搜档网
当前位置:搜档网 › 高考数学玩转压轴题专题3.1复杂数列的通项公式求解问题

高考数学玩转压轴题专题3.1复杂数列的通项公式求解问题

高考数学玩转压轴题专题3.1复杂数列的通项公式求解问题
高考数学玩转压轴题专题3.1复杂数列的通项公式求解问题

专题3.1 复杂数列的通项公式求解问题

一.方法综述

数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略

类型一 数阵(数表)中涉及到的数列通项公式问题

【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____.

【答案】12

【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1??=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(??=i A ij ,最后根据整数解方程的解法列举所有解即可.

2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要

明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列.

【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________.

【答案】1030

类型二 点列问题中涉及到的数列通项公式问题 【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y L L

顺次为直线11

412

y x =

+

上的点,点1122(,0),(,0),,(,0),n n B x B x B x L L 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点

1,,n n n B A B +构成以n A 为顶点的等腰三角形.则数列{}n x 的通项公式为

____________.

【答案】,(1,(n n a n x n a n -?=?+-?

为偶数)

为奇数)

【指点迷津】对于点列问题,要根据图像上点与点之间的关系,以及平面几何知识加以分析,找出关系式即可,本题是直线上的点列,已知点列n A 的通项公式,求点列n B 的通项公式,并研究等腰三角形是否为特殊的等腰直角三角形.

【举一反三】在直角坐标平面中,已知点列111,2A ?

?-

???,2212,2A ?? ???

,3313,2A ??- ???,…,1,(1)2n n n A n ??- ???,…,其中n 是正整数.连接12A A 的直线与x 轴交于点()11,0B x ,连接23A A 的直线与x 轴交于点()22,0B x ,…,连接1n n A A +的直线与x 轴交于点(),0n n B x ,….则数列{}n x 的通项公式为___________.

【解析】直线1n n A A +的斜率为11

121(1)(1)3(1)222n n n n n n k ++++---=-=, 所以111

(1)3(1):()22n n n n n n A A y x n +++-?--=-,2

3

n x n =+. 【答案】23

n x n =+

类型三 函数问题中涉及到的数列通项公式问题

【例3】【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ??

=-

???

,若一个各项均为正数的数列{}n a 满足

()()()()

*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =

( ) A.

1

36

B. 9

C. 18

D. 36

【答案】C

【指点迷津】本题主要考查抽象函数的解析式以及数列通项与前n 项和之间的关系以及公式()12n n n a S S n -=-≥的应用,属于难题.已知n S 求n a 的一般步骤:

(1)当1n =时,由11a S =求1a 的值;(2)当2n ≥时,由1n n n a S S -=-,求得n a 的表达式;(3)检验1a 的值是否满足(2)中的表达式,若不满足则分段表示n a ;(4)写出n a 的完整表达式.

【举一反三】【北京西城35中2017届高三上学期期中数学】已知()112F x f x ?

?

=+

- ???

是R 上的奇函数, ()()()

*

12101n n a f f f f f n N n n n -??????=+++++∈ ? ? ???????

L ,则数列{}n a 的通项公式为( )

. A. n a n = B. 2n a n = C. 1n a n =+ D. 2

23n a n n =-+

【解析】∵()112F x f x ??=+

- ???是奇函数,∴11022F F ????+-= ? ?????,令12x =, ()1112F f ??=- ???

, 令12x =-

, ()1012F f ??

-=- ???

,∴()()012f f +=,∴()()1012a f f =+=,

令112x n =

-,∴11112F f n n ????-=- ? ?????,令112x n =-,∴11112n F f n n -????-=- ? ?????

, ∵1111022F F n n ????

-+-=

? ?????

,∴112n f f n n -????

+= ? ?????

,同理可得222n f f n n -??

??+= ? ???

??

332n f f n n -????

+= ? ?

????

,∴1221(n n a n n N n +-=+?=+∈), 故选C 【答案】C

类型四 由复杂递推公式求解数列通项公式问题

【例4】【重庆市第一中学2018届高三上学期第一次月考】我们把满足

的数列

叫做牛顿数

列,已知函数,且数列

为牛顿数列,设,则( )

A.

B.

C. D.

【答案】C

【指点迷津】对于复杂的递推公式,关键是进行化简和变形,适当的时候需要换元,本题通过题意,可求

得 即数列{a n }是以2为公比的等比数列,又

a 1=2,利用等比数列的通项公式即可求得答案.

