式解题时应注意约分、有理化、升幂与降幂、排序等方法的应用,下面我们通过实例来说明这些方法.

例1

已知n a a a ,,,21 都是正数,求证:

22121)111)(

(n a a a a a a n

n ≥++++++ (1) 方法1 (用切比雪夫不等式)不妨设

120n a a a <≤≤≤,

n

a a a 11121≥≥≥ , 由切比雪夫不等式,有

)111(1)(12121n

n a a a n a a a n ++++++ 1212

111

1

()n n

a a a n a a a ≥

?+?++?

1=,

化简即得(1).

方法2 (用柯西不等式)

)111)(

(2121n

n a a a a a a ++++++ ∑∑===

n

i i

n

i i a a 1

2

2

1

)1(

)

( 221

)1(n a a i

n

i i =?

≥∑=.

例2

设已知e d c b a ,,,,是实数,满足

2

2

2

2

2

8,16,

a b c d e a b c d e +++++++==+??

?

试确定e 的最大值.

证 由算术平方平均不等式得:

4

42222d

c b a

d c b a +++≥

+++, 从而有 2

2222)()(4d c b a d c b a +++≥+++, 2

2

4(16)(8)e e -≥- , 解之得 5160≤

≤e .当516====d c b a 时,516=e ,因此e 的最大值为5

16. 例3(第26届美国奥林匹克试题)证明对所有正数,,,c b a 有

abc

abc a c abc c b abc b a 1

1113

33333≤++++++++ (1) 证 由排序不等式知 ,2

2

3

3

ab b a b a +≥+ ,2

2

3

3

bc c b c b +≥+ 2

2

3

3

ca a c a c +≥+, 从而有

abc

a c abc c

b ab

c b a +++

+++++3333331

11 abc

ca a c abc bc c b abc ab b a ++++++++≤2

222221

11 )

(1

)(1)(1c b a ca c b a bc c b a ab ++++++++=

)(c b a abc b a c ++++=

abc

1

=.

例4(2005年日本数学奥林匹克)若正实数,,,c b a 满足1=++c b a ,求证

1111333≤-++-++-+b a c a c b c b a .

证 ∵021>+=-+++=-+b a c b c b a c b , 由均值不等式,得

313)1(1113c

b c b c b -+

=-+++≤-+, ∴ 3

13ac

ab a c b a -+≤-+.

同理可得

,313ba

bc b a c b -+≤-+ .3

13cb

ca c b a c -+≤-+

将上述3个不等式相加,得

333111b a c a c b c b a -++-++-+c b a ++≤ 1=. 例5 设非负实数n a a a ,,,21 满足121=+++n a a a ,

,1111

21312

321-+++++++++++++++=

n n n n a a a a a a a a a a a a f

求f 的最小值.

证 由对称性,不妨设1021≤≤≤≤-≥≥-≥-n a a a 由不等式(9)知,

111

221

(2)

n

i

n

i i n i i

i

i a

a

n

f n

a n a ====≥=

---∑∑∑. 等号成立的充要条件是,22221n a a a -==-=- 即n a a a === 21时等号成立,所以f 的最小值为

1

2-n n

. 例6(2004年中国香港数学集训队试题)证明对于任意正实数,,,c b a 均有

.2224

44c b a ab

c ca b bc a ++≥++ 解

,42224

4a c b bc a bc a ≥+++

,42224

4b c a ac

b a

c b ≥+++

,42224

4c b a ab

c ab c ≥+++ 上述3个式子相加,得

)(4)(2)(

22222224

44c b a c b a ab c ac b bc a ++≥+++++, 所以

.2224

44c b a ab

c ca b bc a ++≥++

习题6

1.设,,,c b a 是正数,且,1=++c b a q 求证:3

1≤

++a c c b b a .

2.设n x x x ,,,21 都是正数,求证:)(1

2121221)

(n n

x x x n

n x n

x x x x x x x x ++≥.

4.已知,0≠abc 求证:21

4444

44444444444≤++++++++c

b a

c c b a b c b a a .

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.sodocs.net/doc/8812697048.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.sodocs.net/doc/8812697048.html,/view/979424.htm. 3. Jensen不等式. https://www.sodocs.net/doc/8812697048.html,/view/1427148.htm.

