搜档网
当前位置:搜档网 › 内部排序算法比较

内部排序算法比较

内部排序算法比较
内部排序算法比较

内部排序算法比较

一、需求和规格说明

1. 对常用的6种内部排序算法进行比较:冒泡排序,直接插入排序,

简单选择排序,快速排序,希尔排序,堆排序。

2. 待排序表的表长不小于500;其中的数据要用伪随机数产生程序产

生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动) 3. 最后要对结果作出简单分析,包括对各组数据得到结果波动大小的

解释。

2. 设计

1. 存储结构

采用顺序表的存储结构

typedef struct

{

int *elem;

int length;

}SqList;

定义6个内容相同的顺序表:SqList L1,L2,L3,L4,L5,L6;

2. main函数的过程:

六个链表初始化InitList_Sq(SqList &L)

for(i=0;i<5;i++)

void CreateRand(SqList &L)产生伪随机数,并且将值赋在L.elem[MAXSIZE]里

销毁链表

结束

Copy_List(L,L1,L2,L3,L4,L5,L6)

六个顺序表中的内容完全一样

SelectSort(L1);//简单选择排序

InsertSort(L2);//直接插入排序

Bubble_Sort(L3);//起泡排序

Quick_Sort(L4);//快速排序

Shell_Sort(L5);//希尔排序

Heap_Sort(L6);//堆排序

在各个排序函数中,会输出各种排序生成的关键词比较次数和移动次数1).链表初识化InitList_Sq(SqList &L)。为L.elem分配地址空间,且令L.length=0

2).void CreateRand(SqList &L)产生伪随机数,并且将值赋在L.elem[MAXSIZE]里

函数代码如下:

void CreateRand(SqList &L)

{

L.length=0;

for(int i=1;i

{

L.elem[i]=rand()%INFINE;

L.length++;

}

}

3).Copy_List(L,L1,L2,L3,L4,L5,L6);将顺序表L中的信息复制给

L1,L2,L3,L4,L5,L6;

4).依次进行各种排序,在各个排序函数中,输出各自的关键字比较次数和移动次数。

5)在希尔排序中为其设计的增量序列dlta为:

int dlta[6]={1,4,16,64,256,512};

for(t=0;dlta[t]

t--;//t值,为进行一次排序的次数。

3、 结果分析:

简单选择排序、气泡排序的关键字比较次数近似于n*(n-1)/2,两者相同且数值固定。但是,简单选择排序的移动次数要小很多。希尔排序和直接插入排序的关键字比较次数和移动次数都相近。快速排序的比较次

数和移动次数都很小,但是,总体来说堆排序无论是比较次数还是移动次数都是最优。

4、 调试中遇到的问题

1. 最开始编译时,一直出现错误因为没有提示行一直不明白怎么回

事:

error C2144: syntax error : missing ';' before type 'int'

最后发现原因是:在定义顺序表结构体时,顺序表名称后面没

加“;”,

这说明对C++一些语法的运用没掌握牢固。

2. 最初只定义了一个顺序表L,依次调用各个排序函数,运行结果发

现,直接插入排序、气泡排序、希尔排序的关键字移动次数为0,调试发现顺序表在经过第一次排序:简单选择排序后已经变为有序的了。但是,不理解的是:所有的排序函数参数的调用都是值调用,如:void SelectSort(SqList L);而非引用

void SelectSort(SqList &L);为什么顺序表中的数值改变了呢?

运行结果如图:

然后,我理解成:如果认为L.elem就相当于数组c[n],假设函数fun (int *c);那么,那么在fun函数里改变c[]的值,改变结果是会被保存下来的。顺序表L.elem是个指针,所以即使没有写:所以在第一次排序进行关键字交换后,指针对应的数值便改变了。

SqList &L,顺序表L已经是地址传递了。

5、 结果截图

排序前

排序后

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

中南大学数据结构与算法第10章内部排序课后作业答案

第10章内部排序习题练习答案 1.以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。 (1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序 (5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序 上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。 答: (1)直接插入排序:(方括号表示无序区) 初始态: 265[301 751 129 937 863 742 694 076 438] 第一趟:265 301[751 129 937 863 742 694 076 438] 第二趟:265 301 751[129 937 863 742 694 076 438] 第三趟:129 265 301 751[937 863 742 694 076 438] 第四趟:129 265 301 751 937[863 742 694 076 438] 第五趟:129 265 301 751 863 937[742 694 076 438] 第六趟:129 265 301 742 751 863 937[694 076 438] 第七趟:129 265 301 694 742 751 863 937[076 438] 第八趟:076 129 265 301 694 742 751 863 937[438] 第九趟:076 129 265 301 438 694 742 751 863 937