【举一反三】【辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三中学2018届高三第二次联考】设

数列{}n a 中, 1122

2,,11

n n n n n a a a b a a ++==

=+-, *n N ∈,则数列{}n b 的通项公式为__________. 【解析】1112

2

21242

22211111

n n n n n n n n n n a a a a b b a a a a ++++++++=

===?=--+--+, 所以2q =, 12b =,所以1

2n n b +=.

【答案】12n +

类型五 两边夹问题中的数列通项公式问题

【例5】【2017届浙江省杭州地区(含周边)重点中学联考】设数列{}n a 满足12

3

a =

,且对任意的*n N ∈,满足22n n n a a +-≤, 452n

n n a a +-≥?,则2017a =_________

【答案】2017

23

【答案】2017

23

【指点迷津】解题的关键是要通过所给的不等关系找到数列的项的特征,即452n

n n a a +-=?,然后经过恰

当的变形,将求2017a 的问题转化为数列求和的问题去处理,对于求和问题要把握准数列的公比和数列的项数,这是比较容易出现错误的地方.

【举一反三】【福建省莆田第六中学2017届高三下学期第一次模拟】已知各项都为整数的数列{}n a 中,

12a =,且对任意的*N n ∈,满足1n n a a +-< 1

22

n +

, 2n n a a +- 321n >?-,则2017a =__________. 【答案】2017

2

类型六 下标为n a 形式的数列通项公式问题

【例6】【浙江省湖州、衢州、丽水三市2017届高三4月联考】已知等差数列{}n a ,等比数列{}n b 的公比为()

*,q n q N ∈,设{}n a , {}n b 的前n 项和分别为n S ,n T .若21n n q T S +=,则n a __________. 【答案】21n a n =-

【解析】()21112

22n n n d d S na d n a n -??=+

=+- ??

?, ()

1111111n n n b q b b

T q q q q -==-?---,

因为21n n q T S +=,所以

2211111122n n n b b d d q q a q q q ?

?-?+=+- ?--?

?,这是关于n 的恒等式,所以1

11101{0212

b q

d

a b d q +=--=-=-,解得12{1d a ==,所以()12121n a n n =+-=-.

【指点迷津】本题要求等差数列的通项公式,既没有首项也没有公差,有的只是等差数列与等比数列的一个关系21n n q T S +=,这是一个关于正整数n 的恒等式,因此我们可把等差数列与等比数列的前n 项用基本

量表示,并化已知等式为n

q 的恒等式,利用恒等式的知识求解1,a d . 【举一反三】【2018届安徽皖江名校联盟12月份联考改编】等差数列和等比数列

的各项均为正整数,

的前项和为,数列

是公比为16的等比数列,

.则}{n b 的通项公式____________.

【答案】14-=n n b

三.强化训练

1.【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3242549,15,23a a a ===,,,,若,2017i j a =,则

i j +=( )

A. 64

B. 65

C. 71

D. 72 【答案】D

【解析】奇数数列2120171009n a n n =-=?=,即2017为底1009个奇数.

按照蛇形排列,第1行到第i 行末共有()1122

i i i ++++=

L 个奇数,则第1行到第44行末共有990个奇数;

第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==?+=,故选D.

2.【湖南省衡阳县2018届高三12月联考】在数列{}n a 中, ()()()112141n

n n n na n a n n +-+=+++,且

11a =,记2

2

i

n

i n i a T i =+=∑,则( )

A. 19T 能被41整除

B. 19T 能被43整除

C. 19T 能被51整除

D. 19T 能被57整除 【答案】A

3.【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}n a 满足*

1*

,2{ ,2

n n n n

a d N a n

qa N ++?=∈(q 为非零常数),若{}n a 为等比数列,且首项为()0a a ≠,公比为q ,则{}n a 的通项公式为( )

A. n a a =或1

n n a q -= B. ()

1

1n n a a -=- C. n a a =或()

1

1n n a a -=- D. 1n n a q -=

【答案】C

4.【浙江省湖州市2017届高三联考】对任意的n∈N *

,数列{a n }满足21cos 3n a n ≤

﹣且22

sin 3

n a n +≤,则a n 等于( ) A.