高中数学第二章几个重要的不等式3

高中数学第二章几个重要的不等式3 1.进一步掌握利用数学归纳法证明不等式的方法和技巧. 2.了解贝努利不等式,并能利用它证明简单的不等式. 1.用数学归纳法证明不等式 运用数学归纳法证明不等式的两个步骤实际上是分别证明两个不等式.尤其是第二步:一方面需要我们充分利用归纳假设提供的“便利”,另一方面还需要结合运用比较法、综合法、分析法、反证法和放缩法等其他不等式的证明方法. 【做一做1-1】设f(k)是定义在正整数集上的函数,且f(k)满足:当“f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”那么下列命题总成立的是( ). A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k<5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立 D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立 【做一做1-2】证明<1++++…+<n+1(n>1).当n=2时,中间式子等于________. 2.贝努利不等式 对任何实数x≥-1和任何正整数n,有(1+x)n≥________. 当指数n推广到任意实数且x>-1时, ①若0<α<1,则(1+x)α≤1+αx; ②若α<0或α>1,则(1+x)α≥1+αx. 当且仅当x=0时等号成立. 【做一做2】设n∈N+,求证:3n>2n. 答案: 【做一做1-1】D 由题意,设f(k)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”因此对于选项A,不一定有k=1,2时成立.对于选项B,C显然错误,对于选项D,∵f(4)=25>42,因此对于任意的k≥4,总有f(k)≥k2成立. 【做一做1-2】1+++当n=2时,=,∴中间式子为1+++. 2.1+nx

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

使用定积分巧妙证明一类和式不等式

使用黎曼和巧妙证明一类和式不等式 摘要:借助黎曼和几何意义得到一类和式不等式的巧妙证明方法:考虑通过图像看出逼近定积分的过程中产生的一系列黎曼和总是大于或小于定积分值,从而建立黎曼和与定积分的不等关系,而和式又常常就是黎曼和,这样便建立了和式和定积分的不等关系,和式不等式便得以简化。 使用黎曼和精确放缩特性做加强命题:通过取出某些项使其不参与定积分的放缩来加强不等式。 关键词:定积分,黎曼和,和式不等式,证明与加强。 对于和式不等式,由于其变幻较为复杂,构造较为精巧,通常不易证明。针对一类有特殊特征的和式不等式,除了使用通常的构造、不等式放缩以外,还可以用黎曼和巧妙证明,从而免去繁杂的构造和放缩,使其证明更加简洁优美。 黎曼和:对一个在闭区间[,]a b 有定义的实值函数f ,f 关于取样分割0,,n x x 、01,,n t t - 的黎曼和 定义为以下和式: 直观地说就是以标记点i t 到x 轴的距离为高,以分割的子区间为长的矩形的面积,它是求积分时在过程的中间形态,当n →+∞,矩形宽0→,则黎曼和就接近于定积分值。 例一(2012天津高考理科数学,20,第(3)问)证明12 2ln(21)21 n i n i =<+-∑( )- *()n N ∈ 分析:本题作为第三小题,原解答使用了第二问的结论,进行构造颇为繁琐,若撇开前两问, 单对此不等式分析,发现12 ln(21)221 n i n i =?<++-∑ 原式,左边是分式的累加,右边是对数函数,联想到1ln ||dx x C x =+?,因而一个简洁的证明就是取2 21 i -的不足黎曼和 证明:1 1 1 2 22 2121n n i dx i i ++=>--∑ ?由于 ……① 112222212121 n n i dx i n x +=∴+<-+-∑ ? 222 ln(21)2121 n i n i n =∴+<+-+∑ 222ln(21)22121 n i n i n =∴++2<++-+∑ 122ln(21)22121n i n i n =+<++-+∑即,舍去 221n + 即证得12ln(21)221 n i n i =<++-∑

几个重要不等式及其应用

几个重要不等式及其应用 一、几个重要不等式 以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。 1、算术-几何平均值(AM-GM )不等式 设12,,,n a a a L 是非负实数,则12n a a a n +++≥L 2、柯西(Cauchy )不等式 设,(1,2,)i i a b R i n ∈=L ,则2 22111.n n n i i i i i i i a b a b ===?????? ≥ ??? ??????? ∑∑∑等号成立当且仅当存在R λ∈,使 ,1,2,,.i i b a i n λ==L 变形(Ⅰ):设+ ∈∈R b R a i i ,,则∑∑∑===??? ??≥n i i n i i n i i i b a b a 1 2 112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L 变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===??? ??≥n i i i n i i n i i i b a a b a 1 2 11。等号成立当且仅当n b b b ===Λ21 3.排序不等式 设n n n j j j b b b a a a ,,,,,212121?≤?≤≤≤?≤≤是n ,,2,1?的一个排列,则 n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当 n a a a ===Λ21或n b b b ===Λ21。(用调整法证明). 4.琴生(Jensen )不等式 若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ* ()n N ∈有 ()()()12121 ( ).n n x x x f f x f x f x n n +++≤+++??? ?L L 等号当且仅当n x x x ===Λ21时取得。(用归纳法证明) 二、进一步的结论 运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到 的效果。 1. 幂均值不等式 设0>>βα,),,2,1(n i R a i Λ=∈+ ,则