(2)希尔排序(增量为5,3,1) 初始态: 265 301 751 129 937 863 742 694 076 438 第一趟:265 301 694 076 438 863 742 751 129 937 第二趟:076 301 129 265 438 694 742 751 863 937 第三趟:076 129 265 301 438 694 742 751 863 937 (3)冒泡排序(方括号为无序区) 初始态[265 301 751 129 937 863 742 694 076 438] 第一趟:076 [265 301 751 129 937 863 742 694 438] 第二趟:076 129 [265 301 751 438 937 863 742 694] 第三趟:076 129 265 [301 438 694 751 937 863 742] 第四趟:076 129 265 301 [438 694 742 751 937 863] 第五趟:076 129 265 301 438 [694 742 751 863 937] 第六趟:076 129 265 301 438 694 742 751 863 937 (4)快速排序:(方括号表示无序区,层表示对应的递归树的层数)

数据结构中的内部排序算法及性能分析

数据结构中的排序算法及性能分析 一、引言 排序(sorting )是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个按关键字有序的序列。为了查找方便通常希望计算机中的表是按关键字有序的。因为有序的顺序表可以使用查找效率较高的折半查找法。 在此首先明确排序算法的定义: 假设n 个记录的序列为 { 1R ,2R ,…n R } (1) 关键字的序列为: { 1k ,2k ,…,n k } 需要确定1,2,…,n 的一种排列:12,n p p p ,…,使(1)式的序列成为一个按关键字有序的序列: 12p p pn k k k ≤≤≤… 上述定义中的关键字Ki 可以是记录Ri (i=1,2,…,n )的主关键字,也可以是记录i R 的次关键字,甚至是若干数据项的组合。若在序列中有关键字相等的情况下,即存在i k =j k (1,1,i n j n i j ≤≤≤≤≠),且在排序前的序列中i R 领先于j R 。若在排序后的序列中Ri 仍领先于j R ,则称所用的排 序方法是稳定的;反之若可能使排序后的序列中j R 领先于i R ,则称所用的排序方法是不稳定的。 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法的时间与算法中语句执行次数成正比,那个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,记为T(n)。 在刚才提到的时间频度中,n 称为问题的规模,当n 不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n 的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n 趋近于无穷大时,T (n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

排序算法与性能分析

王吉玉《算法与数据结构》课程设计—排序算法性能分析 目录 摘要 (1) 前言 (2) 正文 (3) 1.采用类C语言定义相关的数据类型 (3) 2.各模块的伪码算法 (3) 3.函数的调用关系图 (7) 4.调试分析 (7) 5.测试结果 (8) 6.源程序(带注释) (11) 总结 (20) 参考文献 (21) 致谢 (22) 附件Ⅰ部分源程序代码 (23)

摘要 计算机的日益发展,其应用早已不局限于简单的数值运算,而涉及到问题的分析、数据结构框架的设计以及插入、删除、排序、查找等复杂的非数值处理和操作。算法与数据结构的学习就是为以后利用计算机资源高效地开发非数值处理的计算机程序打下坚实的理论、方法和技术基础。 算法与数据结构旨在分析研究计算机加工的数据对象的特性,以便选择适当的数据结构和存储结构,从而使建立在其上的解决问题的算法达到最优。 数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 《算法与数据结构》主要介绍一些最常用的数据结构及基本算法设计,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。数据结构是介于数学、计算机软件和计算机硬件之间的一门计算机专业的核心课程。它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛的应用于信息学、系统工程等各种领域。 学习数据结构是为了将实际问题中所涉及的对象在计算机中表示出来并对它们进行处理。通过课程设计可以提高学生的思维能力,促进学生的综合应用能力和计算机编程技能,找出自己的不足,在以后的学习中更加努力! 本次的课程设计主要是对《算法与数据结构》的所有内部排序算法进行了一个汇总、集合,并通过算法设计实现对其性能的分析和评价。在设计过程中重温了C语言中的基本语法以及个别函数的用法,巩固了设计思维方向。 关键词:排序算法;性能分析;排序算法性能分析;C语言

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

内部排序算法实现与性能分析课程设计.

目录 1、问题描述: (2) 1.1题目内容: (2) 1.2基本要求: (2) 1.3测试数据: (2) 2、需求分析: (2) 2.1程序的基本功能: (2) 2.2输入值、输出值以及输入输出形式: (2) 2.3各个模块的功能要求: (2) 3、概要设计: (3) 3.1所需的ADT,每个程序中使用的存储结构设计说明 (3) 3.2主程序流程以及模块调用关系 (3) 3.3每个模块的算法设计说明(流程图) (4) 3.3.1气泡排序: (4) 3.3.2直插排序 (5) 3.3.3选择排序 (6) 3.3.4希尔排序 (7) 3.3.5快速排序 (8) 4、详细设计: (9) 4.1函数调用关系图 (9) 5、各个算法实现的源程序: (9) 5.1、冒泡排序及其主要算法 (9) 5.2、直接插入排序及其主要算法 (10) 5.3、选择排序及其主要算法 (10) 5.4、希尔排序及其主要算法 (11) 6、调试分析: (12) 7、使用说明: (13) 8、测试结果: (14) 9、主要参考文献 (14)