22sin 3n - B. 22sin 3n - C. 21cos 3n - D. 21

cos 3

n + 【答案】A 【

21

cos 3

n a n ≤

﹣且

22sin 3n a n +≤

,∴2211

cos 33

n n a cos n -≤≤+, 2222sin sin 33n n a n --≤≤-+,即2251cos cos 33n n a n -≤≤-,∴2212

cos sin 33

n a n n =-=-,故选A.

5.【2016届河北省衡水中学高三下学期猜题】已知数列{}n a 的首项为11a =,且满足对任意的*

n N ∈,都

有12n n n a a +-≤,232n n n a a +-≥?成立,则2014a =( ) A .2014

2

1- B .201421+ C .201521- D .201521+

【答案】A. 【解析】

试题分析:∵12n n n a a +-≤,∴1212n n n a a +++-≤,两式相加,可得122232n n n

n n a a ++-≤+=?,

又∵232n n n a a +-≥?,∴需232n n n a a +-=?,等号成立的条件为:12n n n a a +-=, ∴2n ≥时,1

1

12111(21)

()()2212121

n n n n n n a a a a a a --?-=-+???+-+=+???++==--,

∴2014201421a =-,故选A.

6.【湖北省武汉市2017届高三四月调研】已知数列{}n a 满足11a =, 21

3

a =

,若()()

*1111232,n n n n n a a a a a n n N -+-++=?≥∈,则数列{}n a 的通项n a =( )

A.

112

n - B. 121n - C. 113n - D. 1

121

n -+ 【答案】B

7.【九江市2017年第三次高考模拟统一考试】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数: 1,1,2,3,5,8,…,该数列的特点是:前两个数均为 1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列.则()88

22

1

1

1

i i i i i a a a

++==-=∑∑( )

A. 0

B. 1-

C. 1

D. 2 【答案】A

【解析】由题意,得222

1322433541211,1341,2591a a a a a a a a a -=?-=-=?-=--=?-=,

2

22

465

8109

38251,,2155341a a a a a a -=?-=-???-=?-=-,所以()88

22111

0i i i i i a a a ++==-=∑∑;故选A.

6.8.【天津市第一中学2018届高三上学期第二次月考改编】已知数列{}n a 满足22,{

2,n n n a n a a n ++=为奇数为偶数

且*

12,1,2n N a a ∈==.则{}n a 的通项公式__________.

【答案】()()

2

{

2

n n n n a n ∴=为奇数为偶数

9. 【2016届西藏日喀则一中高三下学期二模改编】已知正项数列{}n a 的前n 项和为n S ,且

21111,n n n a S S a ++=+=,数列{}n b 满足13n a n n b b +?=,且11b =.则{}n b 的通项公式__________.

【答案】()

()

122

3

{

3

n n n n b n -=为奇数为偶数

【解析】∵

,①

()212n n n S S a n -+=≥,②

①-②得:

2211n n n n a a a a +++=-,

∴()()1110n n n n a a a a +++--=, ∵

,∴10n n a a ++≠,

∴()11,2n n a a n +-=≥ 又由

,即22220a

a --=,∴222,1a a ==-(舍去).

∴211a a -=,

∴{}n a 是以1为首项,1为公差的等差数列, ∴n a n =. 又∵13

n

a n n

b b +?=③

()1132n n n b b n --?=≥④

得:

又由,可求,

故是首项为1,公比为3的等比数列,是首项为3,公比为3的等比数列.

∴11

212

3,333

n n n

n n

b b

--

-

==?=.

()

()

1

2

2

3

{

3

n

n n

n

b

n

-

=

为奇数

为偶数

.

10.【湖北省黄石市第三中学(稳派教育)2018届高三阶段性检测】下表给出一个“三角形数阵”:

1

8

1

4

1

8

3

8

3

16

3

32

……

已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i行第j列

的数为

i j

a

-

,则(1)

83

a

-

=_________;(2)前20行中

1

4

这个数共出现了________次.

【答案】

1

4

4

11.【2017届吉林省吉林市普通中学高三毕业班第二次调研测试】艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.

如果函数有两个零点1,2,数列为牛顿数列,设,已知,,则的通项公式__________.