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

几类定积分不等式的证明

万方数据

万方数据

几类定积分不等式的证明 作者:王阳, 崔春红 作者单位:河北农业大学中兽医学院,河北定州,073000 刊名: 和田师范专科学校学报 英文刊名:JOURNAL OF HOTAN TEACHERS COLLEGE 年,卷(期):2009,28(3) 被引用次数:0次 参考文献(4条) 1.白银凤微积分及其应用 2001 2.刘连福.许文林高等数学 2007 3.詹瑞清高等数学全真课堂 2003 4.沈燮吕.邵品宗数学分析纵横谈 1991 相似文献(10条) 1.期刊论文杜红敏.Du Hong-min浅谈定积分在不等式证明与因式分解中应用-中国科教创新导刊2009,""(3) 定积分是高中新课程体系中一个新增加的重要内容,很多教师在该部分内容的教学时都与高中其他知识点割裂开未,殊不知,定积分在高中阶段解题中具有广泛的应用,本文以定积分在不等式证明和因式分解中应用为例,探讨定积分在高中解题中的应用. 2.期刊论文陈欢定积分的一个不等式及其应用-福州大学学报(自然科学版)2003,31(6) 线性是定积分最重要的性质之一,在此基础上定性地分析了形如gfn的函数的定积分的随着n的变化趋势,得到一个定理,并利用这个定理重新证明了Holder不等式. 3.期刊论文嵇国平.Ji Guoping定积分在不等式上的应用-常州师范专科学校学报2003,21(2) 不等式的证明是中学教学的一个重要内容,同时也是一个数学难点.由于微积分部分内容逐步渗透到中学数学中,用定积分方法解决不等式证明已成为可能. 4.期刊论文张惠玲.ZHANG Hui-ling定积分中不等式性质的研究-西安航空技术高等专科学校学报2009,27(3) 关于不等式的性质结论中等号成立的问题,在定积分中,进行了研究与探讨,并举例说明了它的应用. 5.期刊论文冯其明含∑nk=1f(k/n)的不等式的一种证法-高等数学研究2003,6(4) 利用定积分的定义及其几何意义可证明一些含∑nk=1f(k)/(n)的不等式. 6.期刊论文侯晓星.HOU Xiao-xing含定积分的不等式证明-泰州职业技术学院学报2005,5(4) 定积分不等式的证明是常见的一种题型.通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法. 7.期刊论文程仁华.李丽定积分的定义与某些重要不等式的推广应用-景德镇高专学报2004,19(4) 本文通n个正数的调和平均值、几何平均值、算术平均值及k次幂平均值的关系,并利用定积分的定义和连续函数极限的性质推导出函数的上述四种平均值之间的类似关系. 8.期刊论文沈凤英.孙存金.SHEN Feng-ying.SUN Cun-jin Schwarz不等式及旋转体侧面积的计算问题-苏州市职业大学学报2006,17(4) 文章应用Schwarz不等式的知识,给出了旋转体侧面积计算公式的一个新颖的证明,并同时指出用定积分计算旋转体侧面积时应该避免发生的错误. 9.期刊论文林银河关于Minkowski不等式的讨论-丽水师范专科学校学报2003,25(5) 在有关定积分不等式中,Minkowski不等式占有重要地位.将<数学分析>中提到的Minkowski不等式推广到更加一般的情形,从而改进已有的结论. 10.期刊论文刘放不等式(1/n+1+1/n+2+…+1/2n)2《1/2的六种不同证法-宜宾学院学报2003,6(6) 给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法. 本文链接:https://www.sodocs.net/doc/8812697048.html,/Periodical_htsfgdzkxxxb-hwb200903135.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:05ca550e-ea59-4c55-8af2-9da600b00ff2,下载时间:2010年7月 1日

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

世界数学史上的十个著名不等式

数学史上的十个著名不等式 在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式. 一、平均不等式(均值不等式) 设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数. 当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立. 平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一. 设,,…,是个正的变数,则 (1)当积是定值时,和有最小值,且 ; (2)当和是定值时,积有最大值,且