1、问题描述: 1.1题目内容: 内部排序算法实现与性能分析 1.2基本要求: (1)数据结构定义 (2)利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、希尔等排序方法进行排序,并统计每一种排序上机所花费的时间,对各种排序算法做分析比较. 1.3测试数据: 由函数随机产生的数据,由于是随机产生的,所以在此不一一写出。 2、需求分析: 2.1程序的基本功能: 输入30000个随机整数,对这些数进行多种方法进行排序,并对这些排序做比较,在屏幕上输出每种排序方法所比较的次数,交换的次数,和时间复杂度。 2.2输入值、输出值以及输入输出形式: 由于程序中所需的数据都是有函数随机生成的整形数,不需要用户自己输入,用户只需要对演示程序中的一些提示做一些必要的选择以便于程序的执行。 程序输出的是对六种排序做的一些比较,即输出六种排序各排序过程中所比较的数据的个数,交换的数据的次数,和排序完成所用的时间。六种排序依次在计算机终端上显示,便于用户观察。 2.3各个模块的功能要求: 一、随机函数:产生随机数 二、选择排序函数:对随机数进行选择排序 三、起泡排序函数:对随机数进行气泡排序 四、直接插入函数:对随机数进行直接插入排序 五、希尔排序函数:对随机数进行希尔排序 六、快速排序函数:对随机数进行快速排序 七、主函数

内部排序算法的实现与比较

内部排序算法的实现与 比较 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。 2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

内部排序算法的实现与比较

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

各种排序算法的优缺点

一、冒泡排序 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。 优点:稳定; 缺点:慢,每次只能移动相邻两个数据。 二、选择排序 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。 n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果: ①初始状态:无序区为R[1..n],有序区为空。 ②第1趟排序 在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 …… ③第i趟排序 第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。 优点:移动数据的次数已知(n-1次); 缺点:比较次数多。 三、插入排序 已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来 a[x]的位置这就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a) 优点:稳定,快; 缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。 四、缩小增量排序 由希尔在1959年提出,又称希尔排序(shell排序)。 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入排序的效果很好。首先取一增量d(da[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n] 两组数据进行快速排序。 优点:极快,数据移动少; 缺点:不稳定。 六、箱排序 已知一组无序正整数数据a[1]、a[2]、……a[n],需将其按升序排列。首先定义一个数组x[m],且m>=a[1]、a[2]、……a[n],接着循环n次,每次x[a]++. 优点:快,效率达到O(1) 缺点:数据范围必须为正整数并且比较小

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析 一、排序原理 (1)直接插入排序 基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。 效率分析:该排序算法简洁,易于实现。从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n2/4.则直接插入排序的时间复杂度为O(n2).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。插入排序算法对于大数组,这种算法非常慢。但是对于小数组,它比其他算法快。其他算法因为待的数组元素很少,反而使得效率降低。插入排序还有一个优点就是排序稳定。 (2)折半插入排序 基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。 效率分析:由上可知该排序所需存储空间和直接插入排序相同。从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。而记录的移动次数不变。因此,折半查找排序的时间复杂度为O(nlogn)+O(n2) = O(n2)。排序稳定。 (3)希尔排序 基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。因为不管记录序列多么庞大,关键字多么混乱,在先前较大的分组步长dk下每个子序列的规模都不大,用直接插入排序效率都较高。尽管在随后的步长dk 递减分组中子序列越来越大,但由于整个序列的有序性也越来越明显,则排序效率依然较高。这种改进抓住了直接插入排序的两点本质,大大提高了它的时间效率。 效率分析:希尔排序有以下几个关键特性: (1) 希尔排序的核心是以某个增量dk 为步长跳跃分组进行插入排序,由于分组的步长dk 逐步缩小,所以也叫“缩小增量排序”插入排序。其关键是如何选取分组的步长序列才能使得希尔方法的时间效率最高; (2) 待排序列记录的个数n 、跳跃分组步长逐步减小直到为1时所进行的扫描次数T、增量的和、记录关键字比较的次数以及记录移动的次数或各子序列中的反序数等因素都影响希尔算法的时间复杂度:其中记录关键字比较的次数是重要因素,它主要取决于分组步长序列的选择; (3) 希尔方法是一种不稳定排序算法,因为其排序过程中各趟的步长不同,在第k 遍用dk 作为步长排序之后,第k +1 遍排序时可能会遇到多个逆序存在,影响排序的稳定性。

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

相关主题