【答案】

12.【2017届河南郑州一中网校高三入学测试】设数列{}n a是首项为0的递增数列,

()()[]*11

sin

,,,n n n n f x x a x a a n N n

+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 【答案】()12

n n n a π

-=

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题 1、数列的通项公式与前n 项的和的关系 11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 2、等差数列的通项公式 *11(1)() n a a n d dn a d n N =+-=+-∈; 3、等差数列其前n 项和公式为 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 4、等比数列的通项公式 1*11()n n n a a a q q n N q -== ?∈; 5、等比数列前n 项的和公式为 11 (1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1 n n a a q q q s na q -?≠? -=??=?. 常用数列不等式证明中的裂项形式: (1)( 1111n n =-+n(n+1)1111 ()1 k n k =-+n(n+k);

(2) 211111()1211 k k k <=---+2k (3)211111111(1)(1)1k k k k k k k k k - =<<=-++-- (4) 1111 (1)(2)2(1)(1)(2)n n n n n n n ??=- ??+++++?? ; (5) ()()11 1!!1! n n n n =- ++ (6) = < <=1(1)n n >+) 一.数列的通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………①

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

求数列通项公式专题典型例题精校版

数列的通项公式专题 题型一【积差求商】形如1 1++?=-n n n n a ka a a 例1:已知数列}{n a 满足112++?=-n n n n a a a a ,且2 11=a ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 满足113++?=-n n n n a a a a ,且911=a ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 满足113++?=-n n n n a a a a ,且21=a ,求数列}{n a 的通项公式.题型二【n a 与n S 】 例2:已知数列}{n a 的前n 项和22+=n S n ,求数列}{n a 的通项公式.

变式训练1:已知数列}{n a 的前n 项和n S 满足1)1(log 2+=+n S n ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 的前n 和为n S ,21=a ,且)1(1++=+n n S na n n ,求n a .变式训练3:已知数列}{n a 的前n 和为n S ,且满足21),2(,0211=≥=?+-a n S S a n n n ,求n a .变式训练4:已知数列}{n a 的前n 项和n S 满足2)1(4 1+=n n a S 且0>n a ,求}{n a 通项公式.变式训练5:数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a .

题型三【累加法】形如已知1a 且()1n n a a f n +-=(()f n 为可求和的数列)的形式均可用累加法。例3:已知数列}{n a ,且21=a ,n a a n n =-+1,求通项公式n a .变式训练1:已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练2:已知数列}{n a ,且21=a ,n n n a a 21+=+,求通项公式n a .变式训练3:数列{}n a 中已知11=a ,3231+++=+n a a n n n ,求{}n a 的通项公式.

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n Λ ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析:Q 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===-g g g g L g g g g L g () 2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N *=∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k = - 故111n n b b a k a k k -? ?+=+ ?--? ?

数列的通项公式练习题通项式考试专题

数列的通项公式练习题通项式考试专题 This model paper was revised by LINDA on December 15, 2012.

数列求和公式练习 1、 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=, 5313 a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ?? ????的前n 项和n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S .(Ⅰ)求n a 及 n S ;(Ⅱ)令2 1 1 n n b a = -(n N +∈),求数列{}n b 的前n 项和n T . 4、已知等差数列{}n a 的前3项和为6,前8项和为-4。(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1*(4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 的前n 项和n S 5、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 的前n 项和n T 6、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列 {}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S ; 7、已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+?-=-+++ 的前n 项和 n n n n W n b a n n S 项和的前求数列}{.222?-+=.

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

数列专题五构造法求通项公式

1.已知数列{a n}中,a1 =1,a n+1=2a n+4,,求数列{a n}的通项公式。 2.已知数列{a n}中,a1 =1,a n+1=3a n+4n+1,求数列{a n}的通项公式。 3.已知数列{a n}中,a1 =1,3a n a n+1+2a n+1- a n=0, 求数列{a n}的通项公式。4.[2012·广东卷] 设数列{a n}的前n项和为S n,满足2S n=a n+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1的值; (2)求数列{a n}的通项公式; (3)证明:对一切正整数n,有1 a1+1 a2+…+ 1 a n< 3 2.