两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值. 在中,当时,分别有, 平均不等式经常用到的几个特例是(下面出现的时等号成立; (3),当且仅当时等号成立; (4),当且仅当时等号成立. 二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数,,…,;,,…,,有 ,其中等号当且仅当 时成立. 柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是: (1),,则

(2) (3) 柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 三、闵可夫斯基不等式 设,,…,;,,…,是两组正数,,则 () () 当且仅当时等号成立. 闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式: 右图给出了对上式的一个直观理解. 若记,,则上式为

四、贝努利不等式 (1)设,且同号,则 (2)设,则(ⅰ)当时,有;(ⅱ)当或 时,有,上两式当且仅当时等号成立. 不等式(1)的一个重要特例是().五、赫尔德不等式 已知()是个正实数,,则 上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式 (1)若,则 ; (2)若,则

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

定积分证明题方法总结六

定积分证明题方法总结六篇 定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。 篇一:定积分计算方法总结一、不定积分计算方法 1. 凑微分法 2. 裂项法 3. 变量代换法 1) 三角代换 2) 根幂代换 3) 倒代换 4. 配方后积分 5. 有理化 6. 和差化积法 7. 分部积分法(反、对、幂、指、三) 8. 降幂法 二、定积分的计算方法 1. 利用函数奇偶性 2. 利用函数周期性 3. 参考不定积分计算方法 三、定积分与极限

1. 积和式极限 2. 利用积分中值定理或微分中值定理求极限 3. 洛必达法则 4. 等价无穷小 四、定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则 >= ()dx 2) 利用被积函数所满足的不等式比较之 a) b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法

五、变限积分的导数方法 篇二:定积分知识点总结 1、经验总结 (1) 定积分的定义:分割—近似代替—求和—取极限 (2)定积分几何意义: ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a 反数 (3)定积分的基本性质: ①kf(x)dx=kf(x)dx aabb ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa ③f(x)dx=f(x)dx+f(x)dx aac (4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb ①定义法:分割—近似代替—求和—取极限②利用定积分几何意义 ’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba 篇三:定积分计算方法总结 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上

一个不等式的七种证明方法

一个不等式的七种证明方法 证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法 证法一:(1)当ac +bd ≤0时,显然成立. (2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2 因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二: (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)

=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd . 故命题得证. 分析三:用比较法 证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法 证法四:为了避免讨论,由ac +bd ≤|ac +bd |, 可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法 证法五:不妨设???==???==ββ ααsin cos ,sin cos 2 211r d r c r b r a (r 1,r 2均为变量). 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+?+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有 ? a dx x f 0 )(≥ ?1 )(dx x f a . 证明:由原不等式变形得? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?10 )(dx x f a , 对左式,)(x f 在[0,1]上连续, 故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(2 1 ξ f a a dx x f a -=?,

显然,ξ1<ξ2又f(x)在[0,1]上单调不增, ∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证:2b )() (1 )(a b dx x f dx x f a b a -≥?? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --=? ? (将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()(' = ??? -+x a x a x a dt dt x f t f dt t f x f 2) ()()() ( =dt x f t f t f x f x a )2) ()()()((-+? ∵)(x f >0,∴ 02) () ()()(≥-+x f t f t f x f , 又a

几个重要不等式

几个重要不等式(二)柯西不等式 ,当且仅当b i=l a i(1£i£n)时取等号 柯西不等式的几种变形形式 1.设a i?R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号 2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号 例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证: 证明:左边= 例2.对实数a1,a2,…,a n,求证: 证明:左边= 例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:

证明:左边3 例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边= 3 = = 例5.若n是不小于2的正整数,试证: 证明: 所以求证式等价于 由柯西不等式有

于是: 又由柯西不等式有 < 例6.设x1,x2,…,x n都是正数(n32)且,求证: 证明:不等式左端即 (1) ∵,取,则(2) 由柯西不等式有 (3) 及 综合(1)、(2)、(3)、(4)式得:

三、排序不等式 设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n 反序和£乱序和£同序和 例1.对a,b,c?R+,比较a3+b3+c3与a2b+b2c+c2a的大小 解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c33a2b+b2c+c2a 例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有 证明:取两组数a1,a2,…,a n; 其反序和为,原不等式的左边为乱序和,有 例3.已知a,b,c?R+求证: 证明:不妨设a3b3c>0,则>0且a123b123c12>0 则

范数概念

一、范数的定义 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到 ║x║≥0,即║x║≥0在定义中不是必要的。) 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<·,·>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式 ║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间称为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet 空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。 二、算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║:║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T 是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。 三、有限维空间的范数 基本性质 有限维空间上的范数具有良好的性质,主要体现在以下几个定理: 性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标