5.2010全国(20)设数列满足且 . (1)求的通项公式; (Ⅱ)设. 6.2011广东20. 设数列满足, (1)求数列的通项公式; (2)证明:对于一切正整数n,. {}n a 10a =111111n n a a +-=--{}n a 1,1n n n k n k b b S == =<∑记S 证明:0,b >{}n a 111=,(2)22 n n n nba a b a n a n --= ≥+-{}n a 1 112 n n n b a ++≤+

7.(2010全国)已知数列{}n a 中,1111,n n a a c a +==- . (Ⅰ)设51,22 n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 . 8. [2012·全国卷] 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标. (1)证明:2≤x n

数列的通项公式练习题(通项式考试专题)

求数列通项公式专题练习 1、 设n S 就是等差数列}{n a 得前n 项与,已知 331S 与441S 得等差中项就是1,而551S 就是331S 与44 1 S 得等比中项,求数列}{n a 得通项公式 2、已知数列{}n a 中,3 1 1= a ,前n 项与n S 与n a 得关系就是 n n a n n S )12(-= ,试求通项公式n a 。 3、已知数列{}n a 中,11=a ,前n 项与n S 与通项n a 满足)2,(,1 222 ≥∈-=n N n S S a n n n ,求通项n a 得表达式、 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 得表达式。 5、已知数}{n a 得递推关系为43 2 1+=+n n a a ,且11=a 求通项n a 。 6、已知数列{}a n 得前n 项与S n b n n =+()1,其中{}b n 就是首项为1,公差为2得等差数列,数列{}a n 得通项公式 7、已知等差数列{a n }得首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别就是等比数列{b n }得第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }得通项公式;lTsK3。 8、已知数列}{n a 得前n 项与为n S ,且满足322-=+n a S n n )(* N n ∈.(Ⅰ)求数列}{n a 得通项公式; 9、设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N .(Ⅰ)求数列{}n a 得通项; 10、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 得通项公式。 11、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 得通项公式。 数列求与公式练习 1、 设{}n a 就是等差数列,{}n b 就是各项都为正数得等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 得通项公式;(Ⅱ)求数列n n a b ?? ???? 得前n 项与n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=、{}n a 得前n 项与为n S 、(Ⅰ)求n a 及n S ;(Ⅱ)令2 1 1 n n b a =-(n N +∈),求数列{}n b 得前n 项与n T 、 4、已知等差数列{}n a 得前3项与为6,前8项与为-4。(Ⅰ)求数列{}n a 得通项公式; (Ⅱ)设1* (4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 得前n 项与n S 5、等比数列{n a }得前n 项与为n S , 已知对任意得n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为 常数)得图像上、(1)求r 得值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 得前n 项与n T lJ30p 。

数列的通项公式练习题(通项式考试专题)

2010届高考数学快速提升成绩题型训练 ——数列求通项公式 在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 已知数}{n a 的递推关系为43 2 1+= +n n a a ,且11=a 求通项n a 。 在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。 已知数列{n a }中11=a 且1 1+=+n n n a a a (N n ∈),,求数列的通项公式。 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. (1)求数列{}a n 的通项公式; 已知等差数列{a n }的首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }的通项公式; 已知数列}{n a 的前n 项和为n S ,且满足 322-=+n a S n n )(*N n ∈. (Ⅰ)求数列}{n a 的通项公式; 设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N . (Ⅰ)求数列{}n a 的通项;

数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; 已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,1 n n n b a a +=(*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=; (II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; 1. 设数列{a n }的前项的和S n = 3 1(a n -1) (n * ∈N ). (Ⅰ)求a 1;a 2; (Ⅱ)求证数列{a n }为等比数列. 3. 已知二次函数()y f x =的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的 前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式; 7. 已知数列{}n a 的前n 项和S n 满足2(1),1n n n S a n =+-≥. (Ⅰ)写出数列{}n a 的前3项;,,321a a a (Ⅱ)求数列{}n a 的通项公式. 8. 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 9. 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 10. 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 11. 已知数列}a {n 满足3a 132a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。

高考数学数列通项公式专题复习

【高考地位】 在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。求通项公式也是学习数列时的一个难点。由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。 【方法点评】 方法一 数学归纳法 解题模板:第一步 求出数列的前几项,并猜想出数列的通项; 第二步 使用数学归纳法证明通项公式是成立的. 例1 若数列{}n a 的前n 项和为n s ,且方程2 0n n x a x a --=有一个根为n s -1,n=1,2,3.. (1) 求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法证明 【解析】(1)1211 ,26 a a = = (2)第一步,求出数列的前几项,并猜想出数列的通项; 由2(1)(1)0n n n n S a S a ----=知2 210n n n n S S a S -+-= 1(2)n n n a S S n -=-≥代入2210n n n n S S a S -+-=

1210n n n S S S --+=(2)n ≥………(*) 第二步,使用数学归纳法证明通项公式是成立的.学&科网 【变式演练1】已知数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

错误!未找 到引用源。错误!未找到引用源。 由此可知,当错误!未找到引用源。时等式也成立。 根据(1),(2)可知,等式对任何错误!未找到引用源。都成立。 方法二 n S 法 使用情景:已知错误!未找到引用源。()()n n n S f a S f n ==或 解题模板:第一步 利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 第二步 利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式; 第三步 根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a . 例2 在数列{}n a 中,已知其前n 项和为23n n S =+,则n a =__________. 【答案】1 5,1 { 2,2 n n n a n -==≥ 【解析】第一步,利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 当2n ≥时,321 1+=--n n s ;

公式法求数列通项公式(含答案)

公式法求通项公式(退位相减法) 1、数列{}n a 的前n 项和n S ,且满足:2*2()n S n n n N =+∈,求{}n a 的通项公式。【12+=n a n 】 2、数列{}n a 的前n 项和n S ,且满足:2 * 22()n S n n n N =++∈,求{}n a 的通项公式。【1 ,52,12{=≥+=n n n n a 】 3、数列{}n a 的前n 项和n S ,且满足:*21()3n n S a n N =-∈,求{}n a 的通项公式。【1)5 2 (53-=n n a 】 4、数列{}n a 的前n 项和n S ,且满足: * 53()n n a S n N =-∈,求{}n a 的通项公式。【1 3144n n a -?? =?- ? ?? 】 5、数列{}n a 的前n 项和n S ,且满足:11a =,*121()n n a S n N +=+∈,求{}n a 的通项公式。【13n n a -=】 6、数列{}n a 的前n 项和n S ,且满足:11a =,*13()n n a S n N +=∈, 求{}n a 的通项公式。【21,134,2n n n a n -=?=??≥? 】 7、数列{}n a 的前n 项和n S ,且满足:11a =,*11 ()3 n n a S n N +=∈,求{}n a 的通项公式。 【21,114,233n n n a n -=?? =????≥ ???? ?】 8、数列{}n a 的前n 项和n S ,且满足:11a =,* 1343()n n a S n N ++=∈, 求{}n a 的通项公式。【1 13n n a -?? =- ??? 】 9、数列{}n a 的前n 项和n S ,且满足:0n a >,()2 *11()4 n n S a n N = +∈, 求{}n a 的通项公式。【21n a n =-】 10、数列{}n a 的前n 项和n S ,且满足: *1()n a n N =+∈,求{}n a 的通项公式。【21n a n =-】 11、数列{}n a 的前n 项和n S ,且满足:0n a >,()()*1 12()6 n n n S a a n N =++∈,求{}n a 的通项公式。【3132n n a n or a n =-=-】 12、数列{}n a 的前n 项和n S ,且满足:0n a > *2 ()2n a n N +=∈,求{}n a 的通项公式。【42n a n =-】 13、数列{} n a 的前n 项和n S ,且满足:12 9 a =,1(2)n n n a S S n -=≥,求{}n a 的通项公式。 【2,194,2 (112)(132) n n a n n n ? =?? =??≥--??】 14、数列{}n a 的前n 项和n S ,且满足:11 2 a = ,120(2)n n n a S S n -+=≥,求{}n a 的通项公式

专题一 求数列的通项公式

数列专题1:求数列的通项公式 一、观察法 例1、用观察法写出下列数列的一个通项公式: (1)1,6,15,28,45,… (2)5,55,555,5555,55555,… (3)1,2+3,3+4+5,4+5+6+7,5+6+7+8+9,… (4)21,65-,1211,2019-,30 29 ,… 二、由n S 求n a (作差法) 给出数列{}n a 的前n 项和为n S 或1+n S 与n S 的递推关系,或者给出数列{}n a 的前n 项和 n S 与n a 的递推关系,求通项n a 型一:2 111 ≥=?? ?-=-n n S S S a n n n 【法一】“1--n n S S ”代入消元消n a ; 【法二】写多一项,作差消元消n S . 【注意】检验1=n 的值,若1a 的值适合n a 的表达式,应把1a 合并到n a 中去,否则应 写成分段形式. 型二:??? ??≥==-)2( ) 1( 1 1n T T n T a n n n 【法一】“ 1 -n n T T ”代入消元消n a , 【法二】写多一项,作商消元消n T . 例2、(1)若)1(21+-=+n n S n n ,求n a ; (2)若11=a ,)(12 3 *1N n S S n n ∈+=+,求n a .

【变式2】设数列{}n a 的前n 项和为n S (1)若)(3*2N n n n S n ∈-=,求n a . (2)若n n a S 31+=(* N n ∈),0≠n a ,求n a . 三、累加、类乘法 型一:)(1n f a a n n =--或)(1n f a a n n +=+,用累加法求通项公式 ) 1()2()2()1(1223211f a a f a a n f a a n f a a n n n n +=+=-+=-+=--- ? 的情况 检验,1) () 1()2()2()1(21 1 11=+=-+-++++=≥∑-=n i f a n f n f f f a a n n i n 型二: )(1 n f a a n n =-或n n a n f a )(1=+,用累乘法求通项公式 )1()2()2()1(1 223211f f n f n f a a a a a a a a n n n n ???-?-=????--- 1)1()2()2()1(,2a f f n f n f a n n ????-?-=≥ 检验1=n 的情况 ?

求数列通项公式的十种方法

1. 观察法(求出a1、a2、a3,然后找规律) 即归纳推理,就是观察数列特征,找出各项共同的构成规律,然后利用数学归纳法加以证明即可。 例1.设11=a ,)(222 1*+∈++-= N n b a a a n n n ,若1=b ,求32,a a 及数列}{n a 的通项公式. 解:由题意可知:11111+-==a , 112212212 12+-==++-=a a a , 113121222223+-=+=++-=a a a . 因此猜想11+-=n a n . 下面用数学归纳法证明上式. (1)当n =1时,结论显然成立. (2)假设当n =k 时结论成立,即11+-=k a k . (3)则11)1(11)1(11)1(12222 1+-+=++-=++-=++-=+k k a a a a k k k k , 即当n =k +1时结论也成立. 由(1)、(2)可知,对于一切正整数n ,都有)(11* ∈+-=N n n a n .(最后一句总结很重要) 2.定义法(已知数列为等差或者等比) 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。 例2.已知等差数列{}n a 满足1210a a +=,432a a -=,求{}n a 的通项公式。 解:设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =. 又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+(1,2,)n = .

3.公式法 若已知数列的前n 项和与的关系,求数列的通项可用公式 求解。(一定要讨论n=1,n≥2) 例3.设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式。 解:(Ⅰ)由 233n n S =+ 可得:当1=n 时, 111(33)32 a S == +=, 当2≥n 时,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥ 而 11133a -=≠, 所以 13,1,3, 1.n n n a n -=?=?>? 4.累加法 当递推公式为)(1n f a a n n +=+时,通常解法是把原递推公式转化为。 例4.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列{a n }的前10项和为 解:由题意得: 112211)()()(a a a a a a a a n n n n n +-++-+-=--- 12)1(+++-+= n n 2 )1(+=n n 5.累乘法 当递推公式为)(1n f a a n n =+时,通常解法是把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 n s n a {}n a n a 1()n n a a f n +-=

求数列通项公式的各种方法(非常全)

龙文教育-------您值得信赖的专业化个性化辅导学校 龙文教育个性化辅导授课教案 教师: 学生: 时间: 年 月 日 段 课题:数列的通项公式 教学目标:掌握数列通项公式的求法 教学重难点:构造等差等比数列 一、教学内容: 一、利用{ 1(2) 1(1) n n S S n S n n a --≥== 例1.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1) 4 231 a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.设数列{}n a 的前n 项的和 1 4122 333 n n n S a += - ?+ ,1,2,3,n = (Ⅰ)求首项1a 与通项n a ; (Ⅱ)设2 n n n T S = ,1,2,3,n = ,证明:1 32 n i i T =< ∑ 解:(I ) 2 11141223 3 3 a S a == - ?+ ,解得:2a =

高考数学玩转压轴题专题复杂数列的通项公式求解问题

专题3.1 复杂数列的通项公式求解问题 一.方法综述 数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一 数阵(数表)中涉及到的数列通项公式问题 【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____. 【答案】12 【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1??=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(??=i A ij ,最后根据整数解方程的解法列举所有解即可. 2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要

明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列. 【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________. 【答案】1030 类型二 点列问题中涉及到的数列通项公式问题 【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y L L 顺次为直线11 412 y x = + 上的点,点1122(,0),(,0),,(,0),n n B x B x B x L L 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点

相关